Spaces:
Running
Running
Update Evaluators
Browse files- Evaluators +39 -22
Evaluators
CHANGED
@@ -7,52 +7,61 @@ from datasets import load_dataset
|
|
7 |
import evaluate
|
8 |
|
9 |
# Import RAG setup and retrieval logic from app.py
|
10 |
-
from app import setup_rag, retrieve
|
11 |
|
12 |
|
13 |
-
def retrieval_recall(dataset, passages, embedder, index, k=20, rerank_k=None, num_samples=100):
|
14 |
"""
|
15 |
Compute raw Retrieval Recall@k on the first num_samples examples.
|
16 |
-
If rerank_k is set,
|
|
|
17 |
"""
|
18 |
hits = 0
|
19 |
for ex in dataset.select(range(num_samples)):
|
20 |
question = ex["question"]
|
21 |
gold_answers = ex["answers"]["text"]
|
22 |
-
|
23 |
if rerank_k:
|
24 |
-
|
|
|
25 |
else:
|
26 |
-
#
|
27 |
q_emb = embedder.encode([question], convert_to_numpy=True)
|
28 |
distances, idxs = index.search(q_emb, k)
|
29 |
ctxs = [passages[i] for i in idxs[0]]
|
30 |
-
|
|
|
31 |
if any(any(ans in ctx for ctx in ctxs) for ans in gold_answers):
|
32 |
hits += 1
|
|
|
33 |
recall = hits / num_samples
|
34 |
print(f"Retrieval Recall@{k} (rerank_k={rerank_k}): {recall:.3f} ({hits}/{num_samples})")
|
35 |
return recall
|
36 |
|
37 |
|
38 |
-
def retrieval_recall_answerable(dataset, passages, embedder, index, k=20, rerank_k=None, num_samples=100):
|
39 |
"""
|
40 |
-
Retrieval Recall@k evaluated only on answerable questions.
|
41 |
"""
|
42 |
-
hits
|
|
|
43 |
for ex in dataset.select(range(num_samples)):
|
44 |
-
|
|
|
45 |
continue
|
46 |
total += 1
|
47 |
question = ex["question"]
|
|
|
48 |
if rerank_k:
|
49 |
-
ctxs, _ = retrieve(question, passages, embedder, index, k=k, rerank_k=rerank_k)
|
50 |
else:
|
51 |
q_emb = embedder.encode([question], convert_to_numpy=True)
|
52 |
distances, idxs = index.search(q_emb, k)
|
53 |
ctxs = [passages[i] for i in idxs[0]]
|
54 |
-
|
|
|
55 |
hits += 1
|
|
|
56 |
recall = hits / total if total > 0 else 0.0
|
57 |
print(f"Retrieval Recall@{k} on answerable only (rerank_k={rerank_k}): {recall:.3f} ({hits}/{total})")
|
58 |
return recall
|
@@ -60,34 +69,42 @@ def retrieval_recall_answerable(dataset, passages, embedder, index, k=20, rerank
|
|
60 |
|
61 |
def qa_eval_answerable(dataset, passages, embedder, reranker, index, qa_pipe, k=20, num_samples=100):
|
62 |
"""
|
63 |
-
End-to-end QA EM/F1 on answerable subset using
|
64 |
"""
|
65 |
squad_metric = evaluate.load("squad")
|
66 |
-
preds
|
|
|
|
|
67 |
for ex in dataset.select(range(num_samples)):
|
68 |
-
|
|
|
69 |
continue
|
70 |
qid = ex["id"]
|
71 |
# retrieve and generate
|
72 |
-
answer, _ = retrieve_and_answer(
|
|
|
|
|
73 |
preds.append({"id": qid, "prediction_text": answer})
|
74 |
refs.append({"id": qid, "answers": ex["answers"]})
|
|
|
75 |
results = squad_metric.compute(predictions=preds, references=refs)
|
76 |
print(f"Answerable-only QA EM: {results['exact_match']:.2f}, F1: {results['f1']:.2f}")
|
77 |
return results
|
78 |
|
79 |
|
80 |
def main():
|
81 |
-
# Setup RAG components
|
82 |
passages, embedder, reranker, index, qa_pipe = setup_rag()
|
83 |
-
|
|
|
84 |
squad = load_dataset("rajpurkar/squad_v2", split="validation")
|
85 |
|
86 |
-
# Run evaluations
|
87 |
-
retrieval_recall(squad, passages, embedder, index, k=20, rerank_k=5, num_samples=100)
|
88 |
-
retrieval_recall_answerable(squad, passages, embedder, index, k=20, rerank_k=5, num_samples=100)
|
89 |
qa_eval_answerable(squad, passages, embedder, reranker, index, qa_pipe, k=20, num_samples=100)
|
90 |
|
91 |
|
92 |
if __name__ == "__main__":
|
93 |
main()
|
|
|
|
7 |
import evaluate
|
8 |
|
9 |
# Import RAG setup and retrieval logic from app.py
|
10 |
+
from app import setup_rag, retrieve, retrieve_and_answer
|
11 |
|
12 |
|
13 |
+
def retrieval_recall(dataset, passages, embedder, reranker, index, k=20, rerank_k=None, num_samples=100):
|
14 |
"""
|
15 |
Compute raw Retrieval Recall@k on the first num_samples examples.
|
16 |
+
If rerank_k is set, apply cross-encoder reranking via `retrieve`.
|
17 |
+
Otherwise, use the FAISS index only (top-k) without reranking.
|
18 |
"""
|
19 |
hits = 0
|
20 |
for ex in dataset.select(range(num_samples)):
|
21 |
question = ex["question"]
|
22 |
gold_answers = ex["answers"]["text"]
|
23 |
+
|
24 |
if rerank_k:
|
25 |
+
# use two-stage retrieval (dense + rerank)
|
26 |
+
ctxs, _ = retrieve(question, passages, embedder, reranker, index, k=k, rerank_k=rerank_k)
|
27 |
else:
|
28 |
+
# single-stage: FAISS only
|
29 |
q_emb = embedder.encode([question], convert_to_numpy=True)
|
30 |
distances, idxs = index.search(q_emb, k)
|
31 |
ctxs = [passages[i] for i in idxs[0]]
|
32 |
+
|
33 |
+
# check if any gold answer appears in any retrieved context
|
34 |
if any(any(ans in ctx for ctx in ctxs) for ans in gold_answers):
|
35 |
hits += 1
|
36 |
+
|
37 |
recall = hits / num_samples
|
38 |
print(f"Retrieval Recall@{k} (rerank_k={rerank_k}): {recall:.3f} ({hits}/{num_samples})")
|
39 |
return recall
|
40 |
|
41 |
|
42 |
+
def retrieval_recall_answerable(dataset, passages, embedder, reranker, index, k=20, rerank_k=None, num_samples=100):
|
43 |
"""
|
44 |
+
Retrieval Recall@k evaluated only on answerable questions (answers list non-empty).
|
45 |
"""
|
46 |
+
hits = 0
|
47 |
+
total = 0
|
48 |
for ex in dataset.select(range(num_samples)):
|
49 |
+
gold = ex["answers"]["text"]
|
50 |
+
if not gold:
|
51 |
continue
|
52 |
total += 1
|
53 |
question = ex["question"]
|
54 |
+
|
55 |
if rerank_k:
|
56 |
+
ctxs, _ = retrieve(question, passages, embedder, reranker, index, k=k, rerank_k=rerank_k)
|
57 |
else:
|
58 |
q_emb = embedder.encode([question], convert_to_numpy=True)
|
59 |
distances, idxs = index.search(q_emb, k)
|
60 |
ctxs = [passages[i] for i in idxs[0]]
|
61 |
+
|
62 |
+
if any(any(ans in ctx for ctx in ctxs) for ans in gold):
|
63 |
hits += 1
|
64 |
+
|
65 |
recall = hits / total if total > 0 else 0.0
|
66 |
print(f"Retrieval Recall@{k} on answerable only (rerank_k={rerank_k}): {recall:.3f} ({hits}/{total})")
|
67 |
return recall
|
|
|
69 |
|
70 |
def qa_eval_answerable(dataset, passages, embedder, reranker, index, qa_pipe, k=20, num_samples=100):
|
71 |
"""
|
72 |
+
End-to-end QA EM/F1 on answerable subset using retrieve_and_answer.
|
73 |
"""
|
74 |
squad_metric = evaluate.load("squad")
|
75 |
+
preds = []
|
76 |
+
refs = []
|
77 |
+
|
78 |
for ex in dataset.select(range(num_samples)):
|
79 |
+
gold = ex["answers"]["text"]
|
80 |
+
if not gold:
|
81 |
continue
|
82 |
qid = ex["id"]
|
83 |
# retrieve and generate
|
84 |
+
answer, _ = retrieve_and_answer(
|
85 |
+
ex["question"], passages, embedder, reranker, index, qa_pipe
|
86 |
+
)
|
87 |
preds.append({"id": qid, "prediction_text": answer})
|
88 |
refs.append({"id": qid, "answers": ex["answers"]})
|
89 |
+
|
90 |
results = squad_metric.compute(predictions=preds, references=refs)
|
91 |
print(f"Answerable-only QA EM: {results['exact_match']:.2f}, F1: {results['f1']:.2f}")
|
92 |
return results
|
93 |
|
94 |
|
95 |
def main():
|
96 |
+
# 1) Setup RAG components
|
97 |
passages, embedder, reranker, index, qa_pipe = setup_rag()
|
98 |
+
|
99 |
+
# 2) Load SQuAD v2 validation split
|
100 |
squad = load_dataset("rajpurkar/squad_v2", split="validation")
|
101 |
|
102 |
+
# 3) Run evaluations
|
103 |
+
retrieval_recall(squad, passages, embedder, reranker, index, k=20, rerank_k=5, num_samples=100)
|
104 |
+
retrieval_recall_answerable(squad, passages, embedder, reranker, index, k=20, rerank_k=5, num_samples=100)
|
105 |
qa_eval_answerable(squad, passages, embedder, reranker, index, qa_pipe, k=20, num_samples=100)
|
106 |
|
107 |
|
108 |
if __name__ == "__main__":
|
109 |
main()
|
110 |
+
|