Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,365 +1,199 @@
|
|
1 |
-
|
2 |
-
#
|
3 |
-
#
|
4 |
-
# This notebook builds a minimal RAG (Retrieval-Augmented Generation) pipeline with enhancements:
|
5 |
-
#
|
6 |
-
# - Slimmed & deduplicated corpora
|
7 |
-
# - Chunking long passages
|
8 |
-
# - Persistent FAISS index & embeddings
|
9 |
-
# - Distance threshold to avoid hallucinations
|
10 |
-
# - Context-length control
|
11 |
-
# - Polished Gradio interface with separate contexts panel
|
12 |
-
|
13 |
-
# ## 1. Configuration & Imports
|
14 |
-
#
|
15 |
-
# We detect device, print settings, and support loading saved index.
|
16 |
|
17 |
import os
|
18 |
import pickle
|
19 |
-
from datasets import load_dataset
|
20 |
-
from sentence_transformers import SentenceTransformer, CrossEncoder
|
21 |
import faiss
|
22 |
import numpy as np
|
23 |
import torch
|
24 |
-
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
|
25 |
-
from transformers import AutoTokenizer as _AutoTokenizer
|
26 |
import gradio as gr
|
27 |
-
import evaluate
|
28 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
-
#
|
31 |
-
|
32 |
-
os.
|
33 |
-
|
34 |
-
|
35 |
-
PCTX_PATH = os.path.join(data_dir, "passages.pkl")
|
36 |
|
37 |
MODEL_NAME = os.getenv("MODEL_NAME", "google/flan-t5-small")
|
38 |
EMBEDDER_MODEL = os.getenv("EMBEDDER_MODEL", "sentence-transformers/all-MiniLM-L6-v2")
|
39 |
-
|
40 |
-
|
41 |
|
42 |
-
|
43 |
-
dist_threshold = 1.0 # tune as needed
|
44 |
-
# Max words per context snippet
|
45 |
-
max_context_words = 200
|
46 |
|
|
|
47 |
|
48 |
-
|
49 |
|
50 |
-
|
51 |
-
|
|
|
52 |
for c in contexts:
|
53 |
words = c.split()
|
54 |
if len(words) > max_words:
|
55 |
c = " ".join(words[:max_words]) + " ... [truncated]"
|
56 |
-
|
57 |
-
return
|
58 |
-
|
59 |
-
|
60 |
-
# ## 2. Load, Deduplicate & Chunk Corpora
|
61 |
-
#
|
62 |
-
# For this demo we sample small slices and remove duplicates. We also chunk any passage >512 tokens.
|
63 |
-
#
|
64 |
-
|
65 |
|
66 |
-
|
67 |
-
chunk_tokenizer = _AutoTokenizer.from_pretrained(MODEL_NAME)
|
68 |
-
max_tokens = chunk_tokenizer.model_max_length
|
69 |
-
|
70 |
-
def chunk_text(text: str, max_tokens: int, stride: int = None) -> list[str]:
|
71 |
-
"""
|
72 |
-
Split `text` into overlapping chunks of up to max_tokens words.
|
73 |
-
By default uses 25% overlap (stride = max_tokens // 4).
|
74 |
-
"""
|
75 |
words = text.split()
|
76 |
if stride is None:
|
77 |
-
stride = max_tokens // 4
|
78 |
-
chunks = []
|
79 |
-
start = 0
|
80 |
while start < len(words):
|
81 |
end = start + max_tokens
|
82 |
-
|
83 |
-
chunks.append(chunk)
|
84 |
-
# advance by stride, not full window
|
85 |
start += stride
|
86 |
return chunks
|
87 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
if txt:
|
102 |
-
trivia_passages.append(txt)
|
103 |
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
for p in unique_passages:
|
109 |
-
# count tokens without encoding to avoid warnings
|
110 |
-
tokens = chunk_tokenizer.tokenize(p)
|
111 |
-
if len(tokens) > max_tokens:
|
112 |
-
passages.extend(chunk_text(p, max_tokens))
|
113 |
else:
|
114 |
-
passages
|
115 |
-
|
116 |
-
|
117 |
-
# Persist raw passages list
|
118 |
-
with open(PCTX_PATH, "wb") as f:
|
119 |
-
pickle.dump(passages, f)
|
120 |
-
|
121 |
-
|
122 |
-
# ## 3. Build or Load FAISS Index & Embeddings
|
123 |
-
#
|
124 |
-
# We save embeddings & index to disk to skip slow re-encoding.
|
125 |
-
|
126 |
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
|
|
|
|
|
131 |
|
132 |
-
embedder
|
133 |
-
reranker = CrossEncoder("cross-encoder/ms-marco-MiniLM-L-6-v2")
|
134 |
|
135 |
-
# ──
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
147 |
)
|
148 |
-
# Normalize to unit length so that inner‐product = cosine sim
|
149 |
-
embeddings = embeddings / np.linalg.norm(embeddings, axis=1, keepdims=True)
|
150 |
-
|
151 |
-
# Build a FAISS index over inner‐product (cosine) space
|
152 |
-
dim = embeddings.shape[1]
|
153 |
-
index = faiss.IndexFlatIP(dim)
|
154 |
-
index.add(embeddings)
|
155 |
-
|
156 |
-
# Persist to disk for faster reload
|
157 |
-
faiss.write_index(index, INDEX_PATH)
|
158 |
-
np.save(EMB_PATH, embeddings)
|
159 |
-
print(f"Indexed {index.ntotal} vectors.")
|
160 |
-
|
161 |
-
|
162 |
-
# ## 4. Load QA Model & Pipeline
|
163 |
-
|
164 |
-
|
165 |
-
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
166 |
-
model = AutoModelForSeq2SeqLM.from_pretrained(MODEL_NAME)
|
167 |
-
qa_pipeline = pipeline(
|
168 |
-
"text2text-generation",
|
169 |
-
model=model,
|
170 |
-
tokenizer=tokenizer,
|
171 |
-
device=device,
|
172 |
-
early_stopping=True
|
173 |
-
)
|
174 |
-
print("QA pipeline ready.")
|
175 |
-
|
176 |
|
177 |
-
|
178 |
-
#
|
179 |
-
# We bail out early if top distance > threshold to avoid hallucination.
|
180 |
|
181 |
-
|
182 |
-
def retrieve(question
|
183 |
-
# 1) dense‐search top k
|
184 |
q_emb = embedder.encode([question], convert_to_numpy=True)
|
185 |
-
distances,
|
186 |
-
|
187 |
-
# 2) pull out those k contexts
|
188 |
-
candidates = [passages[i] for i in indices[0]]
|
189 |
-
|
190 |
-
# 3) score with cross‐encoder
|
191 |
-
pairs = [[question, ctx] for ctx in candidates]
|
192 |
-
scores = reranker.predict(pairs)
|
193 |
-
|
194 |
-
# 4) pick top rerank_k
|
195 |
-
top_idxs = np.argsort(scores)[-rerank_k:][::-1]
|
196 |
-
final_ctxs = [candidates[i] for i in top_idxs]
|
197 |
-
final_dist = [distances[0][i] for i in top_idxs]
|
198 |
-
|
199 |
-
return final_ctxs, final_dist
|
200 |
|
|
|
|
|
|
|
201 |
|
|
|
|
|
|
|
202 |
|
203 |
-
def generate(question
|
204 |
-
""
|
205 |
-
|
206 |
-
an answer using the HF text2text pipeline.
|
207 |
-
"""
|
208 |
-
# 1) Turn each context into a truncated snippet
|
209 |
-
snippet_lines = [
|
210 |
-
f"Context {i+1}: {s}"
|
211 |
-
for i, s in enumerate(make_context_snippets(contexts, max_context_words))
|
212 |
-
]
|
213 |
-
|
214 |
-
# 2) Build the full prompt
|
215 |
prompt = (
|
216 |
"You are a helpful assistant. Use ONLY the following contexts to answer. "
|
217 |
"If the answer is not contained, say 'Sorry, I don't know.'\n\n"
|
218 |
-
+ "\n".join(
|
219 |
+ f"\n\nQuestion: {question}\nAnswer:"
|
220 |
)
|
|
|
221 |
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
def retrieve_and_answer(question, k=5):
|
228 |
-
contexts, distances = retrieve(question, k=20)
|
229 |
-
if not contexts or distances[0] > dist_threshold:
|
230 |
return "Sorry, I don't know.", []
|
231 |
-
|
232 |
-
ans
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
# ## 6. Gradio Demo Interface
|
244 |
-
#
|
245 |
-
# Separate panels for answer and contexts.
|
246 |
-
|
247 |
-
def answer_and_contexts(question: str):
|
248 |
-
"""
|
249 |
-
Full end-to-end: retrieve, threshold-check, generate answer,
|
250 |
-
and return both the answer and a formatted string of contexts.
|
251 |
-
"""
|
252 |
-
answer, contexts = retrieve_and_answer(question)
|
253 |
-
|
254 |
-
# If no valid contexts, just return the apology
|
255 |
-
if not contexts:
|
256 |
-
return answer, ""
|
257 |
-
|
258 |
-
# Otherwise format each snippet for display
|
259 |
-
ctx_snippets = [
|
260 |
-
f"Context {i+1}: {s}"
|
261 |
-
for i, s in enumerate(make_context_snippets(contexts, max_context_words))
|
262 |
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
263 |
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
iface = gr.Interface(
|
269 |
-
fn=answer_and_contexts,
|
270 |
-
inputs=gr.Textbox(lines=1, placeholder="Enter your question here...", label="Question"),
|
271 |
-
outputs=[
|
272 |
-
gr.Textbox(label="Answer"),
|
273 |
-
gr.Textbox(label="Retrieved Contexts")
|
274 |
-
],
|
275 |
-
title="🔍 RAG QA Demo",
|
276 |
-
description="Retrieval-Augmented QA with distance threshold and context preview"
|
277 |
-
)
|
278 |
-
|
279 |
-
iface.launch()
|
280 |
-
|
281 |
-
|
282 |
-
# # Test the Model
|
283 |
-
|
284 |
-
# load SQuAD v2 (we only need validation split)
|
285 |
-
squad = load_dataset("rajpurkar/squad_v2", split="validation")
|
286 |
-
|
287 |
-
# load the SQuAD metric (handles no-answer properly)
|
288 |
-
squad_metric = evaluate.load("squad")
|
289 |
-
|
290 |
-
|
291 |
-
def retrieval_recall(dataset, k=20, num_samples=100):
|
292 |
-
hits = 0
|
293 |
-
for ex in dataset.select(range(num_samples)):
|
294 |
-
question = ex["question"]
|
295 |
-
gold_answers = ex["answers"]["text"] # list, empty if unanswerable
|
296 |
-
|
297 |
-
# get your top-k contexts
|
298 |
-
ctxs, _ = retrieve(question, k=k, rerank_k=k) # or rerank_k smaller
|
299 |
-
# check if any gold answer appears in any context
|
300 |
-
if any(any(ans in ctx for ctx in ctxs) for ans in gold_answers):
|
301 |
-
hits += 1
|
302 |
-
|
303 |
-
recall = hits / num_samples
|
304 |
-
print(f"Retrieval Recall@{k}: {recall:.3f}")
|
305 |
-
return recall
|
306 |
-
|
307 |
-
|
308 |
-
# ## Only answerable Questions
|
309 |
-
|
310 |
-
|
311 |
-
def retrieval_recall_answerable(dataset, k=20, num_samples=100):
|
312 |
-
hits = 0
|
313 |
-
total = 0
|
314 |
-
for ex in dataset.select(range(num_samples)):
|
315 |
-
if not ex["answers"]["text"]:
|
316 |
-
continue # skip unanswerable
|
317 |
-
total += 1
|
318 |
-
ctxs, _ = retrieve(ex["question"], k=k, rerank_k=k)
|
319 |
-
if any(any(ans in ctx for ctx in ctxs) for ans in ex["answers"]["text"]):
|
320 |
-
hits += 1
|
321 |
-
recall = hits / total
|
322 |
-
print(f"Retrieval Recall@{k} on answerable only: {recall:.3f} ({hits}/{total})")
|
323 |
-
return recall
|
324 |
-
|
325 |
-
def qa_eval_all(dataset, num_samples=100, k=20):
|
326 |
-
preds, refs = [], []
|
327 |
-
for ex in dataset.select(range(num_samples)):
|
328 |
-
qid = ex["id"]
|
329 |
-
gold = ex["answers"]
|
330 |
-
# ensure metric has something to iterate over
|
331 |
-
if not gold["text"]:
|
332 |
-
gold = {"text":[""], "answer_start":[0]}
|
333 |
-
|
334 |
-
ans, _ = retrieve_and_answer(ex["question"], k=k)
|
335 |
-
# for metric purposes, treat our refusal as empty string
|
336 |
-
pred_text = "" if ans.strip().lower().startswith("sorry") else ans
|
337 |
-
|
338 |
-
preds.append({"id": qid, "prediction_text": pred_text})
|
339 |
-
refs.append({"id": qid, "answers": gold})
|
340 |
-
|
341 |
-
results = squad_metric.compute(predictions=preds, references=refs)
|
342 |
-
print(f"Full QA EM: {results['exact_match']:.2f}, F1: {results['f1']:.2f}")
|
343 |
-
return results
|
344 |
-
|
345 |
-
def qa_eval_answerable(dataset, num_samples=100, k=20):
|
346 |
-
preds, refs = [], []
|
347 |
-
for ex in dataset.select(range(num_samples)):
|
348 |
-
if not ex["answers"]["text"]:
|
349 |
-
continue # skip unanswerable
|
350 |
-
qid = ex["id"]
|
351 |
-
ans, _ = retrieve_and_answer(ex["question"], k=k)
|
352 |
-
|
353 |
-
preds.append({"id": qid, "prediction_text": ans})
|
354 |
-
refs.append({"id": qid, "answers": ex["answers"]})
|
355 |
-
|
356 |
-
results = squad_metric.compute(predictions=preds, references=refs)
|
357 |
-
print(f"Answerable-only QA EM: {results['exact_match']:.2f}, F1: {results['f1']:.2f}")
|
358 |
-
return results
|
359 |
-
|
360 |
-
|
361 |
-
retrieval_recall(squad, k=2, num_samples=100)
|
362 |
-
retrieval_recall_answerable(squad, k=2, num_samples=100)
|
363 |
-
qa_eval_all(squad, num_samples=100, k=2)
|
364 |
-
qa_eval_answerable(squad, num_samples=100, k=2)
|
365 |
-
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
# coding: utf-8
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
|
4 |
import os
|
5 |
import pickle
|
|
|
|
|
6 |
import faiss
|
7 |
import numpy as np
|
8 |
import torch
|
|
|
|
|
9 |
import gradio as gr
|
|
|
10 |
|
11 |
+
from datasets import load_dataset
|
12 |
+
from sentence_transformers import SentenceTransformer, CrossEncoder
|
13 |
+
from transformers import (
|
14 |
+
AutoTokenizer,
|
15 |
+
AutoModelForSeq2SeqLM,
|
16 |
+
pipeline as hf_pipeline,
|
17 |
+
)
|
18 |
|
19 |
+
# ── 1. Configuration ──
|
20 |
+
DATA_DIR = os.path.join(os.getcwd(), "data")
|
21 |
+
INDEX_PATH = os.path.join(DATA_DIR, "faiss_index.faiss")
|
22 |
+
EMB_PATH = os.path.join(DATA_DIR, "embeddings.npy")
|
23 |
+
PCTX_PATH = os.path.join(DATA_DIR, "passages.pkl")
|
|
|
24 |
|
25 |
MODEL_NAME = os.getenv("MODEL_NAME", "google/flan-t5-small")
|
26 |
EMBEDDER_MODEL = os.getenv("EMBEDDER_MODEL", "sentence-transformers/all-MiniLM-L6-v2")
|
27 |
+
DIST_THRESHOLD = float(os.getenv("DIST_THRESHOLD", 1.0))
|
28 |
+
MAX_CTX_WORDS = int(os.getenv("MAX_CTX_WORDS", 200))
|
29 |
|
30 |
+
DEVICE = 0 if torch.cuda.is_available() else -1
|
|
|
|
|
|
|
31 |
|
32 |
+
os.makedirs(DATA_DIR, exist_ok=True)
|
33 |
|
34 |
+
print(f"Using MODEL_NAME={MODEL_NAME}, EMBEDDER_MODEL={EMBEDDER_MODEL}, device={'GPU' if DEVICE==0 else 'CPU'}")
|
35 |
|
36 |
+
# ── 2. Helpers ──
|
37 |
+
def make_context_snippets(contexts, max_words=MAX_CTX_WORDS):
|
38 |
+
out = []
|
39 |
for c in contexts:
|
40 |
words = c.split()
|
41 |
if len(words) > max_words:
|
42 |
c = " ".join(words[:max_words]) + " ... [truncated]"
|
43 |
+
out.append(c)
|
44 |
+
return out
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
|
46 |
+
def chunk_text(text, max_tokens, stride=None):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
words = text.split()
|
48 |
if stride is None:
|
49 |
+
stride = max_tokens // 4
|
50 |
+
chunks, start = [], 0
|
|
|
51 |
while start < len(words):
|
52 |
end = start + max_tokens
|
53 |
+
chunks.append(" ".join(words[start:end]))
|
|
|
|
|
54 |
start += stride
|
55 |
return chunks
|
56 |
|
57 |
+
# ── 3. Load & preprocess passages ──
|
58 |
+
def load_passages():
|
59 |
+
# 3.1 load raw corpora
|
60 |
+
wiki = load_dataset("rag-datasets/rag-mini-wikipedia", "text-corpus", split="passages")["passage"]
|
61 |
+
squad = load_dataset("rajpurkar/squad_v2", split="train[:100]")["context"]
|
62 |
+
trivia_ds = load_dataset("mandarjoshi/trivia_qa", "rc", split="validation[:100]")
|
63 |
+
trivia = []
|
64 |
+
for ex in trivia_ds:
|
65 |
+
for fld in ("wiki_context", "search_context"):
|
66 |
+
txt = ex.get(fld) or ""
|
67 |
+
if txt: trivia.append(txt)
|
68 |
+
|
69 |
+
all_passages = list(dict.fromkeys(wiki + squad + trivia))
|
70 |
+
# 3.2 chunk long passages
|
71 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
72 |
+
max_tokens = tokenizer.model_max_length
|
73 |
|
74 |
+
chunks = []
|
75 |
+
for p in all_passages:
|
76 |
+
toks = tokenizer.tokenize(p)
|
77 |
+
if len(toks) > max_tokens:
|
78 |
+
chunks.extend(chunk_text(p, max_tokens))
|
79 |
+
else:
|
80 |
+
chunks.append(p)
|
81 |
+
|
82 |
+
print(f"[load_passages] total chunks: {len(chunks)}")
|
83 |
+
with open(PCTX_PATH, "wb") as f:
|
84 |
+
pickle.dump(chunks, f)
|
85 |
+
return chunks
|
86 |
|
87 |
+
# ── 4. Build or load FAISS ──
|
88 |
+
def load_faiss_index(passages):
|
89 |
+
# sentence‐transformers embedder + cross‐encoder
|
90 |
+
embedder = SentenceTransformer(EMBEDDER_MODEL)
|
91 |
+
reranker = CrossEncoder("cross-encoder/ms-marco-MiniLM-L-6-v2")
|
|
|
|
|
92 |
|
93 |
+
if os.path.exists(INDEX_PATH) and os.path.exists(EMB_PATH):
|
94 |
+
print("Loading FAISS index & embeddings from disk …")
|
95 |
+
index = faiss.read_index(INDEX_PATH)
|
96 |
+
embeddings = np.load(EMB_PATH)
|
|
|
|
|
|
|
|
|
|
|
97 |
else:
|
98 |
+
print("Encoding passages & building FAISS index …")
|
99 |
+
embeddings = embedder.encode(passages, show_progress_bar=True, convert_to_numpy=True, batch_size=32)
|
100 |
+
embeddings = embeddings / np.linalg.norm(embeddings, axis=1, keepdims=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
|
102 |
+
dim = embeddings.shape[1]
|
103 |
+
index = faiss.IndexFlatIP(dim)
|
104 |
+
index.add(embeddings)
|
105 |
|
106 |
+
faiss.write_index(index, INDEX_PATH)
|
107 |
+
np.save(EMB_PATH, embeddings)
|
108 |
|
109 |
+
return embedder, reranker, index
|
|
|
110 |
|
111 |
+
# ── 5. Set up RAG pipeline ──
|
112 |
+
def setup_rag():
|
113 |
+
# 5.1 load or build index + embedder/reranker
|
114 |
+
if os.path.exists(PCTX_PATH):
|
115 |
+
with open(PCTX_PATH, "rb") as f:
|
116 |
+
passages = pickle.load(f)
|
117 |
+
else:
|
118 |
+
passages = load_passages()
|
119 |
+
|
120 |
+
embedder, reranker, index = load_faiss_index(passages)
|
121 |
+
|
122 |
+
# 5.2 load generator model & HF pipeline
|
123 |
+
tok = AutoTokenizer.from_pretrained(MODEL_NAME)
|
124 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(MODEL_NAME)
|
125 |
+
qa_pipe = hf_pipeline(
|
126 |
+
"text2text-generation",
|
127 |
+
model=model,
|
128 |
+
tokenizer=tok,
|
129 |
+
device=DEVICE,
|
130 |
+
truncation=True,
|
131 |
+
max_length=512,
|
132 |
+
num_beams=4, # optional: enable beam search
|
133 |
+
early_stopping=True
|
134 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
135 |
|
136 |
+
return passages, embedder, reranker, index, qa_pipe
|
|
|
|
|
137 |
|
138 |
+
# ── 6. Retrieval + Generation ──
|
139 |
+
def retrieve(question, passages, embedder, index, k=20, rerank_k=5):
|
|
|
140 |
q_emb = embedder.encode([question], convert_to_numpy=True)
|
141 |
+
distances, idxs = index.search(q_emb, k)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
142 |
|
143 |
+
cands = [passages[i] for i in idxs[0]]
|
144 |
+
scores = reranker.predict([[question, c] for c in cands])
|
145 |
+
top = np.argsort(scores)[-rerank_k:][::-1]
|
146 |
|
147 |
+
final_ctxs = [cands[i] for i in top]
|
148 |
+
final_dists = [distances[0][i] for i in top]
|
149 |
+
return final_ctxs, final_dists
|
150 |
|
151 |
+
def generate(question, contexts, qa_pipe):
|
152 |
+
lines = [ f"Context {i+1}: {s}"
|
153 |
+
for i,s in enumerate(make_context_snippets(contexts)) ]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
154 |
prompt = (
|
155 |
"You are a helpful assistant. Use ONLY the following contexts to answer. "
|
156 |
"If the answer is not contained, say 'Sorry, I don't know.'\n\n"
|
157 |
+
+ "\n".join(lines)
|
158 |
+ f"\n\nQuestion: {question}\nAnswer:"
|
159 |
)
|
160 |
+
return qa_pipe(prompt)[0]["generated_text"].strip()
|
161 |
|
162 |
+
def retrieve_and_answer(question, passages, embedder, reranker, index, qa_pipe):
|
163 |
+
ctxs, dists = retrieve(question, passages, embedder, index)
|
164 |
+
if not ctxs or dists[0] > DIST_THRESHOLD:
|
|
|
|
|
|
|
|
|
|
|
165 |
return "Sorry, I don't know.", []
|
166 |
+
ans = generate(question, ctxs, qa_pipe)
|
167 |
+
return ans, ctxs
|
168 |
+
|
169 |
+
def answer_and_contexts(question,
|
170 |
+
passages, embedder, reranker, index, qa_pipe):
|
171 |
+
ans, ctxs = retrieve_and_answer(question, passages, embedder, reranker, index, qa_pipe)
|
172 |
+
if not ctxs:
|
173 |
+
return ans, ""
|
174 |
+
snippets = [
|
175 |
+
f"Context {i+1}: {s}"
|
176 |
+
for i,s in enumerate(make_context_snippets(ctxs))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
177 |
]
|
178 |
+
return ans, "\n\n---\n\n".join(snippets)
|
179 |
+
|
180 |
+
# ── 7. Gradio app ──
|
181 |
+
def main():
|
182 |
+
passages, embedder, reranker, index, qa_pipe = setup_rag()
|
183 |
+
|
184 |
+
demo = gr.Interface(
|
185 |
+
fn=lambda q: answer_and_contexts(q, passages, embedder, reranker, index, qa_pipe),
|
186 |
+
inputs=gr.Textbox(lines=1, placeholder="Ask me anything…", label="Question"),
|
187 |
+
outputs=[gr.Textbox(label="Answer"), gr.Textbox(label="Contexts")],
|
188 |
+
title="🔍 RAG QA Demo",
|
189 |
+
description="Retrieval-Augmented QA with threshold and context preview",
|
190 |
+
examples=[
|
191 |
+
"When was Abraham Lincoln inaugurated?",
|
192 |
+
"What is the capital of France?",
|
193 |
+
"Who wrote '1984'?"
|
194 |
+
]
|
195 |
+
)
|
196 |
+
demo.launch()
|
197 |
|
198 |
+
if __name__ == "__main__":
|
199 |
+
main()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|