Victorconrad's picture
Resolved merge conflict in README.md
16ef08e
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score
import gradio as gr
# Load the dataset
url = "https://raw.githubusercontent.com/plotly/datasets/master/diabetes.csv"
df = pd.read_csv(url)
# Preparing the data
X = df.drop("Outcome", axis=1)
y = df["Outcome"]
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Training the model
model = RandomForestClassifier()
model.fit(X_train, y_train)
# Check accuracy in console
y_pred = model.predict(X_test)
print("Model trained. Accuracy on test data:", accuracy_score(y_test, y_pred))
# Gradio prediction function
def predict_diabetes(Pregnancies, Glucose, BloodPressure, SkinThickness, Insulin, BMI, DiabetesPedigreeFunction, Age):
input_data = [[Pregnancies, Glucose, BloodPressure, SkinThickness,Insulin, BMI, DiabetesPedigreeFunction, Age]]
prediction = model.predict(input_data)[0]
return "Diabetes" if prediction == 1 else "Not Diabetic"
# Gradio Interface
with gr.Blocks() as iface:
gr.Markdown("# 🩺 Diabetes Risk Predictor")
gr.Markdown("Enter medical details to predict whether the patient is diabetic.")
with gr.Row():
Pregnancies = gr.Number(label="Pregnancies")
Glucose = gr.Number(label="Glucose")
BloodPressure = gr.Number(label="BloodPressure")
SkinThickness = gr.Number(label="SkinThickness")
Insulin = gr.Number(label="Insulin")
BMI = gr.Number(label="BMI")
DiabetesPedigreeFunction = gr.Number(label="DiabetesPedigreeFunction")
Age = gr.Number(label="Age")
predict_btn = gr.Button("Predict")
output = gr.Textbox(label="Prediction")
def on_click_fn(*args):
return predict_diabetes(*args)
predict_btn.click(
on_click_fn,
inputs=[
Pregnancies, Glucose, BloodPressure, SkinThickness,
Insulin, BMI, DiabetesPedigreeFunction, Age
],
outputs=output
)
iface.launch(share=True)