Spaces:
Sleeping
Sleeping
fix duplicate issue
Browse files
app.py
CHANGED
@@ -1,35 +1,46 @@
|
|
|
|
1 |
from flask import Flask, request, jsonify
|
2 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
3 |
|
|
|
|
|
|
|
|
|
4 |
app = Flask(__name__)
|
5 |
|
6 |
-
# Load
|
7 |
model_name = "VietAI/vit5-base"
|
8 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
9 |
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
10 |
|
11 |
@app.route("/summarize", methods=["POST"])
|
12 |
def summarize():
|
13 |
-
data = request.
|
14 |
-
text = data.get("text", "")
|
15 |
-
|
16 |
-
|
|
|
17 |
|
|
|
18 |
inputs = tokenizer.encode(text, return_tensors="pt", max_length=512, truncation=True)
|
|
|
|
|
19 |
summary_ids = model.generate(
|
20 |
inputs,
|
21 |
max_length=100,
|
22 |
-
min_length=
|
23 |
num_beams=4,
|
24 |
-
|
|
|
|
|
25 |
early_stopping=True
|
26 |
)
|
27 |
summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
|
28 |
return jsonify({"summary": summary})
|
29 |
|
30 |
@app.route("/", methods=["GET"])
|
31 |
-
def
|
32 |
-
return "ViT5 summarization API is running."
|
33 |
|
34 |
if __name__ == "__main__":
|
35 |
app.run(host="0.0.0.0", port=7860)
|
|
|
1 |
+
import os
|
2 |
from flask import Flask, request, jsonify
|
3 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
4 |
|
5 |
+
# ⚙️ Khắc phục lỗi không ghi được cache khi deploy trên HFS
|
6 |
+
os.environ["HF_HOME"] = "/app/cache"
|
7 |
+
os.environ["TRANSFORMERS_CACHE"] = "/app/cache/transformers"
|
8 |
+
|
9 |
app = Flask(__name__)
|
10 |
|
11 |
+
# 🚀 Load mô hình
|
12 |
model_name = "VietAI/vit5-base"
|
13 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
14 |
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
15 |
|
16 |
@app.route("/summarize", methods=["POST"])
|
17 |
def summarize():
|
18 |
+
data = request.get_json()
|
19 |
+
text = data.get("text", "").strip()
|
20 |
+
|
21 |
+
if not text:
|
22 |
+
return jsonify({"error": "Missing 'text' field"}), 400
|
23 |
|
24 |
+
# ⚠️ Giới hạn đầu vào (ViT5-base tối đa 512 tokens)
|
25 |
inputs = tokenizer.encode(text, return_tensors="pt", max_length=512, truncation=True)
|
26 |
+
|
27 |
+
# ✅ Tham số sinh văn bản chống lặp + chất lượng cao
|
28 |
summary_ids = model.generate(
|
29 |
inputs,
|
30 |
max_length=100,
|
31 |
+
min_length=10,
|
32 |
num_beams=4,
|
33 |
+
no_repeat_ngram_size=3,
|
34 |
+
repetition_penalty=2.5,
|
35 |
+
length_penalty=1.0,
|
36 |
early_stopping=True
|
37 |
)
|
38 |
summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
|
39 |
return jsonify({"summary": summary})
|
40 |
|
41 |
@app.route("/", methods=["GET"])
|
42 |
+
def index():
|
43 |
+
return "✅ ViT5 summarization API is running."
|
44 |
|
45 |
if __name__ == "__main__":
|
46 |
app.run(host="0.0.0.0", port=7860)
|