Spaces:
Sleeping
Sleeping
add time log and reduce processing time
Browse files
app.py
CHANGED
@@ -2,53 +2,48 @@ from fastapi import FastAPI, Request
|
|
2 |
from pydantic import BaseModel
|
3 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
4 |
import torch
|
5 |
-
from datetime import datetime
|
6 |
import time
|
|
|
7 |
|
8 |
app = FastAPI()
|
9 |
|
10 |
-
#
|
11 |
-
|
12 |
-
|
13 |
-
|
|
|
|
|
|
|
|
|
14 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
15 |
-
model
|
16 |
|
17 |
-
class
|
18 |
text: str
|
19 |
|
20 |
-
@app.get("/")
|
21 |
-
def read_root():
|
22 |
-
return {"message": "Summarization API is running"}
|
23 |
-
|
24 |
@app.post("/summarize")
|
25 |
-
async def summarize(
|
26 |
start_time = time.time()
|
27 |
-
|
28 |
-
|
29 |
-
text =
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
outputs = model.generate(
|
41 |
-
input_ids=input_ids,
|
42 |
-
attention_mask=attention_mask,
|
43 |
-
max_length=96, # giảm độ dài để xử lý nhanh hơn
|
44 |
-
num_beams=1, # dùng greedy decoding
|
45 |
-
no_repeat_ngram_size=2,
|
46 |
-
early_stopping=True
|
47 |
-
)
|
48 |
-
|
49 |
-
summary = tokenizer.decode(outputs[0], skip_special_tokens=True, clean_up_tokenization_spaces=True)
|
50 |
|
51 |
end_time = time.time()
|
52 |
-
|
|
|
53 |
|
54 |
return {"summary": summary}
|
|
|
|
|
|
|
|
|
|
2 |
from pydantic import BaseModel
|
3 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
4 |
import torch
|
|
|
5 |
import time
|
6 |
+
import logging
|
7 |
|
8 |
app = FastAPI()
|
9 |
|
10 |
+
# Logging setup
|
11 |
+
logging.basicConfig(level=logging.INFO)
|
12 |
+
logger = logging.getLogger("summarizer")
|
13 |
+
|
14 |
+
# Model & tokenizer
|
15 |
+
MODEL_NAME = "VietAI/vit5-base-vietnews-summarization"
|
16 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
17 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(MODEL_NAME)
|
18 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
19 |
+
model.to(device)
|
20 |
|
21 |
+
class InputText(BaseModel):
|
22 |
text: str
|
23 |
|
|
|
|
|
|
|
|
|
24 |
@app.post("/summarize")
|
25 |
+
async def summarize(req: Request, input: InputText):
|
26 |
start_time = time.time()
|
27 |
+
logger.info(f"\U0001F535 Received request from {req.client.host}")
|
28 |
+
|
29 |
+
text = input.text.strip()
|
30 |
+
inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=512).to(device)
|
31 |
+
|
32 |
+
outputs = model.generate(
|
33 |
+
**inputs,
|
34 |
+
max_length=128,
|
35 |
+
num_beams=2,
|
36 |
+
no_repeat_ngram_size=2,
|
37 |
+
early_stopping=True
|
38 |
+
)
|
39 |
+
summary = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
|
41 |
end_time = time.time()
|
42 |
+
duration = end_time - start_time
|
43 |
+
logger.info(f"\u2705 Response sent — total time: {duration:.2f}s")
|
44 |
|
45 |
return {"summary": summary}
|
46 |
+
|
47 |
+
@app.get("/")
|
48 |
+
def root():
|
49 |
+
return {"message": "Vietnamese Summarization API is up and running!"}
|