Spaces:
Sleeping
Sleeping
update logic based on official example
Browse files
app.py
CHANGED
@@ -1,40 +1,45 @@
|
|
1 |
-
from fastapi import FastAPI,
|
2 |
from pydantic import BaseModel
|
3 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
4 |
-
|
5 |
import torch
|
6 |
|
|
|
7 |
app = FastAPI()
|
8 |
|
9 |
-
#
|
10 |
model_name = "VietAI/vit5-base"
|
11 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
12 |
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
13 |
|
14 |
-
#
|
15 |
-
|
|
|
|
|
|
|
|
|
16 |
text: str
|
17 |
|
18 |
@app.get("/")
|
19 |
-
def
|
20 |
-
return {"message": "
|
21 |
|
22 |
@app.post("/summarize")
|
23 |
-
def summarize(input:
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
|
|
|
1 |
+
from fastapi import FastAPI, Request
|
2 |
from pydantic import BaseModel
|
3 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
|
|
4 |
import torch
|
5 |
|
6 |
+
# Khởi tạo FastAPI app
|
7 |
app = FastAPI()
|
8 |
|
9 |
+
# Tải model và tokenizer
|
10 |
model_name = "VietAI/vit5-base"
|
11 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
12 |
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
13 |
|
14 |
+
# Thiết bị (GPU nếu có, nếu không dùng CPU)
|
15 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
16 |
+
model.to(device)
|
17 |
+
|
18 |
+
# Schema cho input
|
19 |
+
class SummarizeInput(BaseModel):
|
20 |
text: str
|
21 |
|
22 |
@app.get("/")
|
23 |
+
async def root():
|
24 |
+
return {"message": "VietAI vit5-base summarization API is running."}
|
25 |
|
26 |
@app.post("/summarize")
|
27 |
+
async def summarize(input: SummarizeInput):
|
28 |
+
prefix = "vietnews: "
|
29 |
+
text = prefix + input.text.strip() + " </s>"
|
30 |
+
|
31 |
+
# Tokenize và chuyển sang device
|
32 |
+
encoding = tokenizer(text, return_tensors="pt", max_length=512, truncation=True)
|
33 |
+
input_ids = encoding["input_ids"].to(device)
|
34 |
+
attention_mask = encoding["attention_mask"].to(device)
|
35 |
+
|
36 |
+
# Sinh tóm tắt
|
37 |
+
summary_ids = model.generate(
|
38 |
+
input_ids=input_ids,
|
39 |
+
attention_mask=attention_mask,
|
40 |
+
max_length=256,
|
41 |
+
early_stopping=True
|
42 |
+
)
|
43 |
+
|
44 |
+
summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True, clean_up_tokenization_spaces=True)
|
45 |
+
return {"summary": summary}
|