Spaces:
Sleeping
Sleeping
switch to fastapi
Browse files- Dockerfile +1 -2
- app.py +32 -38
- requirements.txt +3 -3
Dockerfile
CHANGED
@@ -18,5 +18,4 @@ COPY app.py .
|
|
18 |
# Expose port mặc định HFS (7860)
|
19 |
EXPOSE 7860
|
20 |
|
21 |
-
|
22 |
-
CMD ["python", "app.py"]
|
|
|
18 |
# Expose port mặc định HFS (7860)
|
19 |
EXPOSE 7860
|
20 |
|
21 |
+
CMD ["uvicorn", "app.main:app", "--host", "0.0.0.0", "--port", "7860"]
|
|
app.py
CHANGED
@@ -1,46 +1,40 @@
|
|
1 |
-
import
|
2 |
-
from
|
3 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
4 |
|
5 |
-
|
6 |
-
os.environ["HF_HOME"] = "/app/cache"
|
7 |
-
os.environ["TRANSFORMERS_CACHE"] = "/app/cache/transformers"
|
8 |
|
9 |
-
app =
|
10 |
|
|
|
11 |
model_name = "VietAI/vit5-base"
|
12 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
13 |
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
14 |
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
def index():
|
43 |
-
return "✅ ViT5 summarization API is running."
|
44 |
-
|
45 |
-
if __name__ == "__main__":
|
46 |
-
app.run(host="0.0.0.0", port=7860)
|
|
|
1 |
+
from fastapi import FastAPI, HTTPException
|
2 |
+
from pydantic import BaseModel
|
3 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
4 |
|
5 |
+
import torch
|
|
|
|
|
6 |
|
7 |
+
app = FastAPI()
|
8 |
|
9 |
+
# Load model
|
10 |
model_name = "VietAI/vit5-base"
|
11 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
12 |
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
13 |
|
14 |
+
# Input format
|
15 |
+
class TextInput(BaseModel):
|
16 |
+
text: str
|
17 |
+
|
18 |
+
@app.get("/")
|
19 |
+
def read_root():
|
20 |
+
return {"message": "ViT5 summarization API is running!"}
|
21 |
+
|
22 |
+
@app.post("/summarize")
|
23 |
+
def summarize(input: TextInput):
|
24 |
+
try:
|
25 |
+
input_text = f"summarize: {input.text}"
|
26 |
+
inputs = tokenizer.encode(input_text, return_tensors="pt", max_length=512, truncation=True)
|
27 |
+
summary_ids = model.generate(
|
28 |
+
inputs,
|
29 |
+
max_length=128,
|
30 |
+
min_length=20,
|
31 |
+
num_beams=4,
|
32 |
+
no_repeat_ngram_size=3,
|
33 |
+
repetition_penalty=2.5,
|
34 |
+
length_penalty=1.0,
|
35 |
+
early_stopping=True
|
36 |
+
)
|
37 |
+
output = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
|
38 |
+
return {"summary": output}
|
39 |
+
except Exception as e:
|
40 |
+
raise HTTPException(status_code=500, detail=str(e))
|
|
|
|
|
|
|
|
|
|
requirements.txt
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
|
2 |
-
transformers
|
3 |
torch
|
4 |
-
|
|
|
|
1 |
+
transformers==4.41.2
|
|
|
2 |
torch
|
3 |
+
fastapi
|
4 |
+
uvicorn
|