Spaces:
Sleeping
Sleeping
reduce processing time
Browse files
app.py
CHANGED
@@ -16,6 +16,11 @@ model = AutoModelForSeq2SeqLM.from_pretrained("VietAI/vit5-large-vietnews-summar
|
|
16 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
17 |
model.to(device)
|
18 |
|
|
|
|
|
|
|
|
|
|
|
19 |
class SummarizeRequest(BaseModel):
|
20 |
text: str
|
21 |
|
@@ -37,27 +42,20 @@ async def summarize(req: Request, body: SummarizeRequest):
|
|
37 |
else:
|
38 |
text = "Vietnews: " + text
|
39 |
|
40 |
-
|
41 |
input_text = text + " </s>"
|
42 |
encoding = tokenizer(input_text, return_tensors="pt")
|
43 |
input_ids = encoding["input_ids"].to(device)
|
44 |
attention_mask = encoding["attention_mask"].to(device)
|
45 |
|
46 |
-
# Sinh tóm tắt với cấu hình ổn định
|
47 |
-
# outputs = model.generate(
|
48 |
-
# input_ids=input_ids,
|
49 |
-
# attention_mask=attention_mask,
|
50 |
-
# max_length=128,
|
51 |
-
# num_beams=1,
|
52 |
-
# early_stopping=True,
|
53 |
-
# no_repeat_ngram_size=2,
|
54 |
-
# num_return_sequences=1
|
55 |
-
# )
|
56 |
outputs = model.generate(
|
57 |
-
input_ids=input_ids,
|
|
|
58 |
max_length=256,
|
59 |
-
|
|
|
60 |
)
|
|
|
61 |
summary = tokenizer.decode(outputs[0], skip_special_tokens=True, clean_up_tokenization_spaces=True)
|
62 |
|
63 |
end_time = time.time()
|
|
|
16 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
17 |
model.to(device)
|
18 |
|
19 |
+
# Warm-up model to reduce first-request latency
|
20 |
+
dummy_input = tokenizer("Tin nhanh: Đây là văn bản mẫu để warmup mô hình.", return_tensors="pt").to(device)
|
21 |
+
with torch.no_grad():
|
22 |
+
_ = model.generate(**dummy_input, max_length=32)
|
23 |
+
|
24 |
class SummarizeRequest(BaseModel):
|
25 |
text: str
|
26 |
|
|
|
42 |
else:
|
43 |
text = "Vietnews: " + text
|
44 |
|
|
|
45 |
input_text = text + " </s>"
|
46 |
encoding = tokenizer(input_text, return_tensors="pt")
|
47 |
input_ids = encoding["input_ids"].to(device)
|
48 |
attention_mask = encoding["attention_mask"].to(device)
|
49 |
|
50 |
+
# Sinh tóm tắt với cấu hình ổn định (loại bỏ early_stopping và dùng greedy decoding)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
outputs = model.generate(
|
52 |
+
input_ids=input_ids,
|
53 |
+
attention_mask=attention_mask,
|
54 |
max_length=256,
|
55 |
+
num_beams=1, # greedy decoding
|
56 |
+
no_repeat_ngram_size=2
|
57 |
)
|
58 |
+
|
59 |
summary = tokenizer.decode(outputs[0], skip_special_tokens=True, clean_up_tokenization_spaces=True)
|
60 |
|
61 |
end_time = time.time()
|