Upload model.py
Browse files
model.py
ADDED
|
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python
|
| 2 |
+
# coding: utf-8
|
| 3 |
+
|
| 4 |
+
# In[82]:
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
import numpy as np
|
| 8 |
+
import tensorflow_datasets as tfds
|
| 9 |
+
import tensorflow as tf
|
| 10 |
+
import tensorflow_hub as hub
|
| 11 |
+
import sklearn
|
| 12 |
+
import random
|
| 13 |
+
from glob import glob
|
| 14 |
+
import matplotlib.pyplot as plt
|
| 15 |
+
import requests
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
# In[83]:
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
print("TF version:", tf.__version__)
|
| 22 |
+
print("Hub version:", hub.__version__)
|
| 23 |
+
print("GPU is", "available" if tf.config.list_physical_devices('GPU') else "NOT AVAILABLE")
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
# In[94]:
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
inception_net = tf.keras.applications.EfficientNetB7()
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
# In[100]:
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
import requests
|
| 37 |
+
|
| 38 |
+
response = requests.get("https://git.io/JJkYN")
|
| 39 |
+
labels = response.text.split("\n")
|
| 40 |
+
|
| 41 |
+
def classify_image(inp):
|
| 42 |
+
inp = inp.reshape((-1, 600, 600, 3))
|
| 43 |
+
inp = tf.keras.applications.efficientnet_v2.preprocess_input(inp)
|
| 44 |
+
prediction = inception_net.predict(inp).flatten()
|
| 45 |
+
confidences = {labels[i]: float(prediction[i]) for i in range(1000)}
|
| 46 |
+
return confidences
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
# In[107]:
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
import gradio as gr
|
| 53 |
+
title = "Classifier"
|
| 54 |
+
Description = "Model,used :- Efficient Net B7,fine tuned on dataset 'https://www.kaggle.com/datasets/iamsouravbanerjee/animal-image-dataset-90-different-animals'"
|
| 55 |
+
|
| 56 |
+
gr.Interface(fn=classify_image,
|
| 57 |
+
title = title,
|
| 58 |
+
description = Description,
|
| 59 |
+
|
| 60 |
+
inputs=gr.Image(shape=(600, 600)),
|
| 61 |
+
outputs=gr.Label(num_top_classes=3),
|
| 62 |
+
examples=["data/animals/animals/antelope/0a37838e99.jpg", "data/animals/animals/starfish/0a63e965c2.jpg"]).launch(share=True)
|
| 63 |
+
|