Spaces:
Runtime error
Runtime error
Update app.py (#1)
Browse files- Update app.py (65316115944ac1ab429fc17bbf8058204d0cc683)
Co-authored-by: Divax Shah <[email protected]>
app.py
CHANGED
|
@@ -1,9 +1,8 @@
|
|
| 1 |
import os
|
| 2 |
import streamlit as st
|
| 3 |
from huggingface_hub import login
|
| 4 |
-
from transformers import
|
| 5 |
from PIL import Image
|
| 6 |
-
import requests
|
| 7 |
import torch
|
| 8 |
|
| 9 |
# Step 1: Log in to Hugging Face with your access token from secrets
|
|
@@ -13,57 +12,82 @@ if huggingface_token:
|
|
| 13 |
else:
|
| 14 |
st.error("Hugging Face token not found. Please set it in the Secrets section.")
|
| 15 |
|
| 16 |
-
# Step 2: Load the model and
|
| 17 |
-
model_name = "meta-llama/Llama-3.2-11B-Vision-Instruct" # Adjust if needed
|
| 18 |
try:
|
| 19 |
-
|
| 20 |
-
model =
|
| 21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
except Exception as e:
|
| 23 |
-
st.error(f"Error loading model: {str(e)}")
|
| 24 |
|
| 25 |
# Step 3: Create a simple Streamlit app
|
| 26 |
def main():
|
| 27 |
st.title("Llama 3.2 11B Vision Model")
|
| 28 |
st.write("Upload an image and enter a prompt to generate output.")
|
| 29 |
-
|
| 30 |
# Upload image
|
| 31 |
image_file = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"])
|
| 32 |
prompt = st.text_area("Enter your prompt here:")
|
| 33 |
-
|
| 34 |
if st.button("Generate Output"):
|
| 35 |
if image_file and prompt:
|
| 36 |
# Load image
|
| 37 |
-
image = Image.open(image_file)
|
| 38 |
st.image(image, caption="Uploaded Image", use_column_width=True)
|
| 39 |
-
|
| 40 |
-
# Preprocess the image if needed (convert to tensor, etc.)
|
| 41 |
-
# This depends on how the model expects the image input
|
| 42 |
-
|
| 43 |
-
# Example of converting image to a format suitable for the model
|
| 44 |
-
# Note: Adjust this part based on your model's requirements.
|
| 45 |
-
# Here, we're just using a placeholder for the model input.
|
| 46 |
-
# You might need to resize or normalize the image based on the model's requirements.
|
| 47 |
-
# For example:
|
| 48 |
-
# image_tensor = preprocess_image(image)
|
| 49 |
|
| 50 |
try:
|
| 51 |
-
# Prepare the
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
with torch.no_grad():
|
| 58 |
-
|
| 59 |
-
|
|
|
|
|
|
|
|
|
|
| 60 |
# Decode the output
|
| 61 |
-
output_text =
|
| 62 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 63 |
except Exception as e:
|
| 64 |
st.error(f"Error during prediction: {str(e)}")
|
| 65 |
else:
|
| 66 |
st.warning("Please upload an image and enter a prompt.")
|
| 67 |
|
| 68 |
if __name__ == "__main__":
|
| 69 |
-
main()
|
|
|
|
| 1 |
import os
|
| 2 |
import streamlit as st
|
| 3 |
from huggingface_hub import login
|
| 4 |
+
from transformers import MllamaForConditionalGeneration, AutoProcessor
|
| 5 |
from PIL import Image
|
|
|
|
| 6 |
import torch
|
| 7 |
|
| 8 |
# Step 1: Log in to Hugging Face with your access token from secrets
|
|
|
|
| 12 |
else:
|
| 13 |
st.error("Hugging Face token not found. Please set it in the Secrets section.")
|
| 14 |
|
| 15 |
+
# Step 2: Load the model and processor
|
|
|
|
| 16 |
try:
|
| 17 |
+
model_name = "meta-llama/Llama-3.2-11B-Vision-Instruct"
|
| 18 |
+
model = MllamaForConditionalGeneration.from_pretrained(
|
| 19 |
+
model_name,
|
| 20 |
+
use_auth_token=huggingface_token,
|
| 21 |
+
torch_dtype=torch.bfloat16,
|
| 22 |
+
device_map="auto",
|
| 23 |
+
)
|
| 24 |
+
processor = AutoProcessor.from_pretrained(
|
| 25 |
+
model_name,
|
| 26 |
+
use_auth_token=huggingface_token,
|
| 27 |
+
)
|
| 28 |
+
st.success("Model and processor loaded successfully!")
|
| 29 |
except Exception as e:
|
| 30 |
+
st.error(f"Error loading model or processor: {str(e)}")
|
| 31 |
|
| 32 |
# Step 3: Create a simple Streamlit app
|
| 33 |
def main():
|
| 34 |
st.title("Llama 3.2 11B Vision Model")
|
| 35 |
st.write("Upload an image and enter a prompt to generate output.")
|
| 36 |
+
|
| 37 |
# Upload image
|
| 38 |
image_file = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"])
|
| 39 |
prompt = st.text_area("Enter your prompt here:")
|
| 40 |
+
|
| 41 |
if st.button("Generate Output"):
|
| 42 |
if image_file and prompt:
|
| 43 |
# Load image
|
| 44 |
+
image = Image.open(image_file).convert("RGB")
|
| 45 |
st.image(image, caption="Uploaded Image", use_column_width=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 46 |
|
| 47 |
try:
|
| 48 |
+
# Prepare the messages in the format expected by the processor
|
| 49 |
+
messages = [
|
| 50 |
+
{
|
| 51 |
+
"role": "user",
|
| 52 |
+
"content": [
|
| 53 |
+
{"type": "text", "text": prompt},
|
| 54 |
+
{"type": "image"}
|
| 55 |
+
]
|
| 56 |
+
}
|
| 57 |
+
]
|
| 58 |
+
|
| 59 |
+
# Apply chat template
|
| 60 |
+
input_text = processor.apply_chat_template(messages, add_generation_prompt=True)
|
| 61 |
+
|
| 62 |
+
# Prepare inputs for the model
|
| 63 |
+
inputs = processor(
|
| 64 |
+
text=input_text,
|
| 65 |
+
images=[image],
|
| 66 |
+
return_tensors="pt"
|
| 67 |
+
).to("cuda" if torch.cuda.is_available() else "cpu")
|
| 68 |
+
|
| 69 |
+
# Generate output
|
| 70 |
with torch.no_grad():
|
| 71 |
+
output_ids = model.generate(
|
| 72 |
+
**inputs,
|
| 73 |
+
max_new_tokens=250,
|
| 74 |
+
)
|
| 75 |
+
|
| 76 |
# Decode the output
|
| 77 |
+
output_text = processor.batch_decode(output_ids, skip_special_tokens=True)[0]
|
| 78 |
+
|
| 79 |
+
# Extract the generated response
|
| 80 |
+
# Remove the prompt part from the output_text
|
| 81 |
+
if input_text in output_text:
|
| 82 |
+
generated_output = output_text.replace(input_text, "").strip()
|
| 83 |
+
else:
|
| 84 |
+
generated_output = output_text.strip()
|
| 85 |
+
|
| 86 |
+
st.write("Generated Output:", generated_output)
|
| 87 |
except Exception as e:
|
| 88 |
st.error(f"Error during prediction: {str(e)}")
|
| 89 |
else:
|
| 90 |
st.warning("Please upload an image and enter a prompt.")
|
| 91 |
|
| 92 |
if __name__ == "__main__":
|
| 93 |
+
main()
|