File size: 3,212 Bytes
fd19cdd
2f43b7c
fd19cdd
 
36d8cb0
 
fd19cdd
2f43b7c
fd19cdd
2f43b7c
fd19cdd
36d8cb0
 
 
 
fd19cdd
36d8cb0
fd19cdd
36d8cb0
fd19cdd
 
36d8cb0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
import streamlit as st
from transformers import AutoProcessor, Qwen2VLForConditionalGeneration
from PIL import Image
import torch
import cv2
import tempfile

# Load the processor and model directly
processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct")
model = Qwen2VLForConditionalGeneration.from_pretrained("Qwen/Qwen2-VL-2B-Instruct")

# Check if CUDA is available and set the device accordingly
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)

# Streamlit app
st.title("Media Description Generator")

uploaded_file = st.file_uploader("Choose an image or video...", type=["jpg", "jpeg", "png", "mp4", "avi", "mov"])

if uploaded_file is not None:
    file_type = uploaded_file.type.split('/')[0]

    if file_type == 'image':
        # Open the image
        image = Image.open(uploaded_file)
        st.image(image, caption='Uploaded Image.', use_column_width=True)
        st.write("Generating description...")

    elif file_type == 'video':
        # Save the uploaded video to a temporary file
        tfile = tempfile.NamedTemporaryFile(delete=False)
        tfile.write(uploaded_file.read())

        # Open the video file
        cap = cv2.VideoCapture(tfile.name)

        # Extract the first frame
        ret, frame = cap.read()
        if not ret:
            st.error("Failed to read the video file.")
            st.stop()
        else:
            # Convert the frame to an image
            image = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
            st.image(image, caption='First Frame of Uploaded Video.', use_column_width=True)
            st.write("Generating description...")

        # Release the video capture object
        cap.release()

    else:
        st.error("Unsupported file type.")
        st.stop()

    # Add a text input for the user to ask a question
    user_question = st.text_input("Ask a question about the image or video:")

    if user_question:
        messages = [
            {
                "role": "user",
                "content": [
                    {
                        "type": "image",
                        "image": image,
                    },
                    {"type": "text", "text": user_question},
                ],
            }
        ]

        # Preparation for inference
        text = processor.apply_chat_template(
            messages, tokenize=False, add_generation_prompt=True
        )

        # Pass the image to the processor
        inputs = processor(
            text=[text],
            images=[image],
            padding=True,
            return_tensors="pt",
        )
        inputs = inputs.to(device)  # Ensure inputs are on the same device as the model

        # Inference: Generation of the output
        generated_ids = model.generate(**inputs, max_new_tokens=128)
        generated_ids_trimmed = [
            out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
        ]
        output_text = processor.batch_decode(
            generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
        )
        
        st.write("Description:")
        st.write(output_text[0])