Spaces:
Sleeping
Sleeping
File size: 3,212 Bytes
fd19cdd 2f43b7c fd19cdd 36d8cb0 fd19cdd 2f43b7c fd19cdd 2f43b7c fd19cdd 36d8cb0 fd19cdd 36d8cb0 fd19cdd 36d8cb0 fd19cdd 36d8cb0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 |
import streamlit as st
from transformers import AutoProcessor, Qwen2VLForConditionalGeneration
from PIL import Image
import torch
import cv2
import tempfile
# Load the processor and model directly
processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct")
model = Qwen2VLForConditionalGeneration.from_pretrained("Qwen/Qwen2-VL-2B-Instruct")
# Check if CUDA is available and set the device accordingly
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
# Streamlit app
st.title("Media Description Generator")
uploaded_file = st.file_uploader("Choose an image or video...", type=["jpg", "jpeg", "png", "mp4", "avi", "mov"])
if uploaded_file is not None:
file_type = uploaded_file.type.split('/')[0]
if file_type == 'image':
# Open the image
image = Image.open(uploaded_file)
st.image(image, caption='Uploaded Image.', use_column_width=True)
st.write("Generating description...")
elif file_type == 'video':
# Save the uploaded video to a temporary file
tfile = tempfile.NamedTemporaryFile(delete=False)
tfile.write(uploaded_file.read())
# Open the video file
cap = cv2.VideoCapture(tfile.name)
# Extract the first frame
ret, frame = cap.read()
if not ret:
st.error("Failed to read the video file.")
st.stop()
else:
# Convert the frame to an image
image = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
st.image(image, caption='First Frame of Uploaded Video.', use_column_width=True)
st.write("Generating description...")
# Release the video capture object
cap.release()
else:
st.error("Unsupported file type.")
st.stop()
# Add a text input for the user to ask a question
user_question = st.text_input("Ask a question about the image or video:")
if user_question:
messages = [
{
"role": "user",
"content": [
{
"type": "image",
"image": image,
},
{"type": "text", "text": user_question},
],
}
]
# Preparation for inference
text = processor.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
# Pass the image to the processor
inputs = processor(
text=[text],
images=[image],
padding=True,
return_tensors="pt",
)
inputs = inputs.to(device) # Ensure inputs are on the same device as the model
# Inference: Generation of the output
generated_ids = model.generate(**inputs, max_new_tokens=128)
generated_ids_trimmed = [
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
output_text = processor.batch_decode(
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
st.write("Description:")
st.write(output_text[0]) |