Spaces:
Sleeping
Sleeping
File size: 20,384 Bytes
c6ea530 432b3c4 c6ea530 343c564 c6ea530 343c564 c6ea530 343c564 c6ea530 343c564 c6ea530 432b3c4 c6ea530 989ef70 c6ea530 f795f54 c6ea530 989ef70 c6ea530 343c564 c6ea530 343c564 c6ea530 343c564 c6ea530 343c564 c6ea530 343c564 c6ea530 343c564 f795f54 c6ea530 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 |
from smolagents import (
load_tool,
CodeAgent,
ToolCallingAgent,
InferenceClientModel,
LiteLLMModel,
OpenAIServerModel,
GradioUI,
MCPClient
)
from mcp import StdioServerParameters
import os
from dotenv import load_dotenv
import gradio as gr
load_dotenv()
kgb_server_parameters = StdioServerParameters(
command="npx",
args=[
"mcp-remote",
"https://agents-mcp-hackathon-kgb-mcp.hf.space/gradio_api/mcp/sse",
"--transport",
"sse-only"],
)
T2I_server_parameters = StdioServerParameters(
command="npx",
args=[
"mcp-remote",
"https://agents-mcp-hackathon-t2i.hf.space/gradio_api/mcp/sse",
"--transport",
"sse-only"],
)
# Model will be initialized dynamically based on user selection
# Load tools from all MCP servers using MCPClient
server_parameters = [kgb_server_parameters, T2I_server_parameters]
def initialize_model(model_provider, api_key_or_token):
"""Initialize the selected model with user credentials"""
if not api_key_or_token.strip():
raise ValueError("Please provide your API key or token")
if model_provider == "Gemini (Google)":
return LiteLLMModel(
model_id="gemini/gemini-2.0-flash-exp",
api_key=api_key_or_token
)
elif model_provider == "Hugging Face (DeepSeek via Together)":
return InferenceClientModel(
model_id="deepseek-ai/DeepSeek-R1-0528",
provider="together",
token=api_key_or_token,
max_tokens=5000
)
elif model_provider == "DeepSeek (Direct API)":
return OpenAIServerModel(
model_id="deepseek-chat",
api_key=api_key_or_token,
base_url="https://api.deepseek.com"
)
else:
raise ValueError(f"Unsupported model provider: {model_provider}")
def create_business_content_ui():
"""Create specialized UI for business content creation"""
# Initialize MCP client and keep it alive for the entire UI session
print("π Initializing MCP client for the session...")
mcp = MCPClient(server_parameters)
with mcp:
# Load all MCP tools once and keep client alive
all_tools = mcp.get_tools()
print(f"β
Loaded {len(all_tools)} MCP tools successfully")
def initialize_agents(model):
"""Initialize specialized agents using loaded MCP tools and user-selected model"""
# 1. Business Research Agent - Uses all MCP tools (Knowledge Graph Builder focus)
research_agent = CodeAgent(
tools=all_tools,
model=model,
add_base_tools=True,
name="business_researcher",
description="""Expert business researcher specializing in market analysis, competitive intelligence, and tech industry trends.
Uses knowledge graph tools to extract entities, relationships, and key business insights from topics.
Focuses on: market size, key players, business relationships, competitive landscape, and strategic context."""
)
# 2. Content Strategy Agent - Creates structured business content
content_strategy_agent = ToolCallingAgent(
tools=[],
model=model,
max_steps=3,
name="content_strategist",
description="""Professional business writer specializing in executive-level content creation.
Creates structured, strategic business content including market analyses, competitive briefs, and strategic recommendations.
Writes for C-level executives, investors, and business stakeholders with focus on actionable insights."""
)
# 3. Content Formatter Agent - Professional document formatting
content_formatter_agent = ToolCallingAgent(
tools=[],
model=model,
max_steps=2,
name="content_formatter",
description="""Document formatting specialist focused on professional business document structure.
Converts content into well-structured markdown with proper headers, tables, bullet points, and professional formatting.
Ensures consistency, readability, and professional presentation standards."""
)
# 4. Visual Creation Agent - Uses all MCP tools (Text-to-Image focus)
visual_agent = CodeAgent(
tools=all_tools,
model=model,
add_base_tools=True,
name="visual_designer",
description="""Business visualization specialist creating professional infographics, charts, and presentation visuals.
Uses text-to-image tools to convert content into compelling visual formats suitable for executive presentations.
Focuses on clean, professional designs that enhance business storytelling."""
)
# Business Content Manager - Coordinates all agents
business_content_manager = CodeAgent(
tools=all_tools,
model=model,
managed_agents=[research_agent, content_strategy_agent, content_formatter_agent, visual_agent],
additional_authorized_imports=["json", "re", "datetime"],
add_base_tools=True,
name="agentic_inkwell_manager",
description="""Agentic Inkwell Manager - Coordinates multi-agent business content creation workflow.
Manages the complete pipeline from research to final formatted output with optional visual conversion.
Where specialized agents gather around the digital inkwell to craft intelligence together."""
)
return business_content_manager
# Content type options
content_types = [
"Market Analysis Report",
"Competitive Intelligence Brief",
"Technology Trend Analysis",
"Product Launch Strategy",
"Investment Research Report",
"Strategic Planning Document"
]
# Writing style options
writing_styles = [
"Executive Summary (C-level audience)",
"Technical Brief (Developer/Engineer audience)",
"Investor Pitch (VC/Stakeholder audience)",
"Market Research (Analyst audience)",
"Internal Memo (Team communication)"
]
# Visual style options
visual_styles = [
"Professional Infographics",
"Corporate Presentation Style",
"Minimalist Charts",
"Executive Dashboard",
"Technical Diagrams",
"No Visuals (Text Only)"
]
with gr.Blocks(title="Agentic Inkwell", theme=gr.themes.Soft()) as demo:
gr.Markdown("# βοΈ Agentic Inkwell")
gr.Markdown("*Where Agents Craft Intelligence* - Generate comprehensive business reports with collaborative agentic writing")
# Model Configuration Section
with gr.Row():
with gr.Column():
gr.Markdown("### π€ Model Configuration")
model_provider = gr.Dropdown(
choices=[
"Gemini (Google)",
"Hugging Face (DeepSeek via Together)",
"DeepSeek (Direct API)"
],
label="Select AI Model Provider",
value="Gemini (Google)",
info="Choose your preferred AI model provider"
)
api_key_input = gr.Textbox(
label="API Key / Token",
placeholder="Enter your API key or token here...",
type="password",
info="Your API key will be used securely and not stored"
)
gr.Markdown("""
**π Where to get your API keys:**
- **Gemini**: Get free API key at [Google AI Studio](https://aistudio.google.com/app/apikey)
- **Hugging Face**: Get free token at [HF Settings](https://huggingface.co/settings/tokens)
- **DeepSeek**: Get API key at [DeepSeek Platform](https://platform.deepseek.com/api_keys)
""", elem_classes=["api-info"])
with gr.Row():
with gr.Column(scale=2):
# Main input
topic_input = gr.Textbox(
label="π Business Topic or Research Question",
placeholder="e.g., 'AI Agent frameworks market analysis 2025' or 'NVIDIA vs AMD in AI chip market'",
lines=3
)
# Content controls
with gr.Row():
content_type = gr.Dropdown(
choices=content_types,
label="π Content Type",
value="Market Analysis Report"
)
writing_style = gr.Dropdown(
choices=writing_styles,
label="βοΈ Writing Style",
value="Executive Summary (C-level audience)"
)
with gr.Row():
visual_style = gr.Dropdown(
choices=visual_styles,
label="π¨ Visual Output",
value="No Visuals (Text Only)"
)
include_sources = gr.Checkbox(
label="π Include Source References",
value=True
)
# Generate button
generate_btn = gr.Button("βοΈ Craft with Agentic Inkwell", variant="primary", size="lg")
with gr.Column(scale=1):
# Status and progress
status_box = gr.Textbox(
label="π Generation Status",
value="Ready to generate content...",
interactive=False,
lines=8
)
# Output section
with gr.Row():
with gr.Column():
# Main content output
content_output = gr.Textbox(
label="π Generated Business Content (Markdown)",
lines=20,
max_lines=30,
show_copy_button=True
)
# Action buttons row
with gr.Row():
# Download button
download_btn = gr.DownloadButton(
label="πΎ Download Markdown",
visible=False
)
# Visual conversion button (appears after content generation)
convert_visual_btn = gr.Button(
"π¨ Convert to Images",
variant="secondary",
visible=False
)
# Visual output section (shown when visuals are generated)
with gr.Row(visible=False) as visual_output_row:
with gr.Column():
visual_status = gr.Textbox(
label="π¨ Image Conversion Status",
interactive=False,
lines=3
)
visual_output = gr.Gallery(
label="πΌοΈ Generated Images",
columns=2,
height=500,
show_label=True
)
def generate_business_content(topic, content_type, writing_style, visual_style, include_sources, model_provider, api_key):
"""Main function to coordinate business content generation"""
if not topic.strip():
return "Please enter a business topic or research question.", "", None, gr.update(visible=False), gr.update(visible=False)
if not api_key.strip():
return "Please provide your API key or token.", "", None, gr.update(visible=False), gr.update(visible=False)
try:
# Initialize the user-selected model
yield "π€ Initializing your selected AI model...", "", None, gr.update(visible=False), gr.update(visible=False)
try:
model = initialize_model(model_provider, api_key)
except Exception as e:
error_msg = f"β Failed to initialize {model_provider}: {str(e)}"
yield error_msg, "", None, gr.update(visible=False), gr.update(visible=False)
return
# Initialize agents with the user-selected model
yield "π§ Setting up specialized agents...", "", None, gr.update(visible=False), gr.update(visible=False)
manager = initialize_agents(model)
# Update status
status = "π Starting business research..."
yield status, "", None, gr.update(visible=False), gr.update(visible=False)
# Create detailed prompt for the manager
prompt = f"""
Create a comprehensive {content_type.lower()} about: {topic}
Requirements:
- Writing Style: {writing_style}
- Include source references: {include_sources}
- Visual conversion needed: {visual_style != 'No Visuals (Text Only)'}
- Visual style: {visual_style if visual_style != 'No Visuals (Text Only)' else 'None'}
Follow this workflow:
1. Use business_researcher to gather comprehensive market intelligence and competitive data
2. Use content_strategist to create structured business content with strategic insights
3. Use content_formatter to format into professional markdown document
4. {"Use visual_designer to create professional visuals if requested" if visual_style != 'No Visuals (Text Only)' else "Skip visual generation"}
Deliver a complete, professional business document ready for executive presentation.
"""
# Update status
status = "π€ Coordinating multi-agent content creation..."
yield status, "", None, gr.update(visible=False), gr.update(visible=False)
# Generate content using the manager
result = manager.run(prompt)
# Update status
status = "β
Content generation completed successfully!"
# Prepare download file
import tempfile
import os
temp_file = tempfile.NamedTemporaryFile(mode='w', suffix='.md', delete=False, encoding='utf-8')
temp_file.write(result)
temp_file.close()
# Show/hide visual gallery based on whether visuals were generated
show_visuals = visual_style != 'No Visuals (Text Only)' and "![" in result
yield (
status,
result,
temp_file.name,
gr.update(visible=True), # download button
gr.update(visible=True) # convert to images button
)
except Exception as e:
error_msg = f"β Error generating content: {str(e)}"
yield error_msg, "", None, gr.update(visible=False), gr.update(visible=False)
def create_business_visuals(content_text, model_provider, api_key):
"""Convert text content to images using T2l_text_to_images_and_base64_generator tool"""
if not content_text.strip():
return "β No content available to convert", []
if not api_key.strip():
return "β Please provide your API key or token", []
try:
# Initialize model for visual conversion
yield "π€ Initializing model for image conversion...", []
try:
model = initialize_model(model_provider, api_key)
except Exception as e:
yield f"β Failed to initialize model: {str(e)}", []
return
# Use already loaded MCP tools
yield "π¨ Converting text to images...", []
# Create visual agent with already loaded tools
visual_agent = CodeAgent(
tools=all_tools,
model=model,
add_base_tools=True,
name="t2i_visual_converter"
)
# Directly convert the content text to images
result = visual_agent.run(f"""
Use the T2l_text_to_images_and_base64_generator tool to convert this text to images:
text_content: "{content_text[:1000]}"
aspect_ratio_str: "16:9 (Widescreen)"
font_size: 36
style: "plain"
bg_color_name: "White"
font_choice: "Arial"
Convert the business content to professional images.
""")
if result:
yield "β
Successfully converted text to images!", [("Business Content", result)]
else:
yield "β οΈ No images were generated", []
except Exception as e:
error_msg = f"β Image conversion failed: {str(e)}"
yield error_msg, []
# Connect the generate button
generate_btn.click(
fn=generate_business_content,
inputs=[topic_input, content_type, writing_style, visual_style, include_sources, model_provider, api_key_input],
outputs=[status_box, content_output, download_btn, download_btn, convert_visual_btn],
show_progress=True
)
# Connect the convert to images button - directly convert text to images
convert_visual_btn.click(
fn=create_business_visuals,
inputs=[content_output, model_provider, api_key_input],
outputs=[visual_status, visual_output],
show_progress=True
).then(
fn=lambda: gr.update(visible=True),
outputs=visual_output_row
)
# Example buttons for quick testing
with gr.Row():
gr.Markdown("### π― Quick Examples:")
example1_btn = gr.Button("π± AI Smartphone Market", size="sm")
example2_btn = gr.Button("π EV Battery Tech", size="sm")
example3_btn = gr.Button("βοΈ Cloud AI Services", size="sm")
def set_example1():
return "AI-powered smartphone features market analysis 2025"
def set_example2():
return "Electric vehicle battery technology competitive landscape"
def set_example3():
return "Cloud-based AI services market opportunities and threats"
example1_btn.click(fn=set_example1, outputs=topic_input)
example2_btn.click(fn=set_example2, outputs=topic_input)
example3_btn.click(fn=set_example3, outputs=topic_input)
return demo
if __name__ == "__main__":
# Launch the business content creation interface
demo = create_business_content_ui()
demo.launch() |