from smolagents import ( load_tool, CodeAgent, ToolCallingAgent, InferenceClientModel, LiteLLMModel, OpenAIServerModel, GradioUI, MCPClient ) from mcp import StdioServerParameters import os from dotenv import load_dotenv import gradio as gr load_dotenv() kgb_server_parameters = StdioServerParameters( command="npx", args=[ "mcp-remote", "https://agents-mcp-hackathon-kgb-mcp.hf.space/gradio_api/mcp/sse", "--transport", "sse-only"], ) T2I_server_parameters = StdioServerParameters( command="npx", args=[ "mcp-remote", "https://agents-mcp-hackathon-t2i.hf.space/gradio_api/mcp/sse", "--transport", "sse-only"], ) # Model will be initialized dynamically based on user selection # Load tools from all MCP servers using MCPClient server_parameters = [kgb_server_parameters, T2I_server_parameters] def initialize_model(model_provider, api_key_or_token): """Initialize the selected model with user credentials""" if not api_key_or_token.strip(): raise ValueError("Please provide your API key or token") if model_provider == "Gemini (Google)": return LiteLLMModel( model_id="gemini/gemini-2.0-flash-exp", api_key=api_key_or_token ) elif model_provider == "Hugging Face (DeepSeek via Together)": return InferenceClientModel( model_id="deepseek-ai/DeepSeek-R1-0528", provider="together", token=api_key_or_token, max_tokens=5000 ) elif model_provider == "DeepSeek (Direct API)": return OpenAIServerModel( model_id="deepseek-chat", api_key=api_key_or_token, base_url="https://api.deepseek.com" ) else: raise ValueError(f"Unsupported model provider: {model_provider}") def create_business_content_ui(): """Create specialized UI for business content creation""" # Initialize MCP client and keep it alive for the entire UI session print("🔗 Initializing MCP client for the session...") mcp = MCPClient(server_parameters) with mcp: # Load all MCP tools once and keep client alive all_tools = mcp.get_tools() print(f"✅ Loaded {len(all_tools)} MCP tools successfully") def initialize_agents(model): """Initialize specialized agents using loaded MCP tools and user-selected model""" # 1. Business Research Agent - Uses all MCP tools (Knowledge Graph Builder focus) research_agent = CodeAgent( tools=all_tools, model=model, add_base_tools=True, name="business_researcher", description="""Expert business researcher specializing in market analysis, competitive intelligence, and tech industry trends. Uses knowledge graph tools to extract entities, relationships, and key business insights from topics. Focuses on: market size, key players, business relationships, competitive landscape, and strategic context.""" ) # 2. Content Strategy Agent - Creates structured business content content_strategy_agent = ToolCallingAgent( tools=[], model=model, max_steps=3, name="content_strategist", description="""Professional business writer specializing in executive-level content creation. Creates structured, strategic business content including market analyses, competitive briefs, and strategic recommendations. Writes for C-level executives, investors, and business stakeholders with focus on actionable insights.""" ) # 3. Content Formatter Agent - Professional document formatting content_formatter_agent = ToolCallingAgent( tools=[], model=model, max_steps=2, name="content_formatter", description="""Document formatting specialist focused on professional business document structure. Converts content into well-structured markdown with proper headers, tables, bullet points, and professional formatting. Ensures consistency, readability, and professional presentation standards.""" ) # 4. Visual Creation Agent - Uses all MCP tools (Text-to-Image focus) visual_agent = CodeAgent( tools=all_tools, model=model, add_base_tools=True, name="visual_designer", description="""Business visualization specialist creating professional infographics, charts, and presentation visuals. Uses text-to-image tools to convert content into compelling visual formats suitable for executive presentations. Focuses on clean, professional designs that enhance business storytelling.""" ) # Business Content Manager - Coordinates all agents business_content_manager = CodeAgent( tools=all_tools, model=model, managed_agents=[research_agent, content_strategy_agent, content_formatter_agent, visual_agent], additional_authorized_imports=["json", "re", "datetime"], add_base_tools=True, name="agentic_inkwell_manager", description="""Agentic Inkwell Manager - Coordinates multi-agent business content creation workflow. Manages the complete pipeline from research to final formatted output with optional visual conversion. Where specialized agents gather around the digital inkwell to craft intelligence together.""" ) return business_content_manager # Content type options content_types = [ "Market Analysis Report", "Competitive Intelligence Brief", "Technology Trend Analysis", "Product Launch Strategy", "Investment Research Report", "Strategic Planning Document" ] # Writing style options writing_styles = [ "Executive Summary (C-level audience)", "Technical Brief (Developer/Engineer audience)", "Investor Pitch (VC/Stakeholder audience)", "Market Research (Analyst audience)", "Internal Memo (Team communication)" ] # Visual style options visual_styles = [ "Professional Infographics", "Corporate Presentation Style", "Minimalist Charts", "Executive Dashboard", "Technical Diagrams", "No Visuals (Text Only)" ] with gr.Blocks(title="Agentic Inkwell", theme=gr.themes.Soft()) as demo: gr.Markdown("# ✒️ Agentic Inkwell") gr.Markdown("*Where Agents Craft Intelligence* - Generate comprehensive business reports with collaborative agentic writing") # Model Configuration Section with gr.Row(): with gr.Column(): gr.Markdown("### 🤖 Model Configuration") model_provider = gr.Dropdown( choices=[ "Gemini (Google)", "Hugging Face (DeepSeek via Together)", "DeepSeek (Direct API)" ], label="Select AI Model Provider", value="Gemini (Google)", info="Choose your preferred AI model provider" ) api_key_input = gr.Textbox( label="API Key / Token", placeholder="Enter your API key or token here...", type="password", info="Your API key will be used securely and not stored" ) gr.Markdown(""" **🔑 Where to get your API keys:** - **Gemini**: Get free API key at [Google AI Studio](https://aistudio.google.com/app/apikey) - **Hugging Face**: Get free token at [HF Settings](https://huggingface.co/settings/tokens) - **DeepSeek**: Get API key at [DeepSeek Platform](https://platform.deepseek.com/api_keys) """, elem_classes=["api-info"]) with gr.Row(): with gr.Column(scale=2): # Main input topic_input = gr.Textbox( label="📋 Business Topic or Research Question", placeholder="e.g., 'AI Agent frameworks market analysis 2025' or 'NVIDIA vs AMD in AI chip market'", lines=3 ) # Content controls with gr.Row(): content_type = gr.Dropdown( choices=content_types, label="📊 Content Type", value="Market Analysis Report" ) writing_style = gr.Dropdown( choices=writing_styles, label="✍️ Writing Style", value="Executive Summary (C-level audience)" ) with gr.Row(): visual_style = gr.Dropdown( choices=visual_styles, label="🎨 Visual Output", value="No Visuals (Text Only)" ) include_sources = gr.Checkbox( label="📚 Include Source References", value=True ) # Generate button generate_btn = gr.Button("✒️ Craft with Agentic Inkwell", variant="primary", size="lg") with gr.Column(scale=1): # Status and progress status_box = gr.Textbox( label="📊 Generation Status", value="Ready to generate content...", interactive=False, lines=8 ) # Output section with gr.Row(): with gr.Column(): # Main content output content_output = gr.Textbox( label="📄 Generated Business Content (Markdown)", lines=20, max_lines=30, show_copy_button=True ) # Action buttons row with gr.Row(): # Download button download_btn = gr.DownloadButton( label="💾 Download Markdown", visible=False ) # Visual conversion button (appears after content generation) convert_visual_btn = gr.Button( "🎨 Convert to Images", variant="secondary", visible=False ) # Visual output section (shown when visuals are generated) with gr.Row(visible=False) as visual_output_row: with gr.Column(): visual_status = gr.Textbox( label="🎨 Image Conversion Status", interactive=False, lines=3 ) visual_output = gr.Gallery( label="🖼️ Generated Images", columns=2, height=500, show_label=True ) def generate_business_content(topic, content_type, writing_style, visual_style, include_sources, model_provider, api_key): """Main function to coordinate business content generation""" if not topic.strip(): return "Please enter a business topic or research question.", "", None, gr.update(visible=False), gr.update(visible=False) if not api_key.strip(): return "Please provide your API key or token.", "", None, gr.update(visible=False), gr.update(visible=False) try: # Initialize the user-selected model yield "🤖 Initializing your selected AI model...", "", None, gr.update(visible=False), gr.update(visible=False) try: model = initialize_model(model_provider, api_key) except Exception as e: error_msg = f"❌ Failed to initialize {model_provider}: {str(e)}" yield error_msg, "", None, gr.update(visible=False), gr.update(visible=False) return # Initialize agents with the user-selected model yield "🔧 Setting up specialized agents...", "", None, gr.update(visible=False), gr.update(visible=False) manager = initialize_agents(model) # Update status status = "🔍 Starting business research..." yield status, "", None, gr.update(visible=False), gr.update(visible=False) # Create detailed prompt for the manager prompt = f""" Create a comprehensive {content_type.lower()} about: {topic} Requirements: - Writing Style: {writing_style} - Include source references: {include_sources} - Visual conversion needed: {visual_style != 'No Visuals (Text Only)'} - Visual style: {visual_style if visual_style != 'No Visuals (Text Only)' else 'None'} Follow this workflow: 1. Use business_researcher to gather comprehensive market intelligence and competitive data 2. Use content_strategist to create structured business content with strategic insights 3. Use content_formatter to format into professional markdown document 4. {"Use visual_designer to create professional visuals if requested" if visual_style != 'No Visuals (Text Only)' else "Skip visual generation"} Deliver a complete, professional business document ready for executive presentation. """ # Update status status = "🤖 Coordinating multi-agent content creation..." yield status, "", None, gr.update(visible=False), gr.update(visible=False) # Generate content using the manager result = manager.run(prompt) # Update status status = "✅ Content generation completed successfully!" # Prepare download file import tempfile import os temp_file = tempfile.NamedTemporaryFile(mode='w', suffix='.md', delete=False, encoding='utf-8') temp_file.write(result) temp_file.close() # Show/hide visual gallery based on whether visuals were generated show_visuals = visual_style != 'No Visuals (Text Only)' and "![" in result yield ( status, result, temp_file.name, gr.update(visible=True), # download button gr.update(visible=True) # convert to images button ) except Exception as e: error_msg = f"❌ Error generating content: {str(e)}" yield error_msg, "", None, gr.update(visible=False), gr.update(visible=False) def create_business_visuals(content_text, model_provider, api_key): """Convert text content to images using T2l_text_to_images_and_base64_generator tool""" if not content_text.strip(): return "❌ No content available to convert", [] if not api_key.strip(): return "❌ Please provide your API key or token", [] try: # Initialize model for visual conversion yield "🤖 Initializing model for image conversion...", [] try: model = initialize_model(model_provider, api_key) except Exception as e: yield f"❌ Failed to initialize model: {str(e)}", [] return # Use already loaded MCP tools yield "🎨 Converting text to images...", [] # Create visual agent with already loaded tools visual_agent = CodeAgent( tools=all_tools, model=model, add_base_tools=True, name="t2i_visual_converter" ) # Directly convert the content text to images result = visual_agent.run(f""" Use the T2l_text_to_images_and_base64_generator tool to convert this text to images: text_content: "{content_text[:1000]}" aspect_ratio_str: "16:9 (Widescreen)" font_size: 36 style: "plain" bg_color_name: "White" font_choice: "Arial" Convert the business content to professional images. """) if result: yield "✅ Successfully converted text to images!", [("Business Content", result)] else: yield "⚠️ No images were generated", [] except Exception as e: error_msg = f"❌ Image conversion failed: {str(e)}" yield error_msg, [] # Connect the generate button generate_btn.click( fn=generate_business_content, inputs=[topic_input, content_type, writing_style, visual_style, include_sources, model_provider, api_key_input], outputs=[status_box, content_output, download_btn, download_btn, convert_visual_btn], show_progress=True ) # Connect the convert to images button - directly convert text to images convert_visual_btn.click( fn=create_business_visuals, inputs=[content_output, model_provider, api_key_input], outputs=[visual_status, visual_output], show_progress=True ).then( fn=lambda: gr.update(visible=True), outputs=visual_output_row ) # Example buttons for quick testing with gr.Row(): gr.Markdown("### 🎯 Quick Examples:") example1_btn = gr.Button("📱 AI Smartphone Market", size="sm") example2_btn = gr.Button("🚗 EV Battery Tech", size="sm") example3_btn = gr.Button("☁️ Cloud AI Services", size="sm") def set_example1(): return "AI-powered smartphone features market analysis 2025" def set_example2(): return "Electric vehicle battery technology competitive landscape" def set_example3(): return "Cloud-based AI services market opportunities and threats" example1_btn.click(fn=set_example1, outputs=topic_input) example2_btn.click(fn=set_example2, outputs=topic_input) example3_btn.click(fn=set_example3, outputs=topic_input) return demo if __name__ == "__main__": # Launch the business content creation interface demo = create_business_content_ui() demo.launch()