File size: 15,032 Bytes
8f5f46d
 
 
22c89e3
8f5f46d
22c89e3
 
 
8f5f46d
22c89e3
 
8f5f46d
22c89e3
 
8f5f46d
22c89e3
 
8f5f46d
22c89e3
8f5f46d
 
22c89e3
 
 
 
 
 
 
 
8f5f46d
 
 
 
22c89e3
 
 
 
 
 
49faf28
22c89e3
8f5f46d
22c89e3
 
 
 
8f5f46d
 
22c89e3
8f5f46d
 
 
 
22c89e3
 
 
 
 
 
 
8f5f46d
 
 
 
 
 
 
 
 
22c89e3
 
 
 
 
 
8f5f46d
 
 
 
22c89e3
8f5f46d
 
 
 
 
 
22c89e3
8f5f46d
22c89e3
 
 
 
8f5f46d
22c89e3
 
8f5f46d
 
22c89e3
8f5f46d
 
22c89e3
 
 
 
 
 
 
 
 
 
8f5f46d
22c89e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8f5f46d
22c89e3
 
 
 
 
 
 
 
 
 
 
 
 
8f5f46d
22c89e3
 
 
 
 
 
 
 
 
 
 
 
 
8f5f46d
22c89e3
 
 
8f5f46d
22c89e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8f5f46d
22c89e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8f5f46d
22c89e3
 
 
 
 
8f5f46d
22c89e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8f5f46d
22c89e3
 
8f5f46d
 
22c89e3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
import gradio as gr
import torch
import torch.nn as nn
from PIL import Image
import numpy as np
import pandas as pd
import matplotlib
import matplotlib.pyplot as plt
import segmentation_models_pytorch as smp
import albumentations as A
from albumentations.pytorch import ToTensorV2
import os
import random
from datetime importdatetime

# --- Best Practice: Set Matplotlib backend for server environments ---
matplotlib.use('Agg')

# --- CONFIGURATION (UPDATED FOR DEPLOYMENT) ---
class CFG:
    DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
    
    # CRITICAL: Use relative paths for deployment.
    # Place your model file in the root of your Hugging Face Space repository.
    MODEL_PATH = "best_model_optimized_83.98.pth" 
    
    # The app will scan this local folder for example images.
    EXAMPLES_DIR = "examples"

    MODEL_NAME = "CustomDeepLabV3+"
    ENCODER_NAME = "timm-efficientnet-b2"
    NUM_CLASSES = 8
    IMG_SIZE = 256
    
    # Constants for area calculation
    ORIGINAL_PATCH_DIM = 64
    RESOLUTION_M_PER_PIXEL = 10
    SQ_METERS_PER_HECTARE = 10000
    TOTAL_PATCH_AREA_HECTARES = (ORIGINAL_PATCH_DIM**2 * RESOLUTION_M_PER_PIXEL**2) / SQ_METERS_PER_HECTARE

# --- DATA & CLASS INFO ---
CLASS_INFO = {
    0: {"name": "Unclassified", "hex": "#969696"}, 1: {"name": "Water Bodies", "hex": "#0000FF"},
    2: {"name": "Dense Forest", "hex": "#006400"}, 3: {"name": "Built up", "hex": "#800080"},
    4: {"name": "Agriculture land", "hex": "#00FF00"}, 5: {"name": "Barren land", "hex": "#FFFF00"},
    6: {"name": "Fallow land", "hex": "#D2B48C"}, 7: {"name": "Sparse Forest", "hex": "#3CB371"},
}

# --- MODEL DEFINITION (REFORMATTED FOR READABILITY) ---
class SELayer(nn.Module):
    def __init__(self, channel, reduction=16):
        super(SELayer, self).__init__()
        self.avg_pool = nn.AdaptiveAvgPool2d(1)
        self.fc = nn.Sequential(
            nn.Linear(channel, channel // reduction, bias=False),
            nn.ReLU(inplace=True),
            nn.Linear(channel // reduction, channel, bias=False),
            nn.Sigmoid()
        )

    def forward(self, x):
        b, c, _, _ = x.size()
        y = self.avg_pool(x).view(b, c)
        y = self.fc(y).view(b, c, 1, 1)
        return x * y.expand_as(x)

class CustomDeepLabV3Plus(nn.Module):
    def __init__(self, encoder_name, in_channels, classes):
        super().__init__()
        self.smp_model = smp.DeepLabV3Plus(
            encoder_name=encoder_name,
            encoder_weights="imagenet",
            in_channels=in_channels,
            classes=classes
        )
        decoder_channels = self.smp_model.segmentation_head[0].in_channels
        self.se_layer = SELayer(decoder_channels)
        self.segmentation_head = self.smp_model.segmentation_head
        self.smp_model.segmentation_head = nn.Identity()

    def forward(self, x):
        decoder_features = self.smp_model(x)
        attended_features = self.se_layer(decoder_features)
        output = self.segmentation_head(attended_features)
        return output

# --- MODEL LOADING & TRANSFORMS ---
def load_model():
    print(f"Loading model from {CFG.MODEL_PATH} on device {CFG.DEVICE}...")
    model = CustomDeepLabV3Plus(encoder_name=CFG.ENCODER_NAME, in_channels=3, classes=CFG.NUM_CLASSES)
    if not os.path.exists(CFG.MODEL_PATH):
        raise FileNotFoundError(f"CRITICAL: Model file not found at '{CFG.MODEL_PATH}'. Please ensure the model file is in the root directory of your Space.")
    
    # Using weights_only=True is safer
    model.load_state_dict(torch.load(CFG.MODEL_PATH, map_location=torch.device(CFG.DEVICE), weights_only=True))
    model.to(CFG.DEVICE)
    model.eval()
    print("Model loaded successfully!")
    return model

model = load_model()
transform = A.Compose([
    A.Resize(height=CFG.IMG_SIZE, width=CFG.IMG_SIZE),
    A.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)),
    ToTensorV2()
])

# --- HELPER & ANALYSIS FUNCTIONS ---
def create_color_map():
    color_map = np.zeros((256, 3), dtype=np.uint8)
    for class_id, info in CLASS_INFO.items():
        color_map[class_id] = tuple(int(info['hex'].lstrip('#')[i:i+2], 16) for i in (0, 2, 4))
    return color_map

COLOR_MAP_NUMPY = create_color_map()
def create_colored_mask(mask_np):
    return Image.fromarray(COLOR_MAP_NUMPY[mask_np])

def analyze_one_image(image_filepath: str):
    if image_filepath is None: return None, {}
    image = Image.open(image_filepath)
    image_np = np.array(image.convert("RGB"))
    transformed = transform(image=image_np)
    input_tensor = transformed['image'].unsqueeze(0).to(CFG.DEVICE)
    
    with torch.no_grad():
        prediction = model(input_tensor)
        
    pred_mask = torch.argmax(prediction.squeeze(), dim=0).cpu().numpy()
    
    area_results = {}
    class_indices, pixel_counts = np.unique(pred_mask, return_counts=True)
    total_pixels_in_mask = pred_mask.size
    
    for class_id, count in zip(class_indices, pixel_counts):
        if class_id in CLASS_INFO:
            pixel_proportion = count / total_pixels_in_mask
            area_hectares = pixel_proportion * CFG.TOTAL_PATCH_AREA_HECTARES
            area_results[CLASS_INFO[class_id]["name"]] = area_hectares
            
    return pred_mask, area_results

def single_image_analysis(image_filepath: str):
    if image_filepath is None: raise gr.Error("Please upload an image to analyze.")
    
    pred_mask_np, areas_dict = analyze_one_image(image_filepath)
    pred_mask_pil = create_colored_mask(pred_mask_np)
    
    area_data = sorted(areas_dict.items(), key=lambda item: item[1], reverse=True)
    area_df = pd.DataFrame(area_data, columns=["Land Cover Class", "Area (Hectares)"])
    area_df["Area (Hectares)"] = area_df["Area (Hectares)"].map('{:.4f}'.format)
    
    analysis_results = {"areas": areas_dict, "area_df": area_df, "image_path": image_filepath}
    
    return pred_mask_pil, area_df, analysis_results

def compare_land_cover(filepath1: str, filepath2: str):
    if filepath1 is None or filepath2 is None:
        raise gr.Error("Please upload both a 'Before' and 'After' image for comparison.")

    _, areas1_dict = analyze_one_image(filepath1)
    _, areas2_dict = analyze_one_image(filepath2)
    
    mask1_pil = create_colored_mask(analyze_one_image(filepath1)[0])
    mask2_pil = create_colored_mask(analyze_one_image(filepath2)[0])
    
    all_class_names = sorted(list(set(areas1_dict.keys()) | set(areas2_dict.keys())))
    data_for_df = [[name, areas1_dict.get(name, 0), areas2_dict.get(name, 0)] for name in all_class_names]
    
    df = pd.DataFrame(data_for_df, columns=["Class", "Area 1 (ha)", "Area 2 (ha)"])
    df['Change (ha)'] = df['Area 2 (ha)'] - df['Area 1 (ha)']
    df['% Change'] = df.apply(lambda row: (row['Change (ha)'] / row['Area 1 (ha)'] * 100) if row['Area 1 (ha)'] > 0 else float('inf'), axis=1)
    
    df_display = df.copy()
    for col in ["Area 1 (ha)", "Area 2 (ha)"]: df_display[col] = df_display[col].map('{:.2f}'.format)
    df_display["Change (ha)"] = df_display["Change (ha)"].map('{:+.2f}'.format)
    df_display["% Change"] = df_display["% Change"].apply(lambda x: f"{x:+.2f}%" if x != float('inf') else "New")
    
    plt.style.use('seaborn-v0_8-whitegrid')
    fig, ax = plt.subplots(figsize=(10, 6))
    index = np.arange(len(df))
    bar_width = 0.35
    ax.bar(index - bar_width/2, df['Area 1 (ha)'], bar_width, label='Area 1 (Before)', color='cornflowerblue')
    ax.bar(index + bar_width/2, df['Area 2 (ha)'], bar_width, label='Area 2 (After)', color='salmon')
    ax.set_xlabel('Land Cover Class', fontweight='bold')
    ax.set_ylabel('Area (Hectares)', fontweight='bold')
    ax.set_title('Land Cover Change Analysis', fontsize=16, fontweight='bold')
    ax.set_xticks(index)
    ax.set_xticklabels(df['Class'], rotation=45, ha="right")
    ax.legend()
    fig.tight_layout()
    
    analysis_results = {"df": df_display, "path1": filepath1, "path2": filepath2, "raw_df": df}
    
    return mask1_pil, mask2_pil, df_display, fig, analysis_results

# --- REPORTING FUNCTIONS ---
def generate_report(analysis_results, report_type):
    if not analysis_results:
        raise gr.Error("Please run an analysis first before generating a report.")
    
    if report_type == "single":
        filename = os.path.basename(analysis_results['image_path'])
        report = f"# LULC Analysis Report: {filename}\n"
        report += f"**Date:** {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}\n\n"
        report += "## Area Distribution (Hectares)\n"
        report += analysis_results['area_df'].to_markdown(index=False)
        
    elif report_type == "change":
        file1 = os.path.basename(analysis_results['path1'])
        file2 = os.path.basename(analysis_results['path2'])
        df = analysis_results['raw_df']
        summary = ""
        df_sorted = df.reindex(df['Change (ha)'].abs().sort_values(ascending=False).index)
        for _, row in df_sorted.head(3).iterrows():
            if abs(row['Change (ha)']) > 0.01:
                direction = "increased" if row['Change (ha)'] > 0 else "decreased"
                summary += f"- **{row['Class']}** has {direction} by **{abs(row['Change (ha)']):.2f} hectares**.\n"

        report = f"# LULC Change Detection Report\n"
        report += f"**Comparison:** `{file1}` (Before) vs. `{file2}` (After)\n"
        report += f"**Date:** {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}\n\n"
        report += "## Key Summary of Changes\n"
        report += summary + "\n"
        report += "## Detailed Comparison Table\n"
        report += analysis_results['df'].to_markdown(index=False)
    
    # Switch to the report tab and populate it
    return {
        report_editor: gr.update(value=report),
        download_btn: gr.update(visible=True),
        tabs: gr.update(selected=2)
    }

def save_report_to_file(report_content):
    filepath = "LULC_Report.md"
    with open(filepath, "w", encoding="utf-8") as f:
        f.write(report_content)
    return filepath

# --- EXAMPLE FINDER ---
def find_examples():
    single_examples = []
    change_examples = []
    if os.path.isdir(CFG.EXAMPLES_DIR):
        files = sorted([os.path.join(CFG.EXAMPLES_DIR, f) for f in os.listdir(CFG.EXAMPLES_DIR) if f.lower().endswith(('.png', '.jpg', '.jpeg', '.tif'))])
        single_examples = files[:10] # Take up to 10 for single analysis
        # Create pairs for change detection
        if len(files) >= 2:
            for i in range(0, min(len(files) - 1, 10), 2): # Take up to 5 pairs
                change_examples.append([files[i], files[i+1]])
    return single_examples, change_examples

single_examples, change_examples = find_examples()

# --- GRADIO UI LAYOUT ---
with gr.Blocks(theme=gr.themes.Soft(), title="LULC Analysis Platform") as demo:
    gr.Markdown("# Land Use & Land Cover (LULC) Analysis Platform")
    gr.Markdown("An AI-powered tool to analyze satellite imagery for environmental monitoring and planning.")
    
    # Hidden state objects to store analysis results robustly
    single_analysis_results = gr.State()
    change_analysis_results = gr.State()
    
    with gr.Tabs() as tabs:
        with gr.TabItem("Single Image Analysis", id=0):
            with gr.Row(variant="panel"):
                with gr.Column(scale=1):
                    single_img_input = gr.Image(type="filepath", label="Upload Satellite Image")
                    single_analyze_btn = gr.Button("Analyze Image", variant="primary")
                with gr.Column(scale=1):
                    single_mask_output = gr.Image(type="pil", label="Predicted Mask")
            with gr.Row():
                area_df_output = gr.DataFrame(label="Predicted Area Distribution", wrap=True)
            send_single_report_btn = gr.Button("➡ Create Report from this Analysis")
            gr.Examples(examples=single_examples, inputs=single_img_input, label="Click an Example to Start")

        with gr.TabItem("Change Detection Tool", id=1):
            with gr.Row(variant="panel"):
                compare_img1 = gr.Image(type="filepath", label="Image 1 (e.g., Before / 2020)")
                compare_img2 = gr.Image(type="filepath", label="Image 2 (e.g., After / 2024)")
            compare_analyze_btn = gr.Button("Analyze Changes", variant="primary")
            with gr.Row():
                compare_mask1 = gr.Image(type="pil", label="Mask for Image 1")
                compare_mask2 = gr.Image(type="pil", label="Mask for Image 2")
            with gr.Tabs():
                with gr.TabItem("📊 Change Chart"): compare_plot = gr.Plot()
                with gr.TabItem("📑 Comparison Table"): compare_df = gr.DataFrame(interactive=False)
            send_change_report_btn = gr.Button("➡ Create Report from this Analysis")
            if change_examples:
                gr.Examples(examples=change_examples, inputs=[compare_img1, compare_img2], label="Click an Example Pair to Start")

        with gr.TabItem("Report Builder", id=2):
            gr.Markdown("### Create and Download Your Analysis Report")
            gr.Markdown("1. Run an analysis on one of the other tabs.\n"
                        "2. Click the **'➡ Create Report'** button.\n"
                        "3. Your report will appear below. You can edit it before downloading.\n")
            with gr.Column():
                report_editor = gr.Textbox(label="Your Report (Editable)", lines=20, interactive=True)
                download_btn = gr.DownloadButton(label="Download Report (.md)", visible=False)

    # --- BUTTON CLICK EVENTS & DATA FLOW ---
    
    # Single Image Analysis Flow
    single_analyze_btn.click(
        fn=single_image_analysis,
        inputs=single_img_input,
        outputs=[single_mask_output, area_df_output, single_analysis_results]
    ).then(
        lambda: gr.update(interactive=False, value="Analyzing..."), None, single_analyze_btn
    ).then(
        lambda: gr.update(interactive=True, value="Analyze Image"), None, single_analyze_btn
    )

    send_single_report_btn.click(
        fn=lambda res: generate_report(res, "single"),
        inputs=single_analysis_results,
        outputs=[report_editor, download_btn, tabs]
    )
    
    # Change Detection Flow
    compare_analyze_btn.click(
        fn=compare_land_cover,
        inputs=[compare_img1, compare_img2],
        outputs=[compare_mask1, compare_mask2, compare_df, compare_plot, change_analysis_results]
    ).then(
        lambda: gr.update(interactive=False, value="Analyzing..."), None, compare_analyze_btn
    ).then(
        lambda: gr.update(interactive=True, value="Analyze Changes"), None, compare_analyze_btn
    )
    
    send_change_report_btn.click(
        fn=lambda res: generate_report(res, "change"),
        inputs=change_analysis_results,
        outputs=[report_editor, download_btn, tabs]
    )

    # Report Download Flow
    download_btn.click(fn=save_report_to_file, inputs=report_editor, outputs=download_btn)

if __name__ == "__main__":
    demo.launch(debug=True)