Spaces:
Runtime error
Runtime error
File size: 15,032 Bytes
8f5f46d 22c89e3 8f5f46d 22c89e3 8f5f46d 22c89e3 8f5f46d 22c89e3 8f5f46d 22c89e3 8f5f46d 22c89e3 8f5f46d 22c89e3 8f5f46d 22c89e3 49faf28 22c89e3 8f5f46d 22c89e3 8f5f46d 22c89e3 8f5f46d 22c89e3 8f5f46d 22c89e3 8f5f46d 22c89e3 8f5f46d 22c89e3 8f5f46d 22c89e3 8f5f46d 22c89e3 8f5f46d 22c89e3 8f5f46d 22c89e3 8f5f46d 22c89e3 8f5f46d 22c89e3 8f5f46d 22c89e3 8f5f46d 22c89e3 8f5f46d 22c89e3 8f5f46d 22c89e3 8f5f46d 22c89e3 8f5f46d 22c89e3 8f5f46d 22c89e3 8f5f46d 22c89e3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 |
import gradio as gr
import torch
import torch.nn as nn
from PIL import Image
import numpy as np
import pandas as pd
import matplotlib
import matplotlib.pyplot as plt
import segmentation_models_pytorch as smp
import albumentations as A
from albumentations.pytorch import ToTensorV2
import os
import random
from datetime importdatetime
# --- Best Practice: Set Matplotlib backend for server environments ---
matplotlib.use('Agg')
# --- CONFIGURATION (UPDATED FOR DEPLOYMENT) ---
class CFG:
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
# CRITICAL: Use relative paths for deployment.
# Place your model file in the root of your Hugging Face Space repository.
MODEL_PATH = "best_model_optimized_83.98.pth"
# The app will scan this local folder for example images.
EXAMPLES_DIR = "examples"
MODEL_NAME = "CustomDeepLabV3+"
ENCODER_NAME = "timm-efficientnet-b2"
NUM_CLASSES = 8
IMG_SIZE = 256
# Constants for area calculation
ORIGINAL_PATCH_DIM = 64
RESOLUTION_M_PER_PIXEL = 10
SQ_METERS_PER_HECTARE = 10000
TOTAL_PATCH_AREA_HECTARES = (ORIGINAL_PATCH_DIM**2 * RESOLUTION_M_PER_PIXEL**2) / SQ_METERS_PER_HECTARE
# --- DATA & CLASS INFO ---
CLASS_INFO = {
0: {"name": "Unclassified", "hex": "#969696"}, 1: {"name": "Water Bodies", "hex": "#0000FF"},
2: {"name": "Dense Forest", "hex": "#006400"}, 3: {"name": "Built up", "hex": "#800080"},
4: {"name": "Agriculture land", "hex": "#00FF00"}, 5: {"name": "Barren land", "hex": "#FFFF00"},
6: {"name": "Fallow land", "hex": "#D2B48C"}, 7: {"name": "Sparse Forest", "hex": "#3CB371"},
}
# --- MODEL DEFINITION (REFORMATTED FOR READABILITY) ---
class SELayer(nn.Module):
def __init__(self, channel, reduction=16):
super(SELayer, self).__init__()
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.fc = nn.Sequential(
nn.Linear(channel, channel // reduction, bias=False),
nn.ReLU(inplace=True),
nn.Linear(channel // reduction, channel, bias=False),
nn.Sigmoid()
)
def forward(self, x):
b, c, _, _ = x.size()
y = self.avg_pool(x).view(b, c)
y = self.fc(y).view(b, c, 1, 1)
return x * y.expand_as(x)
class CustomDeepLabV3Plus(nn.Module):
def __init__(self, encoder_name, in_channels, classes):
super().__init__()
self.smp_model = smp.DeepLabV3Plus(
encoder_name=encoder_name,
encoder_weights="imagenet",
in_channels=in_channels,
classes=classes
)
decoder_channels = self.smp_model.segmentation_head[0].in_channels
self.se_layer = SELayer(decoder_channels)
self.segmentation_head = self.smp_model.segmentation_head
self.smp_model.segmentation_head = nn.Identity()
def forward(self, x):
decoder_features = self.smp_model(x)
attended_features = self.se_layer(decoder_features)
output = self.segmentation_head(attended_features)
return output
# --- MODEL LOADING & TRANSFORMS ---
def load_model():
print(f"Loading model from {CFG.MODEL_PATH} on device {CFG.DEVICE}...")
model = CustomDeepLabV3Plus(encoder_name=CFG.ENCODER_NAME, in_channels=3, classes=CFG.NUM_CLASSES)
if not os.path.exists(CFG.MODEL_PATH):
raise FileNotFoundError(f"CRITICAL: Model file not found at '{CFG.MODEL_PATH}'. Please ensure the model file is in the root directory of your Space.")
# Using weights_only=True is safer
model.load_state_dict(torch.load(CFG.MODEL_PATH, map_location=torch.device(CFG.DEVICE), weights_only=True))
model.to(CFG.DEVICE)
model.eval()
print("Model loaded successfully!")
return model
model = load_model()
transform = A.Compose([
A.Resize(height=CFG.IMG_SIZE, width=CFG.IMG_SIZE),
A.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)),
ToTensorV2()
])
# --- HELPER & ANALYSIS FUNCTIONS ---
def create_color_map():
color_map = np.zeros((256, 3), dtype=np.uint8)
for class_id, info in CLASS_INFO.items():
color_map[class_id] = tuple(int(info['hex'].lstrip('#')[i:i+2], 16) for i in (0, 2, 4))
return color_map
COLOR_MAP_NUMPY = create_color_map()
def create_colored_mask(mask_np):
return Image.fromarray(COLOR_MAP_NUMPY[mask_np])
def analyze_one_image(image_filepath: str):
if image_filepath is None: return None, {}
image = Image.open(image_filepath)
image_np = np.array(image.convert("RGB"))
transformed = transform(image=image_np)
input_tensor = transformed['image'].unsqueeze(0).to(CFG.DEVICE)
with torch.no_grad():
prediction = model(input_tensor)
pred_mask = torch.argmax(prediction.squeeze(), dim=0).cpu().numpy()
area_results = {}
class_indices, pixel_counts = np.unique(pred_mask, return_counts=True)
total_pixels_in_mask = pred_mask.size
for class_id, count in zip(class_indices, pixel_counts):
if class_id in CLASS_INFO:
pixel_proportion = count / total_pixels_in_mask
area_hectares = pixel_proportion * CFG.TOTAL_PATCH_AREA_HECTARES
area_results[CLASS_INFO[class_id]["name"]] = area_hectares
return pred_mask, area_results
def single_image_analysis(image_filepath: str):
if image_filepath is None: raise gr.Error("Please upload an image to analyze.")
pred_mask_np, areas_dict = analyze_one_image(image_filepath)
pred_mask_pil = create_colored_mask(pred_mask_np)
area_data = sorted(areas_dict.items(), key=lambda item: item[1], reverse=True)
area_df = pd.DataFrame(area_data, columns=["Land Cover Class", "Area (Hectares)"])
area_df["Area (Hectares)"] = area_df["Area (Hectares)"].map('{:.4f}'.format)
analysis_results = {"areas": areas_dict, "area_df": area_df, "image_path": image_filepath}
return pred_mask_pil, area_df, analysis_results
def compare_land_cover(filepath1: str, filepath2: str):
if filepath1 is None or filepath2 is None:
raise gr.Error("Please upload both a 'Before' and 'After' image for comparison.")
_, areas1_dict = analyze_one_image(filepath1)
_, areas2_dict = analyze_one_image(filepath2)
mask1_pil = create_colored_mask(analyze_one_image(filepath1)[0])
mask2_pil = create_colored_mask(analyze_one_image(filepath2)[0])
all_class_names = sorted(list(set(areas1_dict.keys()) | set(areas2_dict.keys())))
data_for_df = [[name, areas1_dict.get(name, 0), areas2_dict.get(name, 0)] for name in all_class_names]
df = pd.DataFrame(data_for_df, columns=["Class", "Area 1 (ha)", "Area 2 (ha)"])
df['Change (ha)'] = df['Area 2 (ha)'] - df['Area 1 (ha)']
df['% Change'] = df.apply(lambda row: (row['Change (ha)'] / row['Area 1 (ha)'] * 100) if row['Area 1 (ha)'] > 0 else float('inf'), axis=1)
df_display = df.copy()
for col in ["Area 1 (ha)", "Area 2 (ha)"]: df_display[col] = df_display[col].map('{:.2f}'.format)
df_display["Change (ha)"] = df_display["Change (ha)"].map('{:+.2f}'.format)
df_display["% Change"] = df_display["% Change"].apply(lambda x: f"{x:+.2f}%" if x != float('inf') else "New")
plt.style.use('seaborn-v0_8-whitegrid')
fig, ax = plt.subplots(figsize=(10, 6))
index = np.arange(len(df))
bar_width = 0.35
ax.bar(index - bar_width/2, df['Area 1 (ha)'], bar_width, label='Area 1 (Before)', color='cornflowerblue')
ax.bar(index + bar_width/2, df['Area 2 (ha)'], bar_width, label='Area 2 (After)', color='salmon')
ax.set_xlabel('Land Cover Class', fontweight='bold')
ax.set_ylabel('Area (Hectares)', fontweight='bold')
ax.set_title('Land Cover Change Analysis', fontsize=16, fontweight='bold')
ax.set_xticks(index)
ax.set_xticklabels(df['Class'], rotation=45, ha="right")
ax.legend()
fig.tight_layout()
analysis_results = {"df": df_display, "path1": filepath1, "path2": filepath2, "raw_df": df}
return mask1_pil, mask2_pil, df_display, fig, analysis_results
# --- REPORTING FUNCTIONS ---
def generate_report(analysis_results, report_type):
if not analysis_results:
raise gr.Error("Please run an analysis first before generating a report.")
if report_type == "single":
filename = os.path.basename(analysis_results['image_path'])
report = f"# LULC Analysis Report: {filename}\n"
report += f"**Date:** {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}\n\n"
report += "## Area Distribution (Hectares)\n"
report += analysis_results['area_df'].to_markdown(index=False)
elif report_type == "change":
file1 = os.path.basename(analysis_results['path1'])
file2 = os.path.basename(analysis_results['path2'])
df = analysis_results['raw_df']
summary = ""
df_sorted = df.reindex(df['Change (ha)'].abs().sort_values(ascending=False).index)
for _, row in df_sorted.head(3).iterrows():
if abs(row['Change (ha)']) > 0.01:
direction = "increased" if row['Change (ha)'] > 0 else "decreased"
summary += f"- **{row['Class']}** has {direction} by **{abs(row['Change (ha)']):.2f} hectares**.\n"
report = f"# LULC Change Detection Report\n"
report += f"**Comparison:** `{file1}` (Before) vs. `{file2}` (After)\n"
report += f"**Date:** {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}\n\n"
report += "## Key Summary of Changes\n"
report += summary + "\n"
report += "## Detailed Comparison Table\n"
report += analysis_results['df'].to_markdown(index=False)
# Switch to the report tab and populate it
return {
report_editor: gr.update(value=report),
download_btn: gr.update(visible=True),
tabs: gr.update(selected=2)
}
def save_report_to_file(report_content):
filepath = "LULC_Report.md"
with open(filepath, "w", encoding="utf-8") as f:
f.write(report_content)
return filepath
# --- EXAMPLE FINDER ---
def find_examples():
single_examples = []
change_examples = []
if os.path.isdir(CFG.EXAMPLES_DIR):
files = sorted([os.path.join(CFG.EXAMPLES_DIR, f) for f in os.listdir(CFG.EXAMPLES_DIR) if f.lower().endswith(('.png', '.jpg', '.jpeg', '.tif'))])
single_examples = files[:10] # Take up to 10 for single analysis
# Create pairs for change detection
if len(files) >= 2:
for i in range(0, min(len(files) - 1, 10), 2): # Take up to 5 pairs
change_examples.append([files[i], files[i+1]])
return single_examples, change_examples
single_examples, change_examples = find_examples()
# --- GRADIO UI LAYOUT ---
with gr.Blocks(theme=gr.themes.Soft(), title="LULC Analysis Platform") as demo:
gr.Markdown("# Land Use & Land Cover (LULC) Analysis Platform")
gr.Markdown("An AI-powered tool to analyze satellite imagery for environmental monitoring and planning.")
# Hidden state objects to store analysis results robustly
single_analysis_results = gr.State()
change_analysis_results = gr.State()
with gr.Tabs() as tabs:
with gr.TabItem("Single Image Analysis", id=0):
with gr.Row(variant="panel"):
with gr.Column(scale=1):
single_img_input = gr.Image(type="filepath", label="Upload Satellite Image")
single_analyze_btn = gr.Button("Analyze Image", variant="primary")
with gr.Column(scale=1):
single_mask_output = gr.Image(type="pil", label="Predicted Mask")
with gr.Row():
area_df_output = gr.DataFrame(label="Predicted Area Distribution", wrap=True)
send_single_report_btn = gr.Button("➡ Create Report from this Analysis")
gr.Examples(examples=single_examples, inputs=single_img_input, label="Click an Example to Start")
with gr.TabItem("Change Detection Tool", id=1):
with gr.Row(variant="panel"):
compare_img1 = gr.Image(type="filepath", label="Image 1 (e.g., Before / 2020)")
compare_img2 = gr.Image(type="filepath", label="Image 2 (e.g., After / 2024)")
compare_analyze_btn = gr.Button("Analyze Changes", variant="primary")
with gr.Row():
compare_mask1 = gr.Image(type="pil", label="Mask for Image 1")
compare_mask2 = gr.Image(type="pil", label="Mask for Image 2")
with gr.Tabs():
with gr.TabItem("📊 Change Chart"): compare_plot = gr.Plot()
with gr.TabItem("📑 Comparison Table"): compare_df = gr.DataFrame(interactive=False)
send_change_report_btn = gr.Button("➡ Create Report from this Analysis")
if change_examples:
gr.Examples(examples=change_examples, inputs=[compare_img1, compare_img2], label="Click an Example Pair to Start")
with gr.TabItem("Report Builder", id=2):
gr.Markdown("### Create and Download Your Analysis Report")
gr.Markdown("1. Run an analysis on one of the other tabs.\n"
"2. Click the **'➡ Create Report'** button.\n"
"3. Your report will appear below. You can edit it before downloading.\n")
with gr.Column():
report_editor = gr.Textbox(label="Your Report (Editable)", lines=20, interactive=True)
download_btn = gr.DownloadButton(label="Download Report (.md)", visible=False)
# --- BUTTON CLICK EVENTS & DATA FLOW ---
# Single Image Analysis Flow
single_analyze_btn.click(
fn=single_image_analysis,
inputs=single_img_input,
outputs=[single_mask_output, area_df_output, single_analysis_results]
).then(
lambda: gr.update(interactive=False, value="Analyzing..."), None, single_analyze_btn
).then(
lambda: gr.update(interactive=True, value="Analyze Image"), None, single_analyze_btn
)
send_single_report_btn.click(
fn=lambda res: generate_report(res, "single"),
inputs=single_analysis_results,
outputs=[report_editor, download_btn, tabs]
)
# Change Detection Flow
compare_analyze_btn.click(
fn=compare_land_cover,
inputs=[compare_img1, compare_img2],
outputs=[compare_mask1, compare_mask2, compare_df, compare_plot, change_analysis_results]
).then(
lambda: gr.update(interactive=False, value="Analyzing..."), None, compare_analyze_btn
).then(
lambda: gr.update(interactive=True, value="Analyze Changes"), None, compare_analyze_btn
)
send_change_report_btn.click(
fn=lambda res: generate_report(res, "change"),
inputs=change_analysis_results,
outputs=[report_editor, download_btn, tabs]
)
# Report Download Flow
download_btn.click(fn=save_report_to_file, inputs=report_editor, outputs=download_btn)
if __name__ == "__main__":
demo.launch(debug=True) |