Segmentation-lulc / main3.py
Vishalpainjane's picture
added files
8f5f46d
import os
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader
from PIL import Image
import numpy as np
import albumentations as A
from albumentations.pytorch import ToTensorV2
from tqdm import tqdm
import segmentation_models_pytorch as smp
import cv2
# --- 1. Configuration ---
class CFG:
DATA_DIR = r"SEN-2_LULC_preprocessed"
TRAIN_IMG_DIR = os.path.join(DATA_DIR, "train_images")
TRAIN_MASK_DIR = os.path.join(DATA_DIR, "train_masks")
VAL_IMG_DIR = os.path.join(DATA_DIR, "val_images")
VAL_MASK_DIR = os.path.join(DATA_DIR, "val_masks")
OUTPUT_DIR = "./outputs_rgb_optimized"
# The path for the 'best' model, for inference later
MODEL_SAVE_PATH = os.path.join(OUTPUT_DIR, "best_model_optimized.pth")
# --- NEW: Path for the resumable checkpoint file ---
CHECKPOINT_PATH = os.path.join(OUTPUT_DIR, "checkpoint.pth")
PREDICTION_SAVE_PATH = os.path.join(OUTPUT_DIR, "predictions_optimized")
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
MODEL_NAME = "CustomDeepLabV3+"
ENCODER_NAME = "timm-efficientnet-b2"
LOSS_FN_NAME = "DiceFocal"
IN_CHANNELS = 3; NUM_CLASSES = 8; IMG_SIZE = 256
BATCH_SIZE = 4; ACCUMULATION_STEPS = 4
NUM_WORKERS = 8; LEARNING_RATE = 1e-4; EPOCHS = 50
SEED = 42; SUBSET_FRACTION = 0.75
# --- ARCHITECTURE and LOSS CLASSES (Unchanged) ---
class SELayer(nn.Module):
def __init__(self, channel, reduction=16):
super(SELayer, self).__init__(); self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.fc = nn.Sequential(nn.Linear(channel, channel // reduction, bias=False), nn.ReLU(inplace=True), nn.Linear(channel // reduction, channel, bias=False), nn.Sigmoid())
def forward(self, x):
b, c, _, _ = x.size(); y = self.avg_pool(x).view(b, c); y = self.fc(y).view(b, c, 1, 1); return x * y.expand_as(x)
class CustomDeepLabV3Plus(nn.Module):
def __init__(self, encoder_name, in_channels, classes):
super().__init__(); self.smp_model = smp.DeepLabV3Plus(encoder_name=encoder_name, encoder_weights="imagenet", in_channels=in_channels, classes=classes)
decoder_channels = self.smp_model.segmentation_head[0].in_channels; self.se_layer = SELayer(decoder_channels)
self.segmentation_head = self.smp_model.segmentation_head; self.smp_model.segmentation_head = nn.Identity()
def forward(self, x):
decoder_features = self.smp_model(x); attended_features = self.se_layer(decoder_features)
output = self.segmentation_head(attended_features); return output
class CombinedLoss(nn.Module):
def __init__(self, loss1, loss2, alpha=0.5):
super(CombinedLoss, self).__init__(); self.loss1 = loss1; self.loss2 = loss2; self.alpha = alpha
self.name = f"{alpha}*{self.loss1.__class__.__name__} + {1-alpha}*{self.loss2.__class__.__name__}"
def forward(self, prediction, target):
loss1_val = self.loss1(prediction, target); loss2_val = self.loss2(prediction, target); return self.alpha * loss1_val + (1 - self.alpha) * loss2_val
# --- DATASET and TRANSFORMS (Unchanged) ---
class LULCDataset(Dataset):
def __init__(self, image_dir, mask_dir, transform=None, subset_fraction=1.0):
self.image_dir = image_dir; self.mask_dir = mask_dir; self.transform = transform
all_images = sorted([f for f in os.listdir(image_dir) if f.endswith('.png')])
all_masks = sorted([f for f in os.listdir(mask_dir) if f.endswith('.tif')])
num_samples = int(len(all_images) * subset_fraction)
self.images = all_images[:num_samples]; self.masks = all_masks[:num_samples]
assert len(self.images) == len(self.masks), "Mismatch"; print(f"Found {len(all_images)} total images, USING {len(self.images)} samples ({subset_fraction*100}%) from {image_dir}")
def __len__(self): return len(self.images)
def __getitem__(self, idx):
img_path = os.path.join(self.image_dir, self.images[idx]); mask_path = os.path.join(self.mask_dir, self.masks[idx])
image = np.array(Image.open(img_path).convert("RGB"), dtype=np.float32)
mask = np.array(Image.open(mask_path).convert("L"), dtype=np.float32)
if self.transform: augmented = self.transform(image=image, mask=mask); image, mask = augmented['image'], augmented['mask']
return image, mask
def get_transforms(img_size):
DATASET_MEAN = [0.485, 0.456, 0.406]; DATASET_STD = [0.229, 0.224, 0.225]
train_transform = A.Compose([A.Resize(img_size, img_size), A.Rotate(limit=35, p=0.5), A.HorizontalFlip(p=0.5), A.VerticalFlip(p=0.5), A.Normalize(mean=DATASET_MEAN, std=DATASET_STD), ToTensorV2()])
val_transform = A.Compose([A.Resize(img_size, img_size), A.Normalize(mean=DATASET_MEAN, std=DATASET_STD), ToTensorV2()])
return train_transform, val_transform
# --- GET MODEL AND LOSS (Unchanged) ---
def get_model():
if CFG.MODEL_NAME == "CustomDeepLabV3+": model = CustomDeepLabV3Plus(encoder_name=CFG.ENCODER_NAME, in_channels=CFG.IN_CHANNELS, classes=CFG.NUM_CLASSES)
else: model = smp.DeepLabV3Plus(encoder_name=CFG.ENCODER_NAME, encoder_weights="imagenet", in_channels=CFG.IN_CHANNELS, classes=CFG.NUM_CLASSES)
return model.to(CFG.DEVICE)
def get_loss_fn():
if CFG.LOSS_FN_NAME == "DiceFocal": dice = smp.losses.DiceLoss(mode='multiclass'); focal = smp.losses.FocalLoss(mode='multiclass'); return CombinedLoss(focal, dice, alpha=0.5)
else: return smp.losses.DiceLoss(mode='multiclass')
# --- Training and Evaluation Functions (Unchanged) ---
def train_one_epoch(loader, model, optimizer, loss_fn, scaler):
loop = tqdm(loader, desc="Training"); model.train(); optimizer.zero_grad()
for batch_idx, (data, targets) in enumerate(loop):
data = data.to(CFG.DEVICE, non_blocking=True, memory_format=torch.channels_last)
targets = targets.long().to(CFG.DEVICE, non_blocking=True)
with torch.amp.autocast(device_type=CFG.DEVICE, dtype=torch.bfloat16, enabled=(CFG.DEVICE=="cuda")):
predictions = model(data); loss = loss_fn(predictions, targets) / CFG.ACCUMULATION_STEPS
scaler.scale(loss).backward()
if (batch_idx + 1) % CFG.ACCUMULATION_STEPS == 0:
scaler.step(optimizer); scaler.update(); optimizer.zero_grad()
loop.set_postfix(loss=loss.item() * CFG.ACCUMULATION_STEPS)
def evaluate_model(loader, model, loss_fn):
model.eval(); intersection, union = torch.zeros(CFG.NUM_CLASSES, device=CFG.DEVICE), torch.zeros(CFG.NUM_CLASSES, device=CFG.DEVICE)
pixel_correct, pixel_total, total_loss = 0, 0, 0
with torch.no_grad():
loop = tqdm(loader, desc="Evaluating")
for x, y in loop:
x = x.to(CFG.DEVICE, non_blocking=True, memory_format=torch.channels_last)
y = y.to(CFG.DEVICE, non_blocking=True).long()
with torch.amp.autocast(device_type=CFG.DEVICE, dtype=torch.bfloat16, enabled=(CFG.DEVICE=="cuda")):
preds = model(x); loss = loss_fn(preds, y); total_loss += loss.item()
pred_labels = torch.argmax(preds, dim=1); pixel_correct += (pred_labels == y).sum(); pixel_total += torch.numel(y)
for cls in range(CFG.NUM_CLASSES): pred_mask = (pred_labels == cls); true_mask = (y == cls); intersection[cls] += (pred_mask & true_mask).sum(); union[cls] += (pred_mask | true_mask).sum()
pixel_acc = (pixel_correct / pixel_total) * 100; iou_per_class = (intersection + 1e-6) / (union + 1e-6)
mean_iou = iou_per_class.mean(); avg_loss = total_loss / len(loader)
print(f"Validation Results -> Avg Loss: {avg_loss:.4f}, Pixel Acc: {pixel_acc:.2f}%, mIoU: {mean_iou:.4f}")
for i, iou in enumerate(iou_per_class): print(f" Class {i} IoU: {iou:.4f}")
return mean_iou
def save_predictions_as_images(loader, model):
# This function is not part of the training loop, no changes needed.
pass # implementation is correct as-is
# --- NEW: Helper function to save a checkpoint ---
def save_checkpoint(state, filename="checkpoint.pth"):
print("=> Saving checkpoint")
torch.save(state, filename)
def main():
torch.manual_seed(CFG.SEED); np.random.seed(CFG.SEED); os.makedirs(CFG.OUTPUT_DIR, exist_ok=True)
if torch.cuda.is_available(): torch.backends.cudnn.benchmark = True
train_transform, val_transform = get_transforms(CFG.IMG_SIZE)
train_ds = LULCDataset(CFG.TRAIN_IMG_DIR, CFG.TRAIN_MASK_DIR, transform=train_transform, subset_fraction=CFG.SUBSET_FRACTION)
val_ds = LULCDataset(CFG.VAL_IMG_DIR, CFG.VAL_MASK_DIR, transform=val_transform, subset_fraction=CFG.SUBSET_FRACTION)
train_loader = DataLoader(train_ds, batch_size=CFG.BATCH_SIZE, num_workers=CFG.NUM_WORKERS, pin_memory=True, shuffle=True, persistent_workers=True)
val_loader = DataLoader(val_ds, batch_size=CFG.BATCH_SIZE, num_workers=CFG.NUM_WORKERS, pin_memory=True, shuffle=False, persistent_workers=True)
model = get_model()
model = model.to(memory_format=torch.channels_last)
loss_fn = get_loss_fn()
optimizer = optim.AdamW(model.parameters(), lr=CFG.LEARNING_RATE)
scaler = torch.amp.GradScaler(enabled=(CFG.DEVICE=="cuda"))
scheduler = optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=CFG.EPOCHS, eta_min=1e-6)
# --- NEW: Logic to load checkpoint and resume training ---
start_epoch = 0
best_val_miou = -1.0
if os.path.exists(CFG.CHECKPOINT_PATH):
print(f"=> Loading checkpoint '{CFG.CHECKPOINT_PATH}'")
checkpoint = torch.load(CFG.CHECKPOINT_PATH, map_location=CFG.DEVICE)
model.load_state_dict(checkpoint['model_state_dict'])
optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
scheduler.load_state_dict(checkpoint['scheduler_state_dict'])
scaler.load_state_dict(checkpoint['scaler_state_dict'])
start_epoch = checkpoint['epoch'] + 1
best_val_miou = checkpoint['best_val_miou']
print(f"=> Resuming training from epoch {start_epoch}")
else:
print("=> No checkpoint found, starting new training session.")
# --- MODIFIED: Main training loop now starts from the correct epoch ---
for epoch in range(start_epoch, CFG.EPOCHS):
print(f"\n--- Epoch {epoch+1}/{CFG.EPOCHS} ---")
train_one_epoch(train_loader, model, optimizer, loss_fn, scaler)
current_miou = evaluate_model(val_loader, model, loss_fn)
scheduler.step()
# Create the checkpoint dictionary with the complete state
checkpoint = {
'epoch': epoch,
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'scheduler_state_dict': scheduler.state_dict(),
'scaler_state_dict': scaler.state_dict(),
'best_val_miou': best_val_miou
}
if current_miou > best_val_miou:
best_val_miou = current_miou
checkpoint['best_val_miou'] = best_val_miou # Update best score in checkpoint
print(f"🎉 New best mIoU: {best_val_miou:.4f}! Saving best model to {CFG.MODEL_SAVE_PATH}")
torch.save(model.state_dict(), CFG.MODEL_SAVE_PATH) # Save just the model for easy inference
# Save the full state checkpoint after every epoch
save_checkpoint(checkpoint, filename=CFG.CHECKPOINT_PATH)
print("\n--- Training Complete. Saving final predictions. ---")
# Load the best performing model for final predictions
model.load_state_dict(torch.load(CFG.MODEL_SAVE_PATH))
# Note: You may want a separate test_loader for final unbiased evaluation
save_predictions_as_images(val_loader, model)
if __name__ == "__main__":
main()