Spaces:
Sleeping
Sleeping
File size: 15,792 Bytes
dbce286 dc0ba34 dbce286 ab11098 d05ce95 ab11098 dbce286 dc0ba34 dbce286 dc0ba34 dbce286 ab11098 dbce286 aca5ce5 dc0ba34 dbce286 dc0ba34 dbce286 ab11098 dbce286 ab11098 dc0ba34 dbce286 dc0ba34 dbce286 dc0ba34 dbce286 dc0ba34 ab11098 dc0ba34 ab11098 dbce286 dc0ba34 dbce286 dc0ba34 dbce286 dc0ba34 dbce286 dc0ba34 ab11098 dc0ba34 dbce286 dc0ba34 dbce286 ab11098 dc0ba34 dbce286 ab11098 dbce286 dc0ba34 ab11098 dc0ba34 dbce286 dc0ba34 ab11098 dc0ba34 dbce286 dc0ba34 dbce286 ab11098 dc0ba34 ab11098 dc0ba34 ab11098 dc0ba34 dbce286 dc0ba34 dbce286 dc0ba34 dbce286 ab11098 dbce286 dc0ba34 ab11098 dc0ba34 0b10d8a dc0ba34 dbce286 dc0ba34 d05ce95 dc0ba34 d05ce95 dc0ba34 d05ce95 dc0ba34 d05ce95 dc0ba34 d05ce95 dc0ba34 d05ce95 dc0ba34 d05ce95 dc0ba34 d05ce95 dc0ba34 d05ce95 ab11098 dc0ba34 ab11098 dc0ba34 d05ce95 dc0ba34 d05ce95 dc0ba34 b04e992 dbce286 804a7ea dc0ba34 d05ce95 dbce286 b04e992 d05ce95 dc0ba34 b04e992 d05ce95 ab11098 d05ce95 dbce286 ab11098 dc0ba34 ab11098 dbce286 dc0ba34 dbce286 dc0ba34 dbce286 dc0ba34 fe9fc71 dbce286 dc0ba34 fe9fc71 d05ce95 dc0ba34 fe9fc71 dbce286 d05ce95 fe9fc71 dc0ba34 fe9fc71 dc0ba34 fe9fc71 dc0ba34 fe9fc71 d05ce95 dbce286 fe9fc71 dc0ba34 fe9fc71 dbce286 dc0ba34 dbce286 dc0ba34 dbce286 ab11098 fe9fc71 dc0ba34 fe9fc71 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 |
from fastapi import FastAPI, HTTPException
import os
from typing import List, Dict, Any
from dotenv import load_dotenv
import logging
from pathlib import Path
from langchain_community.document_loaders import PyPDFLoader
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import Qdrant as QdrantVectorStore
from langchain_google_genai import GoogleGenerativeAIEmbeddings
from langchain_groq import ChatGroq
from qdrant_client import QdrantClient
from qdrant_client.http.models import Distance, VectorParams
from qdrant_client.models import PointIdsList
from langgraph.graph import MessagesState, StateGraph
from langchain_core.messages import SystemMessage, HumanMessage, ToolMessage
from langgraph.prebuilt import ToolNode
from langgraph.graph import END
from langgraph.prebuilt import tools_condition
from langgraph.checkpoint.memory import MemorySaver
# Configure logging
logging.basicConfig(level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
# Load environment variables
load_dotenv()
GOOGLE_API_KEY = os.getenv('GOOGLE_API_KEY')
GROQ_API_KEY = os.getenv('GROQ_API_KEY')
if not GOOGLE_API_KEY or not GROQ_API_KEY:
raise ValueError("API keys not set in environment variables")
app = FastAPI()
class QASystem:
def __init__(self):
self.vector_store = None
self.graph = None
self.memory = None
self.embeddings = None
self.client = None
self.pdf_dir = "pdfss"
self.is_initialized = False
def load_pdf_documents(self):
"""Load and process PDF documents from the pdf directory"""
documents = []
pdf_dir = Path(self.pdf_dir)
if not pdf_dir.exists():
raise FileNotFoundError(f"PDF directory not found: {self.pdf_dir}")
pdf_files = list(pdf_dir.glob("*.pdf"))
if not pdf_files:
logger.warning(f"No PDF files found in directory: {self.pdf_dir}")
return []
logger.info(f"Found {len(pdf_files)} PDF files to process")
for pdf_path in pdf_files:
try:
logger.info(f"Processing PDF: {pdf_path}")
loader = PyPDFLoader(str(pdf_path))
pdf_documents = loader.load()
# Add source information to metadata
for doc in pdf_documents:
if not hasattr(doc, 'metadata'):
doc.metadata = {}
doc.metadata['source'] = str(pdf_path.name)
documents.extend(pdf_documents)
logger.info(f"Loaded PDF: {pdf_path} - {len(pdf_documents)} pages/sections")
except Exception as e:
logger.error(f"Error loading PDF {pdf_path}: {str(e)}")
if not documents:
logger.warning("No documents were loaded from PDFs. Check the PDF directory and file formats.")
return []
# Split documents into smaller chunks for better retrieval
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=1000,
chunk_overlap=200
)
split_docs = text_splitter.split_documents(documents)
logger.info(f"Split {len(documents)} documents into {len(split_docs)} chunks")
# Verify content of the first few chunks
for i, doc in enumerate(split_docs[:3]):
if i >= len(split_docs):
break
logger.info(f"Sample chunk {i+1} content preview: {doc.page_content[:100]}...")
return split_docs
def initialize_system(self):
"""Initialize the RAG system with vector store and LLM"""
try:
logger.info("Initializing QA System...")
# Initialize Qdrant client
self.client = QdrantClient(":memory:")
logger.info("Qdrant client initialized (in-memory)")
# Create or get collection
try:
collection_info = self.client.get_collection("pdf_data")
logger.info(f"Using existing collection: pdf_data")
except Exception:
self.client.create_collection(
collection_name="pdf_data",
vectors_config=VectorParams(size=768, distance=Distance.COSINE),
)
logger.info("Created new collection: pdf_data")
# Initialize embeddings model
self.embeddings = GoogleGenerativeAIEmbeddings(
model="models/embedding-001",
google_api_key=GOOGLE_API_KEY
)
logger.info("Google AI Embeddings initialized")
# Initialize vector store
self.vector_store = QdrantVectorStore(
client=self.client,
collection_name="pdf_data",
embeddings=self.embeddings,
)
logger.info("Qdrant vector store initialized")
# Load documents
documents = self.load_pdf_documents()
if not documents:
logger.warning("No documents loaded. The system will continue but may not provide relevant responses.")
# Clear existing vectors if any
if documents:
try:
points = self.client.scroll(collection_name="pdf_data", limit=1000)[0]
if points:
logger.info(f"Clearing {len(points)} existing vectors from collection")
self.client.delete(
collection_name="pdf_data",
points_selector=PointIdsList(
points=[p.id for p in points]
)
)
except Exception as e:
logger.error(f"Error clearing vectors: {str(e)}")
# Add documents to vector store
logger.info(f"Adding {len(documents)} documents to vector store")
self.vector_store.add_documents(documents)
logger.info(f"Successfully added documents to vector store")
# Verify vector store has documents
try:
count = len(self.client.scroll(collection_name="pdf_data", limit=1)[0])
logger.info(f"Vector store contains points: {count > 0}")
except Exception as e:
logger.error(f"Error verifying vector store: {str(e)}")
# Initialize LLM
llm = ChatGroq(
model="llama3-8b-8192",
api_key=GROQ_API_KEY,
temperature=0.7
)
logger.info("Groq LLM initialized")
# Create LangGraph
graph_builder = StateGraph(MessagesState)
logger.info("Creating LangGraph for conversation flow")
# Define retrieval node (self reference for vector_store access)
vector_store_ref = self.vector_store
def retrieve_docs(state: MessagesState):
"""Node that retrieves relevant documents from the vector store"""
# Get the most recent human message
human_messages = [m for m in state["messages"] if m.type == "human"]
if not human_messages:
logger.warning("No human messages found in state")
return {"messages": state["messages"]}
user_query = human_messages[-1].content
logger.info(f"Retrieving documents for query: '{user_query}'")
# Check if vector store exists
if not vector_store_ref:
logger.error("Vector store not initialized or empty")
return {"messages": state["messages"]}
# Query the vector store
try:
retrieved_docs = vector_store_ref.similarity_search(user_query, k=3)
if not retrieved_docs:
logger.warning(f"No documents retrieved for query: '{user_query}'")
return {"messages": state["messages"]}
# Log what was actually retrieved
for i, doc in enumerate(retrieved_docs):
source = doc.metadata.get('source', 'Unknown') if hasattr(doc, 'metadata') else 'Unknown'
content_preview = doc.page_content[:100] + "..." if len(doc.page_content) > 100 else doc.page_content
logger.info(f"Retrieved doc {i+1} from {source}, preview: {content_preview}")
# Create tool messages with more detailed content
tool_messages = []
for i, doc in enumerate(retrieved_docs):
# Include source information if available
source_info = f" (Source: {doc.metadata.get('source', 'Unknown')})" if hasattr(doc, 'metadata') else ""
tool_messages.append(
ToolMessage(
content=f"Document {i+1}{source_info}: {doc.page_content}",
tool_call_id=f"retrieval_{i}"
)
)
logger.info(f"Created {len(tool_messages)} tool messages with retrieved content")
return {"messages": state["messages"] + tool_messages}
except Exception as e:
logger.error(f"Error retrieving documents: {str(e)}")
return {"messages": state["messages"]}
# Generate response using retrieved documents
def generate(state: MessagesState):
"""Node that generates a response using the LLM and retrieved documents"""
# Extract retrieved documents (tool messages)
tool_messages = [m for m in state["messages"] if m.type == "tool"]
# Collect context from retrieved documents
if tool_messages:
context = "\n\n".join([m.content for m in tool_messages])
logger.info(f"Using context from {len(tool_messages)} retrieved documents")
else:
context = "No specific mountain bicycle documentation available for this query."
logger.warning("No relevant documents retrieved, using default context")
system_prompt = (
"You are an AI assistant embedded within the Interactive Electronic Technical Manual (IETM) for Mountain Cycles. "
"Your primary role is to provide accurate technical information about mountain bicycles. "
"Always base your responses on the provided documentation. "
"If you don't find specific information in the provided context, clearly state that the information "
"is not available in the current documentation instead of making up details. "
"When responding, reference specific parts of the documentation."
f"\n\nContext from mountain bicycle documentation:\n{context}"
)
# Get all messages excluding tool messages to avoid redundancy
human_and_ai_messages = [m for m in state["messages"] if m.type != "tool"]
# Create the full message history for the LLM
messages = [SystemMessage(content=system_prompt)] + human_and_ai_messages
logger.info(f"Sending query to LLM with {len(messages)} messages")
# Generate the response
try:
response = llm.invoke(messages)
logger.info(f"LLM generated response successfully")
return {"messages": state["messages"] + [response]}
except Exception as e:
logger.error(f"Error generating response: {str(e)}")
error_message = SystemMessage(content=f"Error generating response: {str(e)}")
return {"messages": state["messages"] + [error_message]}
# Add nodes to the graph
graph_builder.add_node("retrieve_docs", retrieve_docs)
graph_builder.add_node("generate", generate)
# Set the flow of the graph
graph_builder.set_entry_point("retrieve_docs")
graph_builder.add_edge("retrieve_docs", "generate")
graph_builder.add_edge("generate", END)
# Initialize memory
self.memory = MemorySaver()
self.graph = graph_builder.compile(checkpointer=self.memory)
logger.info("Graph compiled successfully")
self.is_initialized = True
return True
except Exception as e:
logger.error(f"System initialization error: {str(e)}")
self.is_initialized = False
return False
def process_query(self, query: str) -> Dict[str, Any]:
"""Process a query and return a single final response"""
try:
if not self.is_initialized:
logger.error("System not initialized. Cannot process query.")
return {
'content': "Error: QA System not initialized properly",
'type': 'error'
}
logger.info(f"Processing query: '{query}'")
# Generate a thread ID (use a more sophisticated method for production)
thread_id = "abc123"
# Use invoke to get only the final result
final_state = self.graph.invoke(
{"messages": [HumanMessage(content=query)]},
config={"configurable": {"thread_id": thread_id}}
)
# Extract only the last AI message from the final state
ai_messages = [m for m in final_state["messages"] if m.type == "ai"]
if ai_messages:
logger.info("Successfully generated response")
# Return only the last AI message
return {
'content': ai_messages[-1].content,
'type': ai_messages[-1].type
}
logger.warning("No AI message generated in response")
return {
'content': "No response could be generated for your query. Please try a different question.",
'type': 'error'
}
except Exception as e:
logger.error(f"Query processing error: {str(e)}")
return {
'content': f"Error processing your query: {str(e)}",
'type': 'error'
}
# Initialize the QA system
qa_system = QASystem()
initialization_success = qa_system.initialize_system()
@app.post("/query")
async def query_api(query: str):
"""API endpoint that returns a single response for a query"""
if not qa_system.is_initialized:
raise HTTPException(status_code=500, detail="QA System not initialized properly")
response = qa_system.process_query(query)
return {"response": response} |