Spaces:
Configuration error
Configuration error
| import torch | |
| import webvtt | |
| import os | |
| import cv2 | |
| from minigpt4.common.eval_utils import prepare_texts, init_model | |
| from minigpt4.conversation.conversation import CONV_VISION | |
| from torchvision import transforms | |
| import json | |
| from tqdm import tqdm | |
| import soundfile as sf | |
| import argparse | |
| import moviepy.editor as mp | |
| import gradio as gr | |
| from pytubefix import YouTube | |
| import shutil | |
| from PIL import Image | |
| from moviepy.editor import VideoFileClip | |
| import torch | |
| import random | |
| import numpy as np | |
| import torch.backends.cudnn as cudnn | |
| def prepare_input(vis_processor,video_path,subtitle_path,instruction): | |
| cap = cv2.VideoCapture(video_path) | |
| if subtitle_path is not None: | |
| # Load the VTT subtitle file | |
| vtt_file = webvtt.read(subtitle_path) | |
| print("subtitle loaded successfully") | |
| clip = VideoFileClip(video_path) | |
| total_num_frames = int(clip.duration * clip.fps) | |
| # print("Video duration = ",clip.duration) | |
| clip.close() | |
| else : | |
| # calculate the total number of frames in the video using opencv | |
| total_num_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) | |
| max_images_length = 45 | |
| max_sub_len = 400 | |
| images = [] | |
| frame_count = 0 | |
| sampling_interval = int(total_num_frames / max_images_length) | |
| if sampling_interval == 0: | |
| sampling_interval = 1 | |
| img_placeholder = "" | |
| subtitle_text_in_interval = "" | |
| history_subtitles = {} | |
| raw_frames=[] | |
| number_of_words=0 | |
| transform=transforms.Compose([ | |
| transforms.ToPILImage(), | |
| ]) | |
| while cap.isOpened(): | |
| ret, frame = cap.read() | |
| if not ret: | |
| break | |
| # Find the corresponding subtitle for the frame and combine the interval subtitles into one subtitle | |
| # we choose 1 frame for every 2 seconds,so we need to combine the subtitles in the interval of 2 seconds | |
| if subtitle_path is not None: | |
| for subtitle in vtt_file: | |
| sub=subtitle.text.replace('\n',' ') | |
| if (subtitle.start_in_seconds <= (frame_count / int(clip.fps)) <= subtitle.end_in_seconds) and sub not in subtitle_text_in_interval: | |
| if not history_subtitles.get(sub,False): | |
| subtitle_text_in_interval+=sub+" " | |
| history_subtitles[sub]=True | |
| break | |
| if frame_count % sampling_interval == 0: | |
| raw_frames.append(Image.fromarray(cv2.cvtColor(frame.copy(), cv2.COLOR_BGR2RGB))) | |
| frame = transform(frame[:,:,::-1]) # convert to RGB | |
| frame = vis_processor(frame) | |
| images.append(frame) | |
| img_placeholder += '<Img><ImageHere>' | |
| if subtitle_path is not None and subtitle_text_in_interval != "" and number_of_words< max_sub_len: | |
| img_placeholder+=f'<Cap>{subtitle_text_in_interval}' | |
| number_of_words+=len(subtitle_text_in_interval.split(' ')) | |
| subtitle_text_in_interval = "" | |
| frame_count += 1 | |
| if len(images) >= max_images_length: | |
| break | |
| cap.release() | |
| cv2.destroyAllWindows() | |
| if len(images) == 0: | |
| # skip the video if no frame is extracted | |
| return None,None | |
| images = torch.stack(images) | |
| instruction = img_placeholder + '\n' + instruction | |
| return images,instruction | |
| def extract_audio(video_path, audio_path): | |
| video_clip = mp.VideoFileClip(video_path) | |
| audio_clip = video_clip.audio | |
| audio_clip.write_audiofile(audio_path, codec="libmp3lame", bitrate="320k") | |
| def generate_subtitles(video_path): | |
| video_id=video_path.split('/')[-1].split('.')[0] | |
| audio_path = f"workspace/inference_subtitles/mp3/{video_id}"+'.mp3' | |
| os.makedirs("workspace/inference_subtitles/mp3",exist_ok=True) | |
| if existed_subtitles.get(video_id,False): | |
| return f"workspace/inference_subtitles/{video_id}"+'.vtt' | |
| try: | |
| extract_audio(video_path,audio_path) | |
| print("successfully extracted") | |
| os.system(f"whisper {audio_path} --language English --model large --output_format vtt --output_dir workspace/inference_subtitles") | |
| # remove the audio file | |
| os.system(f"rm {audio_path}") | |
| print("subtitle successfully generated") | |
| return f"workspace/inference_subtitles/{video_id}"+'.vtt' | |
| except Exception as e: | |
| print("error",e) | |
| print("error",video_path) | |
| return None | |
| def run (video_path,instruction,model,vis_processor,gen_subtitles=True): | |
| if gen_subtitles: | |
| subtitle_path=generate_subtitles(video_path) | |
| else : | |
| subtitle_path=None | |
| prepared_images,prepared_instruction=prepare_input(vis_processor,video_path,subtitle_path,instruction) | |
| if prepared_images is None: | |
| return "Video cann't be open ,check the video path again" | |
| length=len(prepared_images) | |
| prepared_images=prepared_images.unsqueeze(0) | |
| conv = CONV_VISION.copy() | |
| conv.system = "" | |
| # if you want to make conversation comment the 2 lines above and make the conv is global variable | |
| conv.append_message(conv.roles[0], prepared_instruction) | |
| conv.append_message(conv.roles[1], None) | |
| prompt = [conv.get_prompt()] | |
| answers = model.generate(prepared_images, prompt, max_new_tokens=args.max_new_tokens, do_sample=True, lengths=[length],num_beams=1) | |
| return answers[0] | |
| def get_arguments(): | |
| parser = argparse.ArgumentParser(description="Inference parameters") | |
| parser.add_argument("--cfg-path", help="path to configuration file.",default="test_configs/llama2_test_config.yaml") | |
| parser.add_argument("--ckpt", type=str,default='checkpoints/video_llama_checkpoint_last.pth', help="path to checkpoint") | |
| parser.add_argument("--add_subtitles",action= 'store_true',help="whether to add subtitles") | |
| parser.add_argument("--question", type=str, help="question to ask") | |
| parser.add_argument("--video_path", type=str, help="Path to the video file") | |
| parser.add_argument("--max_new_tokens", type=int, default=512, help="max number of generated tokens") | |
| parser.add_argument("--lora_r", type=int, default=64, help="lora rank of the model") | |
| parser.add_argument("--lora_alpha", type=int, default=16, help="lora alpha") | |
| parser.add_argument( | |
| "--options", | |
| nargs="+", | |
| help="override some settings in the used config, the key-value pair " | |
| "in xxx=yyy format will be merged into config file (deprecate), " | |
| "change to --cfg-options instead.", | |
| ) | |
| return parser.parse_args() | |
| args=get_arguments() | |
| def setup_seeds(seed): | |
| random.seed(seed) | |
| np.random.seed(seed) | |
| torch.manual_seed(seed) | |
| torch.cuda.manual_seed(seed) | |
| cudnn.benchmark = False | |
| cudnn.deterministic = True | |
| import yaml | |
| with open('test_configs/llama2_test_config.yaml') as file: | |
| config = yaml.load(file, Loader=yaml.FullLoader) | |
| seed=config['run']['seed'] | |
| print("seed",seed) | |
| model, vis_processor = init_model(args) | |
| conv = CONV_VISION.copy() | |
| conv.system = "" | |
| inference_subtitles_folder="inference_subtitles" | |
| os.makedirs(inference_subtitles_folder,exist_ok=True) | |
| existed_subtitles={} | |
| for sub in os.listdir(inference_subtitles_folder): | |
| existed_subtitles[sub.split('.')[0]]=True | |
| if __name__ == "__main__": | |
| video_path=args.video_path | |
| instruction=args.question | |
| add_subtitles=args.add_subtitles | |
| # setup_seeds(seed) | |
| pred=run(video_path,instruction,model,vis_processor,gen_subtitles=add_subtitles) | |
| print(pred) |