Spaces:
Configuration error
Configuration error
| """ | |
| Copyright (c) 2022, salesforce.com, inc. | |
| All rights reserved. | |
| SPDX-License-Identifier: BSD-3-Clause | |
| For full license text, see the LICENSE_Lavis file in the repo root or https://opensource.org/licenses/BSD-3-Clause | |
| """ | |
| import argparse | |
| import os | |
| import random | |
| import numpy as np | |
| import torch | |
| import torch.backends.cudnn as cudnn | |
| import minigpt4.tasks as tasks | |
| from minigpt4.common.config import Config | |
| from minigpt4.common.dist_utils import get_rank, init_distributed_mode | |
| from minigpt4.common.logger import setup_logger | |
| from minigpt4.common.optims import ( | |
| LinearWarmupCosineLRScheduler, | |
| LinearWarmupStepLRScheduler, | |
| ) | |
| from minigpt4.common.registry import registry | |
| from minigpt4.common.utils import now | |
| # imports modules for registration | |
| from minigpt4.datasets.builders import * | |
| from minigpt4.models import * | |
| from minigpt4.processors import * | |
| from minigpt4.runners import * | |
| from minigpt4.tasks import * | |
| import wandb | |
| def parse_args(): | |
| parser = argparse.ArgumentParser(description="Training") | |
| parser.add_argument("--cfg-path",default="train_configs_llama2/224_v2_llama2_video.yaml", required=False, help="path to configuration file.") | |
| parser.add_argument( | |
| "--options", | |
| nargs="+", | |
| help="override some settings in the used config, the key-value pair " | |
| "in xxx=yyy format will be merged into config file (deprecate), " | |
| "change to --cfg-options instead.", | |
| ) | |
| parser.add_argument("--job_name",default="test",type=str) | |
| args = parser.parse_args() | |
| return args | |
| def setup_seeds(config): | |
| seed = config.run_cfg.seed + get_rank() | |
| random.seed(seed) | |
| np.random.seed(seed) | |
| torch.manual_seed(seed) | |
| cudnn.benchmark = False | |
| cudnn.deterministic = True | |
| def get_runner_class(cfg): | |
| """ | |
| Get runner class from config. Default to epoch-based runner. | |
| """ | |
| runner_cls = registry.get_runner_class(cfg.run_cfg.get("runner", "runner_base")) | |
| return runner_cls | |
| def setup_environ_flags(rank): | |
| """Set environment flags for debugging purposes""" | |
| os.environ["TORCH_SHOW_CPP_STACKTRACES"] = str(1) | |
| os.environ["NCCL_ASYNC_ERROR_HANDLING"] = str(1) | |
| os.environ["TORCH_DISTRIBUTED_DEBUG"] = "DETAIL" | |
| if rank == 0: | |
| print(f"--> Running with torch dist debug set to detail") | |
| def main(): | |
| # allow auto-dl completes on main process without timeout when using NCCL backend. | |
| # os.environ["NCCL_BLOCKING_WAIT"] = "1" | |
| # set before init_distributed_mode() to ensure the same job_id shared across all ranks. | |
| setup_environ_flags(get_rank()) | |
| job_id = now() | |
| args = parse_args() | |
| cfg = Config(args) | |
| init_distributed_mode(cfg.run_cfg) | |
| setup_seeds(cfg) | |
| # set after in | |
| # it_distributed_mode() to only log on master. | |
| setup_logger() | |
| wandb.login() | |
| # print(wandb.run) | |
| cfg.pretty_print() | |
| task = tasks.setup_task(cfg) | |
| datasets = task.build_datasets(cfg) | |
| model = task.build_model(cfg) | |
| if not hasattr(cfg.run_cfg, 'rank') or cfg.run_cfg.rank == 0: | |
| print("project name", args.job_name) | |
| wandb.init(project="minigpt4-spatial",name=args.job_name) | |
| wandb.config = {"learning_rate": 0.0001, "epochs": 100, "batch_size": 8} | |
| wandb.watch(model) | |
| # print('+++++++++++++++++') | |
| # print(type(model)) | |
| # print('+++++++++++++++++') | |
| # print(model) | |
| # print('+++++++++++++++++') | |
| # print(model.super().device) | |
| # print('+++++++++++++++++') | |
| # print(model.device) | |
| runner = get_runner_class(cfg)( | |
| cfg=cfg, job_id=job_id, task=task, model=model, datasets=datasets | |
| ) | |
| runner.train() | |
| if __name__ == "__main__": | |
| main() | |