Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -3,12 +3,23 @@ import spaces
|
|
3 |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
4 |
import torch
|
5 |
from threading import Thread
|
|
|
6 |
|
7 |
-
phi4_model_path = "
|
8 |
|
9 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
10 |
|
11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
phi4_tokenizer = AutoTokenizer.from_pretrained(phi4_model_path)
|
13 |
|
14 |
@spaces.GPU(duration=120)
|
@@ -45,9 +56,9 @@ def generate_response(user_message, max_tokens, temperature, top_k, top_p, repet
|
|
45 |
"attention_mask": inputs["attention_mask"],
|
46 |
"max_new_tokens": int(max_tokens),
|
47 |
"do_sample": True,
|
48 |
-
"temperature":
|
49 |
"top_k": int(top_k),
|
50 |
-
"top_p":
|
51 |
"repetition_penalty": repetition_penalty,
|
52 |
"streamer": streamer,
|
53 |
}
|
@@ -79,6 +90,7 @@ with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
|
79 |
gr.Markdown(
|
80 |
"""
|
81 |
# try the example problems below to see how the model breaks down complex reasoning problems.
|
|
|
82 |
"""
|
83 |
)
|
84 |
|
|
|
3 |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
4 |
import torch
|
5 |
from threading import Thread
|
6 |
+
import bitsandbytes as bnb
|
7 |
|
8 |
+
phi4_model_path = "Compumacy/OpenBioLLm-70B"
|
9 |
|
10 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
11 |
|
12 |
+
# Load model with 4-bit quantization
|
13 |
+
phi4_model = AutoModelForCausalLM.from_pretrained(
|
14 |
+
phi4_model_path,
|
15 |
+
device_map="auto",
|
16 |
+
load_in_4bit=True, # Enable 4-bit quantization
|
17 |
+
quantization_config={
|
18 |
+
"bnb_4bit_compute_dtype": torch.float16,
|
19 |
+
"bnb_4bit_use_double_quant": True,
|
20 |
+
"bnb_4bit_quant_type": "nf4"
|
21 |
+
}
|
22 |
+
)
|
23 |
phi4_tokenizer = AutoTokenizer.from_pretrained(phi4_model_path)
|
24 |
|
25 |
@spaces.GPU(duration=120)
|
|
|
56 |
"attention_mask": inputs["attention_mask"],
|
57 |
"max_new_tokens": int(max_tokens),
|
58 |
"do_sample": True,
|
59 |
+
"temperature": temperature, # Use the slider value
|
60 |
"top_k": int(top_k),
|
61 |
+
"top_p": top_p, # Use the slider value
|
62 |
"repetition_penalty": repetition_penalty,
|
63 |
"streamer": streamer,
|
64 |
}
|
|
|
90 |
gr.Markdown(
|
91 |
"""
|
92 |
# try the example problems below to see how the model breaks down complex reasoning problems.
|
93 |
+
## *Running with 4-bit quantization*
|
94 |
"""
|
95 |
)
|
96 |
|