Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,75 +1,62 @@
|
|
1 |
import spaces
|
2 |
import gradio as gr
|
3 |
-
from transformers import
|
4 |
-
from
|
5 |
import torch
|
6 |
from threading import Thread
|
7 |
|
8 |
# Model and device configuration
|
9 |
phi4_model_path = "Compumacy/OpenBioLLm-70B"
|
10 |
-
device = "cuda
|
11 |
-
|
12 |
-
# ===
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
bnb_4bit_quant_type="nf4"
|
21 |
)
|
22 |
|
23 |
-
# === LOAD MODEL
|
24 |
-
model =
|
25 |
-
phi4_model_path,
|
26 |
-
quantization_config=bnb_config,
|
27 |
-
torch_dtype=torch.float16,
|
28 |
-
device_map="auto"
|
29 |
-
)
|
30 |
-
|
31 |
-
tokenizer = AutoTokenizer.from_pretrained(phi4_model_path)
|
32 |
-
|
33 |
-
# === OFFLOAD TO CPU/DISK ===
|
34 |
-
model = load_checkpoint_and_dispatch(
|
35 |
-
model,
|
36 |
phi4_model_path,
|
|
|
37 |
device_map="auto",
|
38 |
-
|
39 |
-
offload_state_dict=True,
|
40 |
-
max_memory={**{i: "12GB" for i in range(torch.cuda.device_count())}, "cpu": "30GB"}
|
41 |
)
|
42 |
|
43 |
-
|
44 |
-
model.gradient_checkpointing_enable()
|
45 |
|
46 |
-
#
|
47 |
try:
|
48 |
model = torch.compile(model)
|
49 |
except Exception:
|
50 |
pass
|
51 |
|
52 |
-
# === RESPONSE GENERATOR ===
|
53 |
@spaces.GPU()
|
54 |
def generate_response(user_message, max_tokens, temperature, top_k, top_p, repetition_penalty, history_state):
|
55 |
if not user_message.strip():
|
56 |
return history_state, history_state
|
57 |
|
58 |
-
#
|
59 |
system_message = (
|
60 |
"Your role as an assistant involves thoroughly exploring questions through a systematic thinking process..."
|
61 |
)
|
62 |
start_tag, sep_tag, end_tag = "<|im_start|>", "<|im_sep|>", "<|im_end|>"
|
|
|
|
|
63 |
prompt = f"{start_tag}system{sep_tag}{system_message}{end_tag}"
|
64 |
for msg in history_state:
|
65 |
-
|
66 |
-
content = msg["content"]
|
67 |
-
prompt += f"{start_tag}{tag}{sep_tag}{content}{end_tag}"
|
68 |
prompt += f"{start_tag}user{sep_tag}{user_message}{end_tag}{start_tag}assistant{sep_tag}"
|
69 |
|
|
|
70 |
inputs = tokenizer(prompt, return_tensors="pt").to(device)
|
71 |
|
72 |
-
#
|
73 |
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True)
|
74 |
generation_kwargs = {
|
75 |
"input_ids": inputs.input_ids,
|
@@ -83,7 +70,7 @@ def generate_response(user_message, max_tokens, temperature, top_k, top_p, repet
|
|
83 |
"streamer": streamer
|
84 |
}
|
85 |
|
86 |
-
#
|
87 |
Thread(target=model.generate, kwargs=generation_kwargs).start()
|
88 |
|
89 |
assistant_response = ""
|
@@ -92,7 +79,7 @@ def generate_response(user_message, max_tokens, temperature, top_k, top_p, repet
|
|
92 |
{"role": "assistant", "content": ""}
|
93 |
]
|
94 |
|
95 |
-
# Stream tokens
|
96 |
for token in streamer:
|
97 |
clean = token.replace(start_tag, "").replace(sep_tag, "").replace(end_tag, "")
|
98 |
assistant_response += clean
|
@@ -111,7 +98,7 @@ example_messages = {
|
|
111 |
# === GRADIO APP ===
|
112 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
113 |
gr.Markdown("""
|
114 |
-
# Phi-4 Chat
|
115 |
Try the example problems below to see how the model breaks down complex reasoning.
|
116 |
""" )
|
117 |
|
@@ -133,9 +120,9 @@ with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
|
133 |
clear_button = gr.Button("Clear", scale=1)
|
134 |
gr.Markdown("**Try these examples:**")
|
135 |
with gr.Row():
|
136 |
-
for name in example_messages:
|
137 |
btn = gr.Button(name)
|
138 |
-
btn.click(fn=lambda
|
139 |
|
140 |
submit_button.click(
|
141 |
fn=generate_response,
|
|
|
1 |
import spaces
|
2 |
import gradio as gr
|
3 |
+
from transformers import AutoTokenizer, TextIteratorStreamer
|
4 |
+
from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig
|
5 |
import torch
|
6 |
from threading import Thread
|
7 |
|
8 |
# Model and device configuration
|
9 |
phi4_model_path = "Compumacy/OpenBioLLm-70B"
|
10 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
11 |
+
|
12 |
+
# === GPTQ 2-bit QUANTIZATION CONFIG ===
|
13 |
+
quantize_config = BaseQuantizeConfig(
|
14 |
+
load_in_4bit=False,
|
15 |
+
load_in_8bit=False,
|
16 |
+
quantization_bit=2,
|
17 |
+
compute_dtype=torch.float16,
|
18 |
+
use_double_quant=True,
|
19 |
+
quant_type="nf4"
|
|
|
20 |
)
|
21 |
|
22 |
+
# === LOAD GPTQ-QUANTIZED MODEL ===
|
23 |
+
model = AutoGPTQForCausalLM.from_quantized(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
phi4_model_path,
|
25 |
+
quantize_config=quantize_config,
|
26 |
device_map="auto",
|
27 |
+
use_safetensors=True,
|
|
|
|
|
28 |
)
|
29 |
|
30 |
+
tokenizer = AutoTokenizer.from_pretrained(phi4_model_path)
|
|
|
31 |
|
32 |
+
# === OPTIONAL: TorchCompile for optimization (PyTorch >= 2.0) ===
|
33 |
try:
|
34 |
model = torch.compile(model)
|
35 |
except Exception:
|
36 |
pass
|
37 |
|
38 |
+
# === STREAMING RESPONSE GENERATOR ===
|
39 |
@spaces.GPU()
|
40 |
def generate_response(user_message, max_tokens, temperature, top_k, top_p, repetition_penalty, history_state):
|
41 |
if not user_message.strip():
|
42 |
return history_state, history_state
|
43 |
|
44 |
+
# System prompt prefix
|
45 |
system_message = (
|
46 |
"Your role as an assistant involves thoroughly exploring questions through a systematic thinking process..."
|
47 |
)
|
48 |
start_tag, sep_tag, end_tag = "<|im_start|>", "<|im_sep|>", "<|im_end|>"
|
49 |
+
|
50 |
+
# Build full prompt
|
51 |
prompt = f"{start_tag}system{sep_tag}{system_message}{end_tag}"
|
52 |
for msg in history_state:
|
53 |
+
prompt += f"{start_tag}{msg['role']}{sep_tag}{msg['content']}{end_tag}"
|
|
|
|
|
54 |
prompt += f"{start_tag}user{sep_tag}{user_message}{end_tag}{start_tag}assistant{sep_tag}"
|
55 |
|
56 |
+
# Tokenize and move to device
|
57 |
inputs = tokenizer(prompt, return_tensors="pt").to(device)
|
58 |
|
59 |
+
# Set up streamer
|
60 |
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True)
|
61 |
generation_kwargs = {
|
62 |
"input_ids": inputs.input_ids,
|
|
|
70 |
"streamer": streamer
|
71 |
}
|
72 |
|
73 |
+
# Launch generation
|
74 |
Thread(target=model.generate, kwargs=generation_kwargs).start()
|
75 |
|
76 |
assistant_response = ""
|
|
|
79 |
{"role": "assistant", "content": ""}
|
80 |
]
|
81 |
|
82 |
+
# Stream tokens back to Gradio
|
83 |
for token in streamer:
|
84 |
clean = token.replace(start_tag, "").replace(sep_tag, "").replace(end_tag, "")
|
85 |
assistant_response += clean
|
|
|
98 |
# === GRADIO APP ===
|
99 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
100 |
gr.Markdown("""
|
101 |
+
# Phi-4 Chat with GPTQ Quant
|
102 |
Try the example problems below to see how the model breaks down complex reasoning.
|
103 |
""" )
|
104 |
|
|
|
120 |
clear_button = gr.Button("Clear", scale=1)
|
121 |
gr.Markdown("**Try these examples:**")
|
122 |
with gr.Row():
|
123 |
+
for name, text in example_messages.items():
|
124 |
btn = gr.Button(name)
|
125 |
+
btn.click(fn=lambda t=text: gr.update(value=t), None, user_input)
|
126 |
|
127 |
submit_button.click(
|
128 |
fn=generate_response,
|