Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -11,10 +11,10 @@ device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
|
11 |
phi4_model = AutoModelForCausalLM.from_pretrained(phi4_model_path, device_map="auto", torch_dtype="auto")
|
12 |
phi4_tokenizer = AutoTokenizer.from_pretrained(phi4_model_path)
|
13 |
|
14 |
-
@spaces.GPU(duration=
|
15 |
-
def generate_response(user_message, max_tokens, temperature, top_k, top_p, repetition_penalty,
|
16 |
if not user_message.strip():
|
17 |
-
return
|
18 |
|
19 |
model = phi4_model
|
20 |
tokenizer = phi4_tokenizer
|
@@ -32,12 +32,17 @@ Use LaTeX for any formulas or values (e.g., $\\text{BMI} = \\frac{\\text{weight
|
|
32 |
|
33 |
Now, analyze the following case:"""
|
34 |
|
|
|
35 |
prompt = f"{start_tag}system{sep_tag}{system_message}{end_tag}"
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
prompt += f"{start_tag}
|
|
|
|
|
|
|
|
|
41 |
prompt += f"{start_tag}user{sep_tag}{user_message}{end_tag}{start_tag}assistant{sep_tag}"
|
42 |
|
43 |
inputs = tokenizer(prompt, return_tensors="pt").to(device)
|
@@ -58,19 +63,19 @@ Now, analyze the following case:"""
|
|
58 |
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
59 |
thread.start()
|
60 |
|
61 |
-
|
62 |
-
new_history =
|
63 |
-
{"role": "user", "content": user_message},
|
64 |
-
{"role": "assistant", "content": ""}
|
65 |
-
]
|
66 |
|
|
|
|
|
67 |
for new_token in streamer:
|
68 |
cleaned_token = new_token.replace("<|im_start|>", "").replace("<|im_sep|>", "").replace("<|im_end|>", "")
|
69 |
assistant_response += cleaned_token
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
|
|
74 |
|
75 |
|
76 |
example_messages = {
|
@@ -120,7 +125,8 @@ with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo:
|
|
120 |
</script>
|
121 |
""")
|
122 |
|
123 |
-
|
|
|
124 |
|
125 |
with gr.Row():
|
126 |
with gr.Column(scale=1):
|
@@ -133,7 +139,6 @@ with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo:
|
|
133 |
repetition_penalty_slider = gr.Slider(1.0, 2.0, value=1.0, label="Repetition Penalty")
|
134 |
|
135 |
with gr.Column(scale=4):
|
136 |
-
chatbot = gr.Chatbot(label="Chat", render_markdown=True, show_copy_button=True)
|
137 |
with gr.Row():
|
138 |
user_input = gr.Textbox(label="Describe symptoms or ask a medical question", placeholder="Type your message here...", scale=3)
|
139 |
submit_button = gr.Button("Send", variant="primary", scale=1)
|
@@ -145,26 +150,19 @@ with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo:
|
|
145 |
example3 = gr.Button("Abdominal pain")
|
146 |
example4 = gr.Button("BMI calculation")
|
147 |
|
148 |
-
#
|
149 |
-
def process_input(message, max_tokens, temperature, top_k, top_p, repetition_penalty, history):
|
150 |
-
# Call the generator function and get the final result
|
151 |
-
generator = generate_response(message, max_tokens, temperature, top_k, top_p, repetition_penalty, history)
|
152 |
-
result = None
|
153 |
-
for res in generator:
|
154 |
-
result = res
|
155 |
-
return result
|
156 |
-
|
157 |
submit_button.click(
|
158 |
-
fn=
|
159 |
-
inputs=[user_input, max_tokens_slider, temperature_slider, top_k_slider, top_p_slider,
|
160 |
-
|
|
|
161 |
).then(
|
162 |
fn=lambda: gr.update(value=""),
|
163 |
inputs=None,
|
164 |
outputs=user_input
|
165 |
)
|
166 |
|
167 |
-
clear_button.click(fn=lambda: ([], []), inputs=None, outputs=[chatbot,
|
168 |
|
169 |
example1.click(lambda: gr.update(value=example_messages["Headache case"]), None, user_input)
|
170 |
example2.click(lambda: gr.update(value=example_messages["Chest pain"]), None, user_input)
|
|
|
11 |
phi4_model = AutoModelForCausalLM.from_pretrained(phi4_model_path, device_map="auto", torch_dtype="auto")
|
12 |
phi4_tokenizer = AutoTokenizer.from_pretrained(phi4_model_path)
|
13 |
|
14 |
+
@spaces.GPU(duration=60)
|
15 |
+
def generate_response(user_message, max_tokens, temperature, top_k, top_p, repetition_penalty, history):
|
16 |
if not user_message.strip():
|
17 |
+
return history, history
|
18 |
|
19 |
model = phi4_model
|
20 |
tokenizer = phi4_tokenizer
|
|
|
32 |
|
33 |
Now, analyze the following case:"""
|
34 |
|
35 |
+
# Build conversation history in the format the model expects
|
36 |
prompt = f"{start_tag}system{sep_tag}{system_message}{end_tag}"
|
37 |
+
|
38 |
+
# Convert chat history format from the Gradio Chatbot format to prompt format
|
39 |
+
for user_msg, bot_msg in history:
|
40 |
+
if user_msg:
|
41 |
+
prompt += f"{start_tag}user{sep_tag}{user_msg}{end_tag}"
|
42 |
+
if bot_msg:
|
43 |
+
prompt += f"{start_tag}assistant{sep_tag}{bot_msg}{end_tag}"
|
44 |
+
|
45 |
+
# Add the current user message
|
46 |
prompt += f"{start_tag}user{sep_tag}{user_message}{end_tag}{start_tag}assistant{sep_tag}"
|
47 |
|
48 |
inputs = tokenizer(prompt, return_tensors="pt").to(device)
|
|
|
63 |
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
64 |
thread.start()
|
65 |
|
66 |
+
# Create a new history with the current user message
|
67 |
+
new_history = history.copy() + [[user_message, ""]]
|
|
|
|
|
|
|
68 |
|
69 |
+
# Collect the generated response
|
70 |
+
assistant_response = ""
|
71 |
for new_token in streamer:
|
72 |
cleaned_token = new_token.replace("<|im_start|>", "").replace("<|im_sep|>", "").replace("<|im_end|>", "")
|
73 |
assistant_response += cleaned_token
|
74 |
+
# Update the last message in history with the current response
|
75 |
+
new_history[-1][1] = assistant_response.strip()
|
76 |
+
|
77 |
+
# Return the updated history
|
78 |
+
return new_history, new_history
|
79 |
|
80 |
|
81 |
example_messages = {
|
|
|
125 |
</script>
|
126 |
""")
|
127 |
|
128 |
+
chatbot = gr.Chatbot(label="Chat", render_markdown=True, show_copy_button=True)
|
129 |
+
history = gr.State([])
|
130 |
|
131 |
with gr.Row():
|
132 |
with gr.Column(scale=1):
|
|
|
139 |
repetition_penalty_slider = gr.Slider(1.0, 2.0, value=1.0, label="Repetition Penalty")
|
140 |
|
141 |
with gr.Column(scale=4):
|
|
|
142 |
with gr.Row():
|
143 |
user_input = gr.Textbox(label="Describe symptoms or ask a medical question", placeholder="Type your message here...", scale=3)
|
144 |
submit_button = gr.Button("Send", variant="primary", scale=1)
|
|
|
150 |
example3 = gr.Button("Abdominal pain")
|
151 |
example4 = gr.Button("BMI calculation")
|
152 |
|
153 |
+
# Use click instead of stream
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
154 |
submit_button.click(
|
155 |
+
fn=generate_response,
|
156 |
+
inputs=[user_input, max_tokens_slider, temperature_slider, top_k_slider, top_p_slider,
|
157 |
+
repetition_penalty_slider, history],
|
158 |
+
outputs=[chatbot, history]
|
159 |
).then(
|
160 |
fn=lambda: gr.update(value=""),
|
161 |
inputs=None,
|
162 |
outputs=user_input
|
163 |
)
|
164 |
|
165 |
+
clear_button.click(fn=lambda: ([], []), inputs=None, outputs=[chatbot, history])
|
166 |
|
167 |
example1.click(lambda: gr.update(value=example_messages["Headache case"]), None, user_input)
|
168 |
example2.click(lambda: gr.update(value=example_messages["Chest pain"]), None, user_input)
|