Vladt-Tempest commited on
Commit
8c1484a
·
1 Parent(s): 78a30ee

Copia de archivos de origen para el curso de Agentic RAG

Browse files
Files changed (5) hide show
  1. README.md +5 -6
  2. app.py +30 -4
  3. requirements.txt +4 -0
  4. retriever.py +53 -0
  5. tools.py +56 -0
README.md CHANGED
@@ -1,14 +1,13 @@
1
  ---
2
- title: Agentic RAG
3
- emoji: 🏆
4
- colorFrom: green
5
- colorTo: red
6
  sdk: gradio
7
- sdk_version: 5.23.3
8
  app_file: app.py
9
  pinned: false
10
  license: apache-2.0
11
- short_description: test Rag Agents
12
  ---
13
 
14
  Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
1
  ---
2
+ title: AgenticRAG
3
+ emoji: 🌖
4
+ colorFrom: pink
5
+ colorTo: pink
6
  sdk: gradio
7
+ sdk_version: 5.23.1
8
  app_file: app.py
9
  pinned: false
10
  license: apache-2.0
 
11
  ---
12
 
13
  Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
app.py CHANGED
@@ -1,7 +1,33 @@
1
  import gradio as gr
 
 
2
 
3
- def greet(name):
4
- return "Hello " + name + "!!"
 
5
 
6
- demo = gr.Interface(fn=greet, inputs="text", outputs="text")
7
- demo.launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import gradio as gr
2
+ import random
3
+ from smolagents import GradioUI, CodeAgent, HfApiModel
4
 
5
+ # Import our custom tools from their modules
6
+ from tools import DuckDuckGoSearchTool, WeatherInfoTool, HubStatsTool
7
+ from retriever import load_guest_dataset
8
 
9
+ # Initialize the Hugging Face model
10
+ model = HfApiModel()
11
+
12
+ # Initialize the web search tool
13
+ search_tool = DuckDuckGoSearchTool()
14
+
15
+ # Initialize the weather tool
16
+ weather_info_tool = WeatherInfoTool()
17
+
18
+ # Initialize the Hub stats tool
19
+ hub_stats_tool = HubStatsTool()
20
+
21
+ # Load the guest dataset and initialize the guest info tool
22
+ guest_info_tool = load_guest_dataset()
23
+
24
+ # Create Alfred with all the tools
25
+ alfred = CodeAgent(
26
+ tools=[guest_info_tool, weather_info_tool, hub_stats_tool, search_tool],
27
+ model=model,
28
+ add_base_tools=True, # Add any additional base tools
29
+ planning_interval=3 # Enable planning every 3 steps
30
+ )
31
+
32
+ if __name__ == "__main__":
33
+ GradioUI(alfred).launch()
requirements.txt ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ datasets
2
+ smolagents
3
+ langchain-community
4
+ rank_bm25
retriever.py ADDED
@@ -0,0 +1,53 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from smolagents import Tool
2
+ from langchain_community.retrievers import BM25Retriever
3
+ from langchain.docstore.document import Document
4
+ import datasets
5
+
6
+
7
+ class GuestInfoRetrieverTool(Tool):
8
+ name = "guest_info_retriever"
9
+ description = "Retrieves detailed information about gala guests based on their name or relation."
10
+ inputs = {
11
+ "query": {
12
+ "type": "string",
13
+ "description": "The name or relation of the guest you want information about."
14
+ }
15
+ }
16
+ output_type = "string"
17
+
18
+ def __init__(self, docs):
19
+ self.is_initialized = False
20
+ self.retriever = BM25Retriever.from_documents(docs)
21
+
22
+
23
+ def forward(self, query: str):
24
+ results = self.retriever.get_relevant_documents(query)
25
+ if results:
26
+ return "\n\n".join([doc.page_content for doc in results[:3]])
27
+ else:
28
+ return "No matching guest information found."
29
+
30
+
31
+ def load_guest_dataset():
32
+ # Load the dataset
33
+ guest_dataset = datasets.load_dataset("agents-course/unit3-invitees", split="train")
34
+
35
+ # Convert dataset entries into Document objects
36
+ docs = [
37
+ Document(
38
+ page_content="\n".join([
39
+ f"Name: {guest['name']}",
40
+ f"Relation: {guest['relation']}",
41
+ f"Description: {guest['description']}",
42
+ f"Email: {guest['email']}"
43
+ ]),
44
+ metadata={"name": guest["name"]}
45
+ )
46
+ for guest in guest_dataset
47
+ ]
48
+
49
+ # Return the tool
50
+ return GuestInfoRetrieverTool(docs)
51
+
52
+
53
+
tools.py ADDED
@@ -0,0 +1,56 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from smolagents import DuckDuckGoSearchTool
2
+ from smolagents import Tool
3
+ import random
4
+ from huggingface_hub import list_models
5
+
6
+
7
+ # Initialize the DuckDuckGo search tool
8
+ #search_tool = DuckDuckGoSearchTool()
9
+
10
+
11
+ class WeatherInfoTool(Tool):
12
+ name = "weather_info"
13
+ description = "Fetches dummy weather information for a given location."
14
+ inputs = {
15
+ "location": {
16
+ "type": "string",
17
+ "description": "The location to get weather information for."
18
+ }
19
+ }
20
+ output_type = "string"
21
+
22
+ def forward(self, location: str):
23
+ # Dummy weather data
24
+ weather_conditions = [
25
+ {"condition": "Rainy", "temp_c": 15},
26
+ {"condition": "Clear", "temp_c": 25},
27
+ {"condition": "Windy", "temp_c": 20}
28
+ ]
29
+ # Randomly select a weather condition
30
+ data = random.choice(weather_conditions)
31
+ return f"Weather in {location}: {data['condition']}, {data['temp_c']}°C"
32
+
33
+ class HubStatsTool(Tool):
34
+ name = "hub_stats"
35
+ description = "Fetches the most downloaded model from a specific author on the Hugging Face Hub."
36
+ inputs = {
37
+ "author": {
38
+ "type": "string",
39
+ "description": "The username of the model author/organization to find models from."
40
+ }
41
+ }
42
+ output_type = "string"
43
+
44
+ def forward(self, author: str):
45
+ try:
46
+ # List models from the specified author, sorted by downloads
47
+ models = list(list_models(author=author, sort="downloads", direction=-1, limit=1))
48
+
49
+ if models:
50
+ model = models[0]
51
+ return f"The most downloaded model by {author} is {model.id} with {model.downloads:,} downloads."
52
+ else:
53
+ return f"No models found for author {author}."
54
+ except Exception as e:
55
+ return f"Error fetching models for {author}: {str(e)}"
56
+