File size: 9,643 Bytes
93f0a5a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
import asyncio
import os
import json
from typing import List, Dict, Any, Union
from contextlib import AsyncExitStack

import gradio as gr
from gradio.components.chatbot import ChatMessage
from mcp import ClientSession, StdioServerParameters
from mcp.client.stdio import stdio_client
from anthropic import Anthropic
      

loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)

class MCPClientWrapper:
    def __init__(self):
        self.session = None
        self.exit_stack = None
        self.anthropic = Anthropic()
        self.tools = []
    
    def connect(self, server_path: str) -> str:
        return loop.run_until_complete(self._connect(server_path))
    
    async def _connect(self, server_path: str) -> str:
        if self.exit_stack:
            await self.exit_stack.aclose()
        
        self.exit_stack = AsyncExitStack()
        
        is_python = server_path.endswith('.py')
        command = "python" if is_python else "node"
        
        server_params = StdioServerParameters(
            command=command,
            args=[server_path],
            env={"PYTHONIOENCODING": "utf-8", "PYTHONUNBUFFERED": "1"}
        )
        
        stdio_transport = await self.exit_stack.enter_async_context(stdio_client(server_params))
        self.stdio, self.write = stdio_transport
        
        self.session = await self.exit_stack.enter_async_context(ClientSession(self.stdio, self.write))
        await self.session.initialize()
        
        response = await self.session.list_tools()
        self.tools = [{ 
            "name": tool.name,
            "description": tool.description,
            "input_schema": tool.inputSchema
        } for tool in response.tools]
        
        tool_names = [tool["name"] for tool in self.tools]
        return f"Connected to MCP server. Available tools: {', '.join(tool_names)}"
    
    def process_message(self, message: str, history: List[Union[Dict[str, Any], ChatMessage]]) -> tuple:
        if not self.session:
            return history + [
                {"role": "user", "content": message}, 
                {"role": "assistant", "content": "Please connect to an MCP server first."}
            ], gr.Textbox(value="")
        
        new_messages = loop.run_until_complete(self._process_query(message, history))
        return history + [{"role": "user", "content": message}] + new_messages, gr.Textbox(value="")
    
    async def _process_query(self, message: str, history: List[Union[Dict[str, Any], ChatMessage]]):
        claude_messages = []
        for msg in history:
            if isinstance(msg, ChatMessage):
                role, content = msg.role, msg.content
            else:
                role, content = msg.get("role"), msg.get("content")
            
            if role in ["user", "assistant", "system"]:
                claude_messages.append({"role": role, "content": content})
        
        claude_messages.append({"role": "user", "content": message})
        
        response = self.anthropic.messages.create(
            model="claude-3-5-sonnet-20241022",
            max_tokens=1000,
            messages=claude_messages,
            tools=self.tools
        )

        result_messages = []
        
        for content in response.content:
            if content.type == 'text':
                result_messages.append({
                    "role": "assistant", 
                    "content": content.text
                })
                
            elif content.type == 'tool_use':
                tool_name = content.name
                tool_args = content.input
                
                result_messages.append({
                    "role": "assistant",
                    "content": f"I'll use the {tool_name} tool to help answer your question.",
                    "metadata": {
                        "title": f"Using tool: {tool_name}",
                        "log": f"Parameters: {json.dumps(tool_args, ensure_ascii=True)}",
                        "status": "pending",
                        "id": f"tool_call_{tool_name}"
                    }
                })
                
                result_messages.append({
                    "role": "assistant",
                    "content": "```json\n" + json.dumps(tool_args, indent=2, ensure_ascii=True) + "\n```",
                    "metadata": {
                        "parent_id": f"tool_call_{tool_name}",
                        "id": f"params_{tool_name}",
                        "title": "Tool Parameters"
                    }
                })
                
                result = await self.session.call_tool(tool_name, tool_args)
                
                if result_messages and "metadata" in result_messages[-2]:
                    result_messages[-2]["metadata"]["status"] = "done"
                
                result_messages.append({
                    "role": "assistant",
                    "content": "Here are the results from the tool:",
                    "metadata": {
                        "title": f"Tool Result for {tool_name}",
                        "status": "done",
                        "id": f"result_{tool_name}"
                    }
                })
                
                result_content = result.content
                if isinstance(result_content, list):
                    result_content = "\n".join(str(item) for item in result_content)
                
                try:
                    result_json = json.loads(result_content)
                    if isinstance(result_json, dict) and "type" in result_json:
                        if result_json["type"] == "image" and "url" in result_json:
                            result_messages.append({
                                "role": "assistant",
                                "content": {"path": result_json["url"], "alt_text": result_json.get("message", "Generated image")},
                                "metadata": {
                                    "parent_id": f"result_{tool_name}",
                                    "id": f"image_{tool_name}",
                                    "title": "Generated Image"
                                }
                            })
                        else:
                            result_messages.append({
                                "role": "assistant",
                                "content": "```\n" + result_content + "\n```",
                                "metadata": {
                                    "parent_id": f"result_{tool_name}",
                                    "id": f"raw_result_{tool_name}",
                                    "title": "Raw Output"
                                }
                            })
                except:
                    result_messages.append({
                        "role": "assistant",
                        "content": "```\n" + result_content + "\n```",
                        "metadata": {
                            "parent_id": f"result_{tool_name}",
                            "id": f"raw_result_{tool_name}",
                            "title": "Raw Output"
                        }
                    })
                
                claude_messages.append({"role": "user", "content": f"Tool result for {tool_name}: {result_content}"})
                next_response = self.anthropic.messages.create(
                    model="claude-3-5-sonnet-20241022",
                    max_tokens=1000,
                    messages=claude_messages,
                )
                
                if next_response.content and next_response.content[0].type == 'text':
                    result_messages.append({
                        "role": "assistant",
                        "content": next_response.content[0].text
                    })

        return result_messages

client = MCPClientWrapper()

def gradio_interface():
    with gr.Blocks(title="MCP Assistant Client") as demo:
        gr.Markdown("# MCP Financial Assistant")
        gr.Markdown("Connect to your MCP Financial server and chat with the assistant")
        
        with gr.Row(equal_height=True):
            with gr.Column(scale=4):
                server_path = gr.Textbox(
                    label="Server Script Path",
                    placeholder="Enter path to server script (e.g., weather.py)",
                    value="mcp_server.py"
                )
            with gr.Column(scale=1):
                connect_btn = gr.Button("Connect")
        
        status = gr.Textbox(label="Connection Status", interactive=False)
        
        chatbot = gr.Chatbot(
            value=[], 
            height=500,
            type="messages",
            show_copy_button=True,
            avatar_images=("👤", "🤖")
        )
        
        with gr.Row(equal_height=True):
            msg = gr.Textbox(
                label="Your Question",
                placeholder="Ask about financial assets or market trends (e.g., What's the stock price of AAPL?)",
                scale=4
            )
            clear_btn = gr.Button("Clear Chat", scale=1)
        
        connect_btn.click(client.connect, inputs=server_path, outputs=status)
        msg.submit(client.process_message, [msg, chatbot], [chatbot, msg])
        clear_btn.click(lambda: [], None, chatbot)
        
    return demo

if __name__ == "__main__":
    if not os.getenv("ANTHROPIC_API_KEY"):
        print("Warning: ANTHROPIC_API_KEY not found in environment. Please set it in your .env file.")
    
    interface = gradio_interface()
    interface.launch(debug=True)