import gradio as gr import subprocess from huggingface_hub import snapshot_download #Download model snapshot_download( repo_id = "Wan-AI/Wan2.1-T2V-1.3B", local_dir = "./Wan2.1-T2V-1.3B" ) def infer(prompt): command = [ "python", "-u", "-m", "generate", # using -u for unbuffered output and omitting .py extension "--task", "t2v-1.3B", "--size", "832*480", "--ckpt_dir", "./Wan2.1-T2V-1.3B", "--sample_shift", "8", "--sample_guide_scale", "6", "--prompt", prompt, "--save_file", "generated_video.mp4" ] # Start the process with unbuffered output and combine stdout and stderr. process = subprocess.Popen( command, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, text=True, bufsize=1 # line-buffered ) # Stream output in real time. with process.stdout: for line in iter(process.stdout.readline, ''): print(line, end="") # line already includes a newline process.wait() if process.returncode == 0: print("Command executed successfully.") return "generated_video.mp4" else: print("Error executing command.") raise Exception("Error executing command") with gr.Blocks() as demo: with gr.Column(): gr.Markdown("# Wan 2.1") prompt = gr.Textbox(label="Prompt") submit_btn = gr.Button("Submit") video_res = gr.Video(label="Generated Video") submit_btn.click( fn = infer, inputs = [prompt], outputs = [video_res] ) demo.queue().launch(show_error=True, show_api=False, ssr_mode=False)