Update app.py
Browse files
app.py
CHANGED
|
@@ -3,22 +3,31 @@ import numpy as np
|
|
| 3 |
import time
|
| 4 |
|
| 5 |
import tensorflow as tf
|
| 6 |
-
from utils import
|
| 7 |
from FoodNoFood import food_not_food
|
| 8 |
from PIL import Image
|
| 9 |
|
| 10 |
import sys
|
|
|
|
| 11 |
from RecipeData import fetchRecipeData
|
| 12 |
|
| 13 |
IMG_SIZE = (224, 224)
|
| 14 |
model_V1 = 'Seefood_model_v1.tflite'
|
| 15 |
model_V2 = 'Seefood_model_V2.tflite'
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
return prediction, sorceCode, recipe_data
|
| 23 |
|
| 24 |
|
|
@@ -33,17 +42,18 @@ def main():
|
|
| 33 |
st.title('SeeFood🍔')
|
| 34 |
st.write('Upload a food image and get the recipe for that food and other details of that food')
|
| 35 |
|
| 36 |
-
col1, col2 = st.columns(2)
|
| 37 |
|
| 38 |
with col1:
|
| 39 |
# image uploading button
|
| 40 |
uploaded_file = st.file_uploader("Choose a file")
|
| 41 |
-
selected_model = st.selectbox('Select Model',('model 1', 'model 2'), index=
|
|
|
|
| 42 |
if uploaded_file is not None:
|
| 43 |
uploaded_img = uploaded_file.read()
|
| 44 |
pil_img = Image.open(uploaded_file)
|
| 45 |
|
| 46 |
-
col2.image(uploaded_file, width=
|
| 47 |
|
| 48 |
# butoon to make predictions
|
| 49 |
predict = st.button('Get Recipe!')
|
|
@@ -57,29 +67,37 @@ def main():
|
|
| 57 |
with st.spinner('Please Wait 👩🍳'):
|
| 58 |
|
| 59 |
# setting model and rescalling
|
| 60 |
-
if selected_model
|
| 61 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 62 |
pred_rescale = True
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
# makeing prediction and fetching food recipe form api
|
| 68 |
-
food, source_code, recipe_data = model_prediction(pred_model, uploaded_img, pred_rescale)
|
| 69 |
-
|
| 70 |
# asssigning caleoric breakdown data
|
| 71 |
percent_Protein = recipe_data['percentProtein']
|
| 72 |
percent_fat = recipe_data['percentFat']
|
| 73 |
percent_carbs = recipe_data['percentCarbs']
|
| 74 |
-
|
| 75 |
# food name message
|
| 76 |
col1.success(f"It's an {food}")
|
| 77 |
-
|
| 78 |
if source_code == 200:
|
| 79 |
# desplay food recipe
|
| 80 |
st.header(recipe_data['title']+" Recipe")
|
| 81 |
-
|
| 82 |
-
col3, col4 = st.columns(2)
|
| 83 |
|
| 84 |
with col3:
|
| 85 |
# Ingridents of recipie
|
|
@@ -99,11 +117,12 @@ def main():
|
|
| 99 |
* Protien: {percent_Protein}%
|
| 100 |
* Fat: {percent_fat}%
|
| 101 |
* Carbohydrates: {percent_carbs}%
|
| 102 |
-
|
|
|
|
| 103 |
|
| 104 |
-
|
| 105 |
else:
|
| 106 |
st.error('Something went wrong please try again :(')
|
|
|
|
| 107 |
|
| 108 |
elif food_cat == 'not food':
|
| 109 |
with col1:
|
|
|
|
| 3 |
import time
|
| 4 |
|
| 5 |
import tensorflow as tf
|
| 6 |
+
from utils import load_prepare_image_tf, model_pred_tf, fetch_recipe, load_prepare_image_pt, model_pred_pt
|
| 7 |
from FoodNoFood import food_not_food
|
| 8 |
from PIL import Image
|
| 9 |
|
| 10 |
import sys
|
| 11 |
+
sys.path.insert(1, 'Api Data')
|
| 12 |
from RecipeData import fetchRecipeData
|
| 13 |
|
| 14 |
IMG_SIZE = (224, 224)
|
| 15 |
model_V1 = 'Seefood_model_v1.tflite'
|
| 16 |
model_V2 = 'Seefood_model_V2.tflite'
|
| 17 |
+
ViT_model = 'ViT-101-1.pt'
|
| 18 |
+
|
| 19 |
+
@st.cache(show_spinner=False)
|
| 20 |
+
def model_prediction(model, img_file, rescale, model_tensor_type):
|
| 21 |
+
if model_tensor_type == 'TF':
|
| 22 |
+
img = load_prepare_image_tf(img_file, IMG_SIZE, rescale=rescale)
|
| 23 |
+
prediction = model_pred_tf(model, img)
|
| 24 |
+
sorceCode, recipe_data = fetchRecipeData(prediction)
|
| 25 |
+
elif model_tensor_type == 'Pt':
|
| 26 |
+
img = load_prepare_image_pt(img_file)
|
| 27 |
+
prediction = model_pred_pt(img, model)
|
| 28 |
+
print(prediction)
|
| 29 |
+
sorceCode, recipe_data = fetchRecipeData(prediction)
|
| 30 |
+
|
| 31 |
return prediction, sorceCode, recipe_data
|
| 32 |
|
| 33 |
|
|
|
|
| 42 |
st.title('SeeFood🍔')
|
| 43 |
st.write('Upload a food image and get the recipe for that food and other details of that food')
|
| 44 |
|
| 45 |
+
col1, col2 = st.columns(2, gap='large')
|
| 46 |
|
| 47 |
with col1:
|
| 48 |
# image uploading button
|
| 49 |
uploaded_file = st.file_uploader("Choose a file")
|
| 50 |
+
selected_model = st.selectbox('Select Model',( 'ViT Model', 'model 1', 'model 2'), index=0)
|
| 51 |
+
|
| 52 |
if uploaded_file is not None:
|
| 53 |
uploaded_img = uploaded_file.read()
|
| 54 |
pil_img = Image.open(uploaded_file)
|
| 55 |
|
| 56 |
+
col2.image(uploaded_file, width=700)
|
| 57 |
|
| 58 |
# butoon to make predictions
|
| 59 |
predict = st.button('Get Recipe!')
|
|
|
|
| 67 |
with st.spinner('Please Wait 👩🍳'):
|
| 68 |
|
| 69 |
# setting model and rescalling
|
| 70 |
+
if selected_model in ['model 1', 'model 2']:
|
| 71 |
+
|
| 72 |
+
if selected_model == 'model 2':
|
| 73 |
+
pred_model = model_V2
|
| 74 |
+
pred_rescale = True
|
| 75 |
+
elif selected_model == 'model 1':
|
| 76 |
+
pred_model = model_V1
|
| 77 |
+
pred_rescale = False
|
| 78 |
+
|
| 79 |
+
# makeing prediction and fetching food recipe form api
|
| 80 |
+
food, source_code, recipe_data = model_prediction(pred_model, uploaded_img, pred_rescale, 'TF')
|
| 81 |
+
|
| 82 |
+
elif selected_model == 'ViT Model':
|
| 83 |
+
pred_model = ViT_model
|
| 84 |
pred_rescale = True
|
| 85 |
+
# makeing prediction and fetching food recipe form api
|
| 86 |
+
food, source_code, recipe_data = model_prediction(pred_model, pil_img, pred_rescale, 'Pt')
|
| 87 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
| 88 |
# asssigning caleoric breakdown data
|
| 89 |
percent_Protein = recipe_data['percentProtein']
|
| 90 |
percent_fat = recipe_data['percentFat']
|
| 91 |
percent_carbs = recipe_data['percentCarbs']
|
| 92 |
+
|
| 93 |
# food name message
|
| 94 |
col1.success(f"It's an {food}")
|
| 95 |
+
|
| 96 |
if source_code == 200:
|
| 97 |
# desplay food recipe
|
| 98 |
st.header(recipe_data['title']+" Recipe")
|
| 99 |
+
|
| 100 |
+
col3, col4 = st.columns(2, gap='medium')
|
| 101 |
|
| 102 |
with col3:
|
| 103 |
# Ingridents of recipie
|
|
|
|
| 117 |
* Protien: {percent_Protein}%
|
| 118 |
* Fat: {percent_fat}%
|
| 119 |
* Carbohydrates: {percent_carbs}%
|
| 120 |
+
''')
|
| 121 |
+
|
| 122 |
|
|
|
|
| 123 |
else:
|
| 124 |
st.error('Something went wrong please try again :(')
|
| 125 |
+
|
| 126 |
|
| 127 |
elif food_cat == 'not food':
|
| 128 |
with col1:
|