init
Browse files- helper_functions.py +288 -0
helper_functions.py
ADDED
|
@@ -0,0 +1,288 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
### We create a bunch of helpful functions throughout the course.
|
| 2 |
+
### Storing them here so they're easily accessible.
|
| 3 |
+
|
| 4 |
+
import tensorflow as tf
|
| 5 |
+
|
| 6 |
+
# Create a function to import an image and resize it to be able to be used with our model
|
| 7 |
+
def load_and_prep_image(filename, img_shape=224, scale=True):
|
| 8 |
+
"""
|
| 9 |
+
Reads in an image from filename, turns it into a tensor and reshapes into
|
| 10 |
+
(224, 224, 3).
|
| 11 |
+
|
| 12 |
+
Parameters
|
| 13 |
+
----------
|
| 14 |
+
filename (str): string filename of target image
|
| 15 |
+
img_shape (int): size to resize target image to, default 224
|
| 16 |
+
scale (bool): whether to scale pixel values to range(0, 1), default True
|
| 17 |
+
"""
|
| 18 |
+
# Read in the image
|
| 19 |
+
img = tf.io.read_file(filename)
|
| 20 |
+
# Decode it into a tensor
|
| 21 |
+
img = tf.image.decode_jpeg(img)
|
| 22 |
+
# Resize the image
|
| 23 |
+
img = tf.image.resize(img, [img_shape, img_shape])
|
| 24 |
+
if scale:
|
| 25 |
+
# Rescale the image (get all values between 0 and 1)
|
| 26 |
+
return img/255.
|
| 27 |
+
else:
|
| 28 |
+
return img
|
| 29 |
+
|
| 30 |
+
# Note: The following confusion matrix code is a remix of Scikit-Learn's
|
| 31 |
+
# plot_confusion_matrix function - https://scikit-learn.org/stable/modules/generated/sklearn.metrics.plot_confusion_matrix.html
|
| 32 |
+
import itertools
|
| 33 |
+
import matplotlib.pyplot as plt
|
| 34 |
+
import numpy as np
|
| 35 |
+
from sklearn.metrics import confusion_matrix
|
| 36 |
+
|
| 37 |
+
# Our function needs a different name to sklearn's plot_confusion_matrix
|
| 38 |
+
def make_confusion_matrix(y_true, y_pred, classes=None, figsize=(10, 10), text_size=15, norm=False, savefig=False):
|
| 39 |
+
"""Makes a labelled confusion matrix comparing predictions and ground truth labels.
|
| 40 |
+
|
| 41 |
+
If classes is passed, confusion matrix will be labelled, if not, integer class values
|
| 42 |
+
will be used.
|
| 43 |
+
|
| 44 |
+
Args:
|
| 45 |
+
y_true: Array of truth labels (must be same shape as y_pred).
|
| 46 |
+
y_pred: Array of predicted labels (must be same shape as y_true).
|
| 47 |
+
classes: Array of class labels (e.g. string form). If `None`, integer labels are used.
|
| 48 |
+
figsize: Size of output figure (default=(10, 10)).
|
| 49 |
+
text_size: Size of output figure text (default=15).
|
| 50 |
+
norm: normalize values or not (default=False).
|
| 51 |
+
savefig: save confusion matrix to file (default=False).
|
| 52 |
+
|
| 53 |
+
Returns:
|
| 54 |
+
A labelled confusion matrix plot comparing y_true and y_pred.
|
| 55 |
+
|
| 56 |
+
Example usage:
|
| 57 |
+
make_confusion_matrix(y_true=test_labels, # ground truth test labels
|
| 58 |
+
y_pred=y_preds, # predicted labels
|
| 59 |
+
classes=class_names, # array of class label names
|
| 60 |
+
figsize=(15, 15),
|
| 61 |
+
text_size=10)
|
| 62 |
+
"""
|
| 63 |
+
# Create the confustion matrix
|
| 64 |
+
cm = confusion_matrix(y_true, y_pred)
|
| 65 |
+
cm_norm = cm.astype("float") / cm.sum(axis=1)[:, np.newaxis] # normalize it
|
| 66 |
+
n_classes = cm.shape[0] # find the number of classes we're dealing with
|
| 67 |
+
|
| 68 |
+
# Plot the figure and make it pretty
|
| 69 |
+
fig, ax = plt.subplots(figsize=figsize)
|
| 70 |
+
cax = ax.matshow(cm, cmap=plt.cm.Blues) # colors will represent how 'correct' a class is, darker == better
|
| 71 |
+
fig.colorbar(cax)
|
| 72 |
+
|
| 73 |
+
# Are there a list of classes?
|
| 74 |
+
if classes:
|
| 75 |
+
labels = classes
|
| 76 |
+
else:
|
| 77 |
+
labels = np.arange(cm.shape[0])
|
| 78 |
+
|
| 79 |
+
# Label the axes
|
| 80 |
+
ax.set(title="Confusion Matrix",
|
| 81 |
+
xlabel="Predicted label",
|
| 82 |
+
ylabel="True label",
|
| 83 |
+
xticks=np.arange(n_classes), # create enough axis slots for each class
|
| 84 |
+
yticks=np.arange(n_classes),
|
| 85 |
+
xticklabels=labels, # axes will labeled with class names (if they exist) or ints
|
| 86 |
+
yticklabels=labels)
|
| 87 |
+
|
| 88 |
+
# Make x-axis labels appear on bottom
|
| 89 |
+
ax.xaxis.set_label_position("bottom")
|
| 90 |
+
ax.xaxis.tick_bottom()
|
| 91 |
+
|
| 92 |
+
# Set the threshold for different colors
|
| 93 |
+
threshold = (cm.max() + cm.min()) / 2.
|
| 94 |
+
|
| 95 |
+
# Plot the text on each cell
|
| 96 |
+
for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
|
| 97 |
+
if norm:
|
| 98 |
+
plt.text(j, i, f"{cm[i, j]} ({cm_norm[i, j]*100:.1f}%)",
|
| 99 |
+
horizontalalignment="center",
|
| 100 |
+
color="white" if cm[i, j] > threshold else "black",
|
| 101 |
+
size=text_size)
|
| 102 |
+
else:
|
| 103 |
+
plt.text(j, i, f"{cm[i, j]}",
|
| 104 |
+
horizontalalignment="center",
|
| 105 |
+
color="white" if cm[i, j] > threshold else "black",
|
| 106 |
+
size=text_size)
|
| 107 |
+
|
| 108 |
+
# Save the figure to the current working directory
|
| 109 |
+
if savefig:
|
| 110 |
+
fig.savefig("confusion_matrix.png")
|
| 111 |
+
|
| 112 |
+
# Make a function to predict on images and plot them (works with multi-class)
|
| 113 |
+
def pred_and_plot(model, filename, class_names):
|
| 114 |
+
"""
|
| 115 |
+
Imports an image located at filename, makes a prediction on it with
|
| 116 |
+
a trained model and plots the image with the predicted class as the title.
|
| 117 |
+
"""
|
| 118 |
+
# Import the target image and preprocess it
|
| 119 |
+
img = load_and_prep_image(filename)
|
| 120 |
+
|
| 121 |
+
# Make a prediction
|
| 122 |
+
pred = model.predict(tf.expand_dims(img, axis=0))
|
| 123 |
+
|
| 124 |
+
# Get the predicted class
|
| 125 |
+
if len(pred[0]) > 1: # check for multi-class
|
| 126 |
+
pred_class = class_names[pred.argmax()] # if more than one output, take the max
|
| 127 |
+
else:
|
| 128 |
+
pred_class = class_names[int(tf.round(pred)[0][0])] # if only one output, round
|
| 129 |
+
|
| 130 |
+
# Plot the image and predicted class
|
| 131 |
+
plt.imshow(img)
|
| 132 |
+
plt.title(f"Prediction: {pred_class}")
|
| 133 |
+
plt.axis(False);
|
| 134 |
+
|
| 135 |
+
import datetime
|
| 136 |
+
|
| 137 |
+
def create_tensorboard_callback(dir_name, experiment_name):
|
| 138 |
+
"""
|
| 139 |
+
Creates a TensorBoard callback instand to store log files.
|
| 140 |
+
|
| 141 |
+
Stores log files with the filepath:
|
| 142 |
+
"dir_name/experiment_name/current_datetime/"
|
| 143 |
+
|
| 144 |
+
Args:
|
| 145 |
+
dir_name: target directory to store TensorBoard log files
|
| 146 |
+
experiment_name: name of experiment directory (e.g. efficientnet_model_1)
|
| 147 |
+
"""
|
| 148 |
+
log_dir = dir_name + "/" + experiment_name + "/" + datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
|
| 149 |
+
tensorboard_callback = tf.keras.callbacks.TensorBoard(
|
| 150 |
+
log_dir=log_dir
|
| 151 |
+
)
|
| 152 |
+
print(f"Saving TensorBoard log files to: {log_dir}")
|
| 153 |
+
return tensorboard_callback
|
| 154 |
+
|
| 155 |
+
# Plot the validation and training data separately
|
| 156 |
+
import matplotlib.pyplot as plt
|
| 157 |
+
|
| 158 |
+
def plot_loss_curves(history):
|
| 159 |
+
"""
|
| 160 |
+
Returns separate loss curves for training and validation metrics.
|
| 161 |
+
|
| 162 |
+
Args:
|
| 163 |
+
history: TensorFlow model History object (see: https://www.tensorflow.org/api_docs/python/tf/keras/callbacks/History)
|
| 164 |
+
"""
|
| 165 |
+
loss = history.history['loss']
|
| 166 |
+
val_loss = history.history['val_loss']
|
| 167 |
+
|
| 168 |
+
accuracy = history.history['accuracy']
|
| 169 |
+
val_accuracy = history.history['val_accuracy']
|
| 170 |
+
|
| 171 |
+
epochs = range(len(history.history['loss']))
|
| 172 |
+
|
| 173 |
+
# Plot loss
|
| 174 |
+
plt.plot(epochs, loss, label='training_loss')
|
| 175 |
+
plt.plot(epochs, val_loss, label='val_loss')
|
| 176 |
+
plt.title('Loss')
|
| 177 |
+
plt.xlabel('Epochs')
|
| 178 |
+
plt.legend()
|
| 179 |
+
|
| 180 |
+
# Plot accuracy
|
| 181 |
+
plt.figure()
|
| 182 |
+
plt.plot(epochs, accuracy, label='training_accuracy')
|
| 183 |
+
plt.plot(epochs, val_accuracy, label='val_accuracy')
|
| 184 |
+
plt.title('Accuracy')
|
| 185 |
+
plt.xlabel('Epochs')
|
| 186 |
+
plt.legend();
|
| 187 |
+
|
| 188 |
+
def compare_historys(original_history, new_history, initial_epochs=5):
|
| 189 |
+
"""
|
| 190 |
+
Compares two TensorFlow model History objects.
|
| 191 |
+
|
| 192 |
+
Args:
|
| 193 |
+
original_history: History object from original model (before new_history)
|
| 194 |
+
new_history: History object from continued model training (after original_history)
|
| 195 |
+
initial_epochs: Number of epochs in original_history (new_history plot starts from here)
|
| 196 |
+
"""
|
| 197 |
+
|
| 198 |
+
# Get original history measurements
|
| 199 |
+
acc = original_history.history["accuracy"]
|
| 200 |
+
loss = original_history.history["loss"]
|
| 201 |
+
|
| 202 |
+
val_acc = original_history.history["val_accuracy"]
|
| 203 |
+
val_loss = original_history.history["val_loss"]
|
| 204 |
+
|
| 205 |
+
# Combine original history with new history
|
| 206 |
+
total_acc = acc + new_history.history["accuracy"]
|
| 207 |
+
total_loss = loss + new_history.history["loss"]
|
| 208 |
+
|
| 209 |
+
total_val_acc = val_acc + new_history.history["val_accuracy"]
|
| 210 |
+
total_val_loss = val_loss + new_history.history["val_loss"]
|
| 211 |
+
|
| 212 |
+
# Make plots
|
| 213 |
+
plt.figure(figsize=(8, 8))
|
| 214 |
+
plt.subplot(2, 1, 1)
|
| 215 |
+
plt.plot(total_acc, label='Training Accuracy')
|
| 216 |
+
plt.plot(total_val_acc, label='Validation Accuracy')
|
| 217 |
+
plt.plot([initial_epochs-1, initial_epochs-1],
|
| 218 |
+
plt.ylim(), label='Start Fine Tuning') # reshift plot around epochs
|
| 219 |
+
plt.legend(loc='lower right')
|
| 220 |
+
plt.title('Training and Validation Accuracy')
|
| 221 |
+
|
| 222 |
+
plt.subplot(2, 1, 2)
|
| 223 |
+
plt.plot(total_loss, label='Training Loss')
|
| 224 |
+
plt.plot(total_val_loss, label='Validation Loss')
|
| 225 |
+
plt.plot([initial_epochs-1, initial_epochs-1],
|
| 226 |
+
plt.ylim(), label='Start Fine Tuning') # reshift plot around epochs
|
| 227 |
+
plt.legend(loc='upper right')
|
| 228 |
+
plt.title('Training and Validation Loss')
|
| 229 |
+
plt.xlabel('epoch')
|
| 230 |
+
plt.show()
|
| 231 |
+
|
| 232 |
+
# Create function to unzip a zipfile into current working directory
|
| 233 |
+
# (since we're going to be downloading and unzipping a few files)
|
| 234 |
+
import zipfile
|
| 235 |
+
|
| 236 |
+
def unzip_data(filename):
|
| 237 |
+
"""
|
| 238 |
+
Unzips filename into the current working directory.
|
| 239 |
+
|
| 240 |
+
Args:
|
| 241 |
+
filename (str): a filepath to a target zip folder to be unzipped.
|
| 242 |
+
"""
|
| 243 |
+
zip_ref = zipfile.ZipFile(filename, "r")
|
| 244 |
+
zip_ref.extractall()
|
| 245 |
+
zip_ref.close()
|
| 246 |
+
|
| 247 |
+
# Walk through an image classification directory and find out how many files (images)
|
| 248 |
+
# are in each subdirectory.
|
| 249 |
+
import os
|
| 250 |
+
|
| 251 |
+
def walk_through_dir(dir_path):
|
| 252 |
+
"""
|
| 253 |
+
Walks through dir_path returning its contents.
|
| 254 |
+
|
| 255 |
+
Args:
|
| 256 |
+
dir_path (str): target directory
|
| 257 |
+
|
| 258 |
+
Returns:
|
| 259 |
+
A print out of:
|
| 260 |
+
number of subdiretories in dir_path
|
| 261 |
+
number of images (files) in each subdirectory
|
| 262 |
+
name of each subdirectory
|
| 263 |
+
"""
|
| 264 |
+
for dirpath, dirnames, filenames in os.walk(dir_path):
|
| 265 |
+
print(f"There are {len(dirnames)} directories and {len(filenames)} images in '{dirpath}'.")
|
| 266 |
+
|
| 267 |
+
# Function to evaluate: accuracy, precision, recall, f1-score
|
| 268 |
+
from sklearn.metrics import accuracy_score, precision_recall_fscore_support
|
| 269 |
+
|
| 270 |
+
def calculate_results(y_true, y_pred):
|
| 271 |
+
"""
|
| 272 |
+
Calculates model accuracy, precision, recall and f1 score of a binary classification model.
|
| 273 |
+
|
| 274 |
+
Args:
|
| 275 |
+
y_true: true labels in the form of a 1D array
|
| 276 |
+
y_pred: predicted labels in the form of a 1D array
|
| 277 |
+
|
| 278 |
+
Returns a dictionary of accuracy, precision, recall, f1-score.
|
| 279 |
+
"""
|
| 280 |
+
# Calculate model accuracy
|
| 281 |
+
model_accuracy = accuracy_score(y_true, y_pred) * 100
|
| 282 |
+
# Calculate model precision, recall and f1 score using "weighted average
|
| 283 |
+
model_precision, model_recall, model_f1, _ = precision_recall_fscore_support(y_true, y_pred, average="weighted")
|
| 284 |
+
model_results = {"accuracy": model_accuracy,
|
| 285 |
+
"precision": model_precision,
|
| 286 |
+
"recall": model_recall,
|
| 287 |
+
"f1": model_f1}
|
| 288 |
+
return model_results
|