|
import joblib
|
|
import pandas as pd
|
|
from flask import Flask, request, jsonify
|
|
|
|
|
|
app = Flask("Telecom Customer Churn Predictor")
|
|
|
|
|
|
model = joblib.load("churn_prediction_model_v1_0.joblib")
|
|
|
|
|
|
@app.get('/')
|
|
def home():
|
|
return "Welcome to the Telecom Customer Churn Prediction API"
|
|
|
|
|
|
@app.post('/v1/customer')
|
|
def predict_churn():
|
|
|
|
customer_data = request.get_json()
|
|
|
|
|
|
sample = {
|
|
'SeniorCitizen': customer_data['SeniorCitizen'],
|
|
'Partner': customer_data['Partner'],
|
|
'Dependents': customer_data['Dependents'],
|
|
'tenure': customer_data['tenure'],
|
|
'PhoneService': customer_data['PhoneService'],
|
|
'InternetService': customer_data['InternetService'],
|
|
'Contract': customer_data['Contract'],
|
|
'PaymentMethod': customer_data['PaymentMethod'],
|
|
'MonthlyCharges': customer_data['MonthlyCharges'],
|
|
'TotalCharges': customer_data['TotalCharges']
|
|
}
|
|
|
|
|
|
input_data = pd.DataFrame([sample])
|
|
|
|
|
|
prediction = model.predict(input_data).tolist()[0]
|
|
|
|
|
|
prediction_label = "churn" if prediction == 1 else "not churn"
|
|
|
|
|
|
return jsonify({'Prediction': prediction_label})
|
|
|
|
|
|
@app.post('/v1/customerbatch')
|
|
def predict_churn_batch():
|
|
|
|
file = request.files['file']
|
|
|
|
|
|
input_data = pd.read_csv(file)
|
|
|
|
|
|
predictions = [
|
|
'Churn' if x == 1
|
|
else "Not Churn"
|
|
for x in model.predict(input_data.drop("customerID",axis=1)).tolist()
|
|
]
|
|
|
|
cust_id_list = input_data.customerID.values.tolist()
|
|
output_dict = dict(zip(cust_id_list, predictions))
|
|
|
|
return output_dict
|
|
|
|
|
|
if __name__ == '__main__':
|
|
app.run(debug=True)
|
|
|