Upload folder using huggingface_hub
Browse files- Dockerfile +9 -10
- app.py +69 -55
- requirements.txt +8 -1
Dockerfile
CHANGED
@@ -1,17 +1,16 @@
|
|
1 |
-
# Use a minimal base image with Python 3.9 installed
|
2 |
FROM python:3.9-slim
|
3 |
-
# FROM python:3.13-slim
|
4 |
|
5 |
-
# Set the working directory inside the container
|
6 |
WORKDIR /app
|
7 |
|
8 |
-
# Copy all files from the current directory
|
9 |
COPY . .
|
10 |
|
11 |
-
# Install
|
12 |
-
RUN
|
13 |
|
14 |
-
# Define the command to
|
15 |
-
|
16 |
-
|
17 |
-
#
|
|
|
|
|
|
1 |
FROM python:3.9-slim
|
|
|
2 |
|
3 |
+
# Set the working directory inside the container
|
4 |
WORKDIR /app
|
5 |
|
6 |
+
# Copy all files from the current directory to the container's working directory
|
7 |
COPY . .
|
8 |
|
9 |
+
# Install dependencies from the requirements file without using cache to reduce image size
|
10 |
+
RUN pip install --no-cache-dir -r requirements.txt
|
11 |
|
12 |
+
# Define the command to start the application using Gunicorn with 4 worker processes
|
13 |
+
# - `-w 4`: Uses 4 worker processes for handling requests
|
14 |
+
# - `-b 0.0.0.0:7860`: Binds the server to port 7860 on all network interfaces
|
15 |
+
# - `app:app`: Runs the Flask app (assuming `app.py` contains the Flask instance named `app`)
|
16 |
+
CMD ["gunicorn", "-w", "4", "-b", "0.0.0.0:7860", "app:app"]
|
app.py
CHANGED
@@ -1,57 +1,71 @@
|
|
1 |
-
import
|
2 |
-
import streamlit as st
|
3 |
import pandas as pd
|
|
|
4 |
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
#
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import joblib
|
|
|
2 |
import pandas as pd
|
3 |
+
from flask import Flask, request, jsonify
|
4 |
|
5 |
+
# Initialize Flask app with a name
|
6 |
+
app = Flask("Telecom Customer Churn Predictor")
|
7 |
+
|
8 |
+
# Load the trained churn prediction model
|
9 |
+
model = joblib.load("churn_prediction_model_v1_0.joblib")
|
10 |
+
|
11 |
+
# Define a route for the home page
|
12 |
+
@app.get('/')
|
13 |
+
def home():
|
14 |
+
return "Welcome to the Telecom Customer Churn Prediction API"
|
15 |
+
|
16 |
+
# Define an endpoint to predict churn for a single customer
|
17 |
+
@app.post('/v1/customer')
|
18 |
+
def predict_churn():
|
19 |
+
# Get JSON data from the request
|
20 |
+
customer_data = request.get_json()
|
21 |
+
|
22 |
+
# Extract relevant customer features from the input data
|
23 |
+
sample = {
|
24 |
+
'SeniorCitizen': customer_data['SeniorCitizen'],
|
25 |
+
'Partner': customer_data['Partner'],
|
26 |
+
'Dependents': customer_data['Dependents'],
|
27 |
+
'tenure': customer_data['tenure'],
|
28 |
+
'PhoneService': customer_data['PhoneService'],
|
29 |
+
'InternetService': customer_data['InternetService'],
|
30 |
+
'Contract': customer_data['Contract'],
|
31 |
+
'PaymentMethod': customer_data['PaymentMethod'],
|
32 |
+
'MonthlyCharges': customer_data['MonthlyCharges'],
|
33 |
+
'TotalCharges': customer_data['TotalCharges']
|
34 |
+
}
|
35 |
+
|
36 |
+
# Convert the extracted data into a DataFrame
|
37 |
+
input_data = pd.DataFrame([sample])
|
38 |
+
|
39 |
+
# Make a churn prediction using the trained model
|
40 |
+
prediction = model.predict(input_data).tolist()[0]
|
41 |
+
|
42 |
+
# Map prediction result to a human-readable label
|
43 |
+
prediction_label = "churn" if prediction == 1 else "not churn"
|
44 |
+
|
45 |
+
# Return the prediction as a JSON response
|
46 |
+
return jsonify({'Prediction': prediction_label})
|
47 |
+
|
48 |
+
# Define an endpoint to predict churn for a batch of customers
|
49 |
+
@app.post('/v1/customerbatch')
|
50 |
+
def predict_churn_batch():
|
51 |
+
# Get the uploaded CSV file from the request
|
52 |
+
file = request.files['file']
|
53 |
+
|
54 |
+
# Read the file into a DataFrame
|
55 |
+
input_data = pd.read_csv(file)
|
56 |
+
|
57 |
+
# Make predictions for the batch data and convert raw predictions into a readable format
|
58 |
+
predictions = [
|
59 |
+
'Churn' if x == 1
|
60 |
+
else "Not Churn"
|
61 |
+
for x in model.predict(input_data.drop("customerID",axis=1)).tolist()
|
62 |
+
]
|
63 |
+
|
64 |
+
cust_id_list = input_data.customerID.values.tolist()
|
65 |
+
output_dict = dict(zip(cust_id_list, predictions))
|
66 |
+
|
67 |
+
return output_dict
|
68 |
+
|
69 |
+
# Run the Flask app in debug mode
|
70 |
+
if __name__ == '__main__':
|
71 |
+
app.run(debug=True)
|
requirements.txt
CHANGED
@@ -1,3 +1,10 @@
|
|
1 |
pandas==2.2.2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
requests==2.28.1
|
3 |
-
|
|
|
1 |
pandas==2.2.2
|
2 |
+
numpy==2.0.2
|
3 |
+
scikit-learn==1.6.1
|
4 |
+
xgboost==2.1.4
|
5 |
+
joblib==1.4.2
|
6 |
+
Werkzeug==2.2.2
|
7 |
+
flask==2.2.2
|
8 |
+
gunicorn==20.1.0
|
9 |
requests==2.28.1
|
10 |
+
uvicorn[standard]
|