VrundavGamit commited on
Commit
d493b2a
·
verified ·
1 Parent(s): b9a2453

Upload folder using huggingface_hub

Browse files
Files changed (3) hide show
  1. Dockerfile +9 -10
  2. app.py +69 -55
  3. requirements.txt +8 -1
Dockerfile CHANGED
@@ -1,17 +1,16 @@
1
- # Use a minimal base image with Python 3.9 installed
2
  FROM python:3.9-slim
3
- # FROM python:3.13-slim
4
 
5
- # Set the working directory inside the container to /app
6
  WORKDIR /app
7
 
8
- # Copy all files from the current directory on the host to the container's /app directory
9
  COPY . .
10
 
11
- # Install Python dependencies listed in requirements.txt
12
- RUN pip3 install -r requirements.txt
13
 
14
- # Define the command to run the Streamlit app on port 8501 and make it accessible externally
15
- CMD ["streamlit", "run", "app.py", "--server.port=8501", "--server.address=0.0.0.0", "--server.enableXsrfProtection=false"]
16
-
17
- # NOTE: Disable XSRF protection for easier external access in order to make batch predictions
 
 
 
1
  FROM python:3.9-slim
 
2
 
3
+ # Set the working directory inside the container
4
  WORKDIR /app
5
 
6
+ # Copy all files from the current directory to the container's working directory
7
  COPY . .
8
 
9
+ # Install dependencies from the requirements file without using cache to reduce image size
10
+ RUN pip install --no-cache-dir -r requirements.txt
11
 
12
+ # Define the command to start the application using Gunicorn with 4 worker processes
13
+ # - `-w 4`: Uses 4 worker processes for handling requests
14
+ # - `-b 0.0.0.0:7860`: Binds the server to port 7860 on all network interfaces
15
+ # - `app:app`: Runs the Flask app (assuming `app.py` contains the Flask instance named `app`)
16
+ CMD ["gunicorn", "-w", "4", "-b", "0.0.0.0:7860", "app:app"]
app.py CHANGED
@@ -1,57 +1,71 @@
1
- import requests
2
- import streamlit as st
3
  import pandas as pd
 
4
 
5
- st.title("Customer Churn Prediction")
6
-
7
- # Batch Prediction
8
- st.subheader("Online Prediction")
9
-
10
- # Input fields for customer data
11
- CustomerID = st.number_input("Customer ID", min_value=10000000, max_value=99999999)
12
- CreditScore = st.number_input("Credit Score (customer's credit score)", min_value=300, max_value=900, value=650)
13
- Geography = st.selectbox("Geography (country where the customer resides)", ["France", "Germany", "Spain"])
14
- Age = st.number_input("Age (customer's age in years)", min_value=18, max_value=100, value=30)
15
- Tenure = st.number_input("Tenure (number of years the customer has been with the bank)", value=12)
16
- Balance = st.number_input("Account Balance (customer’s account balance)", min_value=0.0, value=10000.0)
17
- NumOfProducts = st.number_input("Number of Products (number of products the customer has with the bank)", min_value=1, value=1)
18
- HasCrCard = st.selectbox("Has Credit Card?", ["Yes", "No"])
19
- IsActiveMember = st.selectbox("Is Active Member?", ["Yes", "No"])
20
- EstimatedSalary = st.number_input("Estimated Salary (customer’s estimated salary)", min_value=0.0, value=50000.0)
21
-
22
- customer_data = {
23
- 'CreditScore': CreditScore,
24
- 'Geography': Geography,
25
- 'Age': Age,
26
- 'Tenure': Tenure,
27
- 'Balance': Balance,
28
- 'NumOfProducts': NumOfProducts,
29
- 'HasCrCard': 1 if HasCrCard == "Yes" else 0,
30
- 'IsActiveMember': 1 if IsActiveMember == "Yes" else 0,
31
- 'EstimatedSalary': EstimatedSalary
32
- }
33
-
34
- username_ns = 'VrundavGamit-containerization_case_study'
35
-
36
- if st.button("Predict", type='primary'):
37
- response = requests.post("https://{username_ns}.hf.space/v1/customer", json=customer_data) # enter user name and space name before running the cell
38
- if response.status_code == 200:
39
- result = response.json()
40
- churn_prediction = result["Prediction"] # Extract only the value
41
- st.write(f"Based on the information provided, the customer with ID {CustomerID} is likely to {churn_prediction}.")
42
- else:
43
- st.error("Error in API request")
44
-
45
- # Batch Prediction
46
- st.subheader("Batch Prediction")
47
-
48
- file = st.file_uploader("Upload CSV file", type=["csv"])
49
- if file is not None:
50
- if st.button("Predict for Batch", type='primary'):
51
- response = requests.post("https://{username_ns}.hf.space/v1/customerbatch", files={"file": file}) # enter user name and space name before running the cell
52
- if response.status_code == 200:
53
- result = response.json()
54
- st.header("Batch Prediction Results")
55
- st.write(result)
56
- else:
57
- st.error("Error in API request")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import joblib
 
2
  import pandas as pd
3
+ from flask import Flask, request, jsonify
4
 
5
+ # Initialize Flask app with a name
6
+ app = Flask("Telecom Customer Churn Predictor")
7
+
8
+ # Load the trained churn prediction model
9
+ model = joblib.load("churn_prediction_model_v1_0.joblib")
10
+
11
+ # Define a route for the home page
12
+ @app.get('/')
13
+ def home():
14
+ return "Welcome to the Telecom Customer Churn Prediction API"
15
+
16
+ # Define an endpoint to predict churn for a single customer
17
+ @app.post('/v1/customer')
18
+ def predict_churn():
19
+ # Get JSON data from the request
20
+ customer_data = request.get_json()
21
+
22
+ # Extract relevant customer features from the input data
23
+ sample = {
24
+ 'SeniorCitizen': customer_data['SeniorCitizen'],
25
+ 'Partner': customer_data['Partner'],
26
+ 'Dependents': customer_data['Dependents'],
27
+ 'tenure': customer_data['tenure'],
28
+ 'PhoneService': customer_data['PhoneService'],
29
+ 'InternetService': customer_data['InternetService'],
30
+ 'Contract': customer_data['Contract'],
31
+ 'PaymentMethod': customer_data['PaymentMethod'],
32
+ 'MonthlyCharges': customer_data['MonthlyCharges'],
33
+ 'TotalCharges': customer_data['TotalCharges']
34
+ }
35
+
36
+ # Convert the extracted data into a DataFrame
37
+ input_data = pd.DataFrame([sample])
38
+
39
+ # Make a churn prediction using the trained model
40
+ prediction = model.predict(input_data).tolist()[0]
41
+
42
+ # Map prediction result to a human-readable label
43
+ prediction_label = "churn" if prediction == 1 else "not churn"
44
+
45
+ # Return the prediction as a JSON response
46
+ return jsonify({'Prediction': prediction_label})
47
+
48
+ # Define an endpoint to predict churn for a batch of customers
49
+ @app.post('/v1/customerbatch')
50
+ def predict_churn_batch():
51
+ # Get the uploaded CSV file from the request
52
+ file = request.files['file']
53
+
54
+ # Read the file into a DataFrame
55
+ input_data = pd.read_csv(file)
56
+
57
+ # Make predictions for the batch data and convert raw predictions into a readable format
58
+ predictions = [
59
+ 'Churn' if x == 1
60
+ else "Not Churn"
61
+ for x in model.predict(input_data.drop("customerID",axis=1)).tolist()
62
+ ]
63
+
64
+ cust_id_list = input_data.customerID.values.tolist()
65
+ output_dict = dict(zip(cust_id_list, predictions))
66
+
67
+ return output_dict
68
+
69
+ # Run the Flask app in debug mode
70
+ if __name__ == '__main__':
71
+ app.run(debug=True)
requirements.txt CHANGED
@@ -1,3 +1,10 @@
1
  pandas==2.2.2
 
 
 
 
 
 
 
2
  requests==2.28.1
3
- streamlit==1.43.2
 
1
  pandas==2.2.2
2
+ numpy==2.0.2
3
+ scikit-learn==1.6.1
4
+ xgboost==2.1.4
5
+ joblib==1.4.2
6
+ Werkzeug==2.2.2
7
+ flask==2.2.2
8
+ gunicorn==20.1.0
9
  requests==2.28.1
10
+ uvicorn[standard]