Upload folder using huggingface_hub
Browse files- Dockerfile +10 -12
- app.py +55 -68
- requirements.txt +3 -11
Dockerfile
CHANGED
@@ -1,18 +1,16 @@
|
|
1 |
-
|
2 |
-
|
3 |
|
4 |
-
|
5 |
-
# Set the working directory inside the container
|
6 |
WORKDIR /app
|
7 |
|
8 |
-
# Copy all files from the current directory to the container's
|
9 |
COPY . .
|
10 |
|
11 |
-
# Install dependencies
|
12 |
-
RUN
|
|
|
|
|
|
|
13 |
|
14 |
-
#
|
15 |
-
# - `-w 4`: Uses 4 worker processes for handling requests
|
16 |
-
# - `-b 0.0.0.0:7860`: Binds the server to port 7860 on all network interfaces
|
17 |
-
# - `app:app`: Runs the Flask app (assuming `app.py` contains the Flask instance named `app`)
|
18 |
-
CMD ["gunicorn", "-w", "4", "-b", "0.0.0.0:7860", "app:churn_predictor_api"]
|
|
|
1 |
+
# Use a minimal base image with Python 3.9 installed
|
2 |
+
FROM python:3.13-slim
|
3 |
|
4 |
+
# Set the working directory inside the container to /app
|
|
|
5 |
WORKDIR /app
|
6 |
|
7 |
+
# Copy all files from the current directory on the host to the container's /app directory
|
8 |
COPY . .
|
9 |
|
10 |
+
# Install Python dependencies listed in requirements.txt
|
11 |
+
RUN pip3 install -r requirements.txt
|
12 |
+
|
13 |
+
# Define the command to run the Streamlit app on port 8501 and make it accessible externally
|
14 |
+
CMD ["streamlit", "run", "app.py", "--server.port=8501", "--server.address=0.0.0.0", "--server.enableXsrfProtection=false"]
|
15 |
|
16 |
+
# NOTE: Disable XSRF protection for easier external access in order to make batch predictions
|
|
|
|
|
|
|
|
app.py
CHANGED
@@ -1,70 +1,57 @@
|
|
1 |
-
import
|
|
|
2 |
import pandas as pd
|
3 |
-
from flask import Flask, request, jsonify
|
4 |
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
'Churn' if x == 1
|
59 |
-
else "Not Churn"
|
60 |
-
for x in model.predict(input_data.drop("CustomerId",axis=1)).tolist()
|
61 |
-
]
|
62 |
-
|
63 |
-
cust_id_list = input_data.CustomerId.values.tolist()
|
64 |
-
output_dict = dict(zip(cust_id_list, predictions))
|
65 |
-
|
66 |
-
return output_dict
|
67 |
-
|
68 |
-
# Run the Flask app in debug mode
|
69 |
-
if __name__ == '__main__':
|
70 |
-
app.run(debug=True)
|
|
|
1 |
+
import requests
|
2 |
+
import streamlit as st
|
3 |
import pandas as pd
|
|
|
4 |
|
5 |
+
st.title("Customer Churn Prediction")
|
6 |
+
|
7 |
+
# Batch Prediction
|
8 |
+
st.subheader("Online Prediction")
|
9 |
+
|
10 |
+
# Input fields for customer data
|
11 |
+
CustomerID = st.number_input("Customer ID", min_value=10000000, max_value=99999999)
|
12 |
+
CreditScore = st.number_input("Credit Score (customer's credit score)", min_value=300, max_value=900, value=650)
|
13 |
+
Geography = st.selectbox("Geography (country where the customer resides)", ["France", "Germany", "Spain"])
|
14 |
+
Age = st.number_input("Age (customer's age in years)", min_value=18, max_value=100, value=30)
|
15 |
+
Tenure = st.number_input("Tenure (number of years the customer has been with the bank)", value=12)
|
16 |
+
Balance = st.number_input("Account Balance (customer’s account balance)", min_value=0.0, value=10000.0)
|
17 |
+
NumOfProducts = st.number_input("Number of Products (number of products the customer has with the bank)", min_value=1, value=1)
|
18 |
+
HasCrCard = st.selectbox("Has Credit Card?", ["Yes", "No"])
|
19 |
+
IsActiveMember = st.selectbox("Is Active Member?", ["Yes", "No"])
|
20 |
+
EstimatedSalary = st.number_input("Estimated Salary (customer’s estimated salary)", min_value=0.0, value=50000.0)
|
21 |
+
|
22 |
+
customer_data = {
|
23 |
+
'CreditScore': CreditScore,
|
24 |
+
'Geography': Geography,
|
25 |
+
'Age': Age,
|
26 |
+
'Tenure': Tenure,
|
27 |
+
'Balance': Balance,
|
28 |
+
'NumOfProducts': NumOfProducts,
|
29 |
+
'HasCrCard': 1 if HasCrCard == "Yes" else 0,
|
30 |
+
'IsActiveMember': 1 if IsActiveMember == "Yes" else 0,
|
31 |
+
'EstimatedSalary': EstimatedSalary
|
32 |
+
}
|
33 |
+
|
34 |
+
username_ns = 'VrundavGamit-containerization_case_study'
|
35 |
+
|
36 |
+
if st.button("Predict", type='primary'):
|
37 |
+
response = requests.post("https://{username_ns}.hf.space/v1/customer", json=customer_data) # enter user name and space name before running the cell
|
38 |
+
if response.status_code == 200:
|
39 |
+
result = response.json()
|
40 |
+
churn_prediction = result["Prediction"] # Extract only the value
|
41 |
+
st.write(f"Based on the information provided, the customer with ID {CustomerID} is likely to {churn_prediction}.")
|
42 |
+
else:
|
43 |
+
st.error("Error in API request")
|
44 |
+
|
45 |
+
# Batch Prediction
|
46 |
+
st.subheader("Batch Prediction")
|
47 |
+
|
48 |
+
file = st.file_uploader("Upload CSV file", type=["csv"])
|
49 |
+
if file is not None:
|
50 |
+
if st.button("Predict for Batch", type='primary'):
|
51 |
+
response = requests.post("https://{username_ns}.hf.space/v1/customerbatch", files={"file": file}) # enter user name and space name before running the cell
|
52 |
+
if response.status_code == 200:
|
53 |
+
result = response.json()
|
54 |
+
st.header("Batch Prediction Results")
|
55 |
+
st.write(result)
|
56 |
+
else:
|
57 |
+
st.error("Error in API request")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
requirements.txt
CHANGED
@@ -1,11 +1,3 @@
|
|
1 |
-
pandas
|
2 |
-
|
3 |
-
|
4 |
-
xgboost==2.1.4
|
5 |
-
joblib==1.4.2
|
6 |
-
Werkzeug==2.2.2
|
7 |
-
flask==2.2.2
|
8 |
-
gunicorn==20.1.0
|
9 |
-
requests==2.28.1
|
10 |
-
uvicorn[standard]
|
11 |
-
streamlit==1.43.2
|
|
|
1 |
+
pandas
|
2 |
+
requests
|
3 |
+
streamlit
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|