VrundavGamit commited on
Commit
d897835
·
verified ·
1 Parent(s): 6e6079f

Upload folder using huggingface_hub

Browse files
Files changed (3) hide show
  1. Dockerfile +10 -12
  2. app.py +55 -68
  3. requirements.txt +3 -11
Dockerfile CHANGED
@@ -1,18 +1,16 @@
1
- FROM python:3.9-slim
2
- # FROM python:3.13-slim
3
 
4
-
5
- # Set the working directory inside the container
6
  WORKDIR /app
7
 
8
- # Copy all files from the current directory to the container's working directory
9
  COPY . .
10
 
11
- # Install dependencies from the requirements file without using cache to reduce image size
12
- RUN pip install --no-cache-dir --upgrade -r requirements.txt
 
 
 
13
 
14
- # Define the command to start the application using Gunicorn with 4 worker processes
15
- # - `-w 4`: Uses 4 worker processes for handling requests
16
- # - `-b 0.0.0.0:7860`: Binds the server to port 7860 on all network interfaces
17
- # - `app:app`: Runs the Flask app (assuming `app.py` contains the Flask instance named `app`)
18
- CMD ["gunicorn", "-w", "4", "-b", "0.0.0.0:7860", "app:churn_predictor_api"]
 
1
+ # Use a minimal base image with Python 3.9 installed
2
+ FROM python:3.13-slim
3
 
4
+ # Set the working directory inside the container to /app
 
5
  WORKDIR /app
6
 
7
+ # Copy all files from the current directory on the host to the container's /app directory
8
  COPY . .
9
 
10
+ # Install Python dependencies listed in requirements.txt
11
+ RUN pip3 install -r requirements.txt
12
+
13
+ # Define the command to run the Streamlit app on port 8501 and make it accessible externally
14
+ CMD ["streamlit", "run", "app.py", "--server.port=8501", "--server.address=0.0.0.0", "--server.enableXsrfProtection=false"]
15
 
16
+ # NOTE: Disable XSRF protection for easier external access in order to make batch predictions
 
 
 
 
app.py CHANGED
@@ -1,70 +1,57 @@
1
- import joblib
 
2
  import pandas as pd
3
- from flask import Flask, request, jsonify
4
 
5
- # Initialize Flask app with a name
6
- churn_predictor_api = Flask("Customer Churn Predictor")
7
-
8
- # Load the trained churn prediction model
9
- model = joblib.load("churn_prediction_model_v1_0.joblib")
10
-
11
- # Define a route for the home page
12
- @churn_predictor_api.get('/')
13
- def home():
14
- return "Welcome to the Customer Churn Prediction API!"
15
-
16
- # Define an endpoint to predict churn for a single customer
17
- @churn_predictor_api.post('/v1/customer')
18
- def predict_churn():
19
- # Get JSON data from the request
20
- customer_data = request.get_json()
21
-
22
- # Extract relevant customer features from the input data
23
- sample = {
24
- 'CreditScore': customer_data['CreditScore'],
25
- 'Geography': customer_data['Geography'],
26
- 'Age': customer_data['Age'],
27
- 'Tenure': customer_data['Tenure'],
28
- 'Balance': customer_data['Balance'],
29
- 'NumOfProducts': customer_data['NumOfProducts'],
30
- 'HasCrCard': customer_data['HasCrCard'],
31
- 'IsActiveMember': customer_data['IsActiveMember'],
32
- 'EstimatedSalary': customer_data['EstimatedSalary']
33
- }
34
-
35
- # Convert the extracted data into a DataFrame
36
- input_data = pd.DataFrame([sample])
37
-
38
- # Make a churn prediction using the trained model
39
- prediction = model.predict(input_data).tolist()[0]
40
-
41
- # Map prediction result to a human-readable label
42
- prediction_label = "churn" if prediction == 1 else "not churn"
43
-
44
- # Return the prediction as a JSON response
45
- return jsonify({'Prediction': prediction_label})
46
-
47
- # Define an endpoint to predict churn for a batch of customers
48
- @churn_predictor_api.post('/v1/customerbatch')
49
- def predict_churn_batch():
50
- # Get the uploaded CSV file from the request
51
- file = request.files['file']
52
-
53
- # Read the file into a DataFrame
54
- input_data = pd.read_csv(file)
55
-
56
- # Make predictions for the batch data and convert raw predictions into a readable format
57
- predictions = [
58
- 'Churn' if x == 1
59
- else "Not Churn"
60
- for x in model.predict(input_data.drop("CustomerId",axis=1)).tolist()
61
- ]
62
-
63
- cust_id_list = input_data.CustomerId.values.tolist()
64
- output_dict = dict(zip(cust_id_list, predictions))
65
-
66
- return output_dict
67
-
68
- # Run the Flask app in debug mode
69
- if __name__ == '__main__':
70
- app.run(debug=True)
 
1
+ import requests
2
+ import streamlit as st
3
  import pandas as pd
 
4
 
5
+ st.title("Customer Churn Prediction")
6
+
7
+ # Batch Prediction
8
+ st.subheader("Online Prediction")
9
+
10
+ # Input fields for customer data
11
+ CustomerID = st.number_input("Customer ID", min_value=10000000, max_value=99999999)
12
+ CreditScore = st.number_input("Credit Score (customer's credit score)", min_value=300, max_value=900, value=650)
13
+ Geography = st.selectbox("Geography (country where the customer resides)", ["France", "Germany", "Spain"])
14
+ Age = st.number_input("Age (customer's age in years)", min_value=18, max_value=100, value=30)
15
+ Tenure = st.number_input("Tenure (number of years the customer has been with the bank)", value=12)
16
+ Balance = st.number_input("Account Balance (customer’s account balance)", min_value=0.0, value=10000.0)
17
+ NumOfProducts = st.number_input("Number of Products (number of products the customer has with the bank)", min_value=1, value=1)
18
+ HasCrCard = st.selectbox("Has Credit Card?", ["Yes", "No"])
19
+ IsActiveMember = st.selectbox("Is Active Member?", ["Yes", "No"])
20
+ EstimatedSalary = st.number_input("Estimated Salary (customer’s estimated salary)", min_value=0.0, value=50000.0)
21
+
22
+ customer_data = {
23
+ 'CreditScore': CreditScore,
24
+ 'Geography': Geography,
25
+ 'Age': Age,
26
+ 'Tenure': Tenure,
27
+ 'Balance': Balance,
28
+ 'NumOfProducts': NumOfProducts,
29
+ 'HasCrCard': 1 if HasCrCard == "Yes" else 0,
30
+ 'IsActiveMember': 1 if IsActiveMember == "Yes" else 0,
31
+ 'EstimatedSalary': EstimatedSalary
32
+ }
33
+
34
+ username_ns = 'VrundavGamit-containerization_case_study'
35
+
36
+ if st.button("Predict", type='primary'):
37
+ response = requests.post("https://{username_ns}.hf.space/v1/customer", json=customer_data) # enter user name and space name before running the cell
38
+ if response.status_code == 200:
39
+ result = response.json()
40
+ churn_prediction = result["Prediction"] # Extract only the value
41
+ st.write(f"Based on the information provided, the customer with ID {CustomerID} is likely to {churn_prediction}.")
42
+ else:
43
+ st.error("Error in API request")
44
+
45
+ # Batch Prediction
46
+ st.subheader("Batch Prediction")
47
+
48
+ file = st.file_uploader("Upload CSV file", type=["csv"])
49
+ if file is not None:
50
+ if st.button("Predict for Batch", type='primary'):
51
+ response = requests.post("https://{username_ns}.hf.space/v1/customerbatch", files={"file": file}) # enter user name and space name before running the cell
52
+ if response.status_code == 200:
53
+ result = response.json()
54
+ st.header("Batch Prediction Results")
55
+ st.write(result)
56
+ else:
57
+ st.error("Error in API request")
 
 
 
 
 
 
 
 
 
 
 
 
 
requirements.txt CHANGED
@@ -1,11 +1,3 @@
1
- pandas==2.2.2
2
- numpy==2.0.2
3
- scikit-learn==1.6.1
4
- xgboost==2.1.4
5
- joblib==1.4.2
6
- Werkzeug==2.2.2
7
- flask==2.2.2
8
- gunicorn==20.1.0
9
- requests==2.28.1
10
- uvicorn[standard]
11
- streamlit==1.43.2
 
1
+ pandas
2
+ requests
3
+ streamlit