Spaces:
Running
on
Zero
Running
on
Zero
File size: 10,853 Bytes
cdb8b5c 6a0b292 cdb8b5c 8ab15cb 26701f5 480f192 8ab15cb cdb8b5c 6aef93e 6a0b292 cdb8b5c 6aef93e cdb8b5c 6aef93e cdb8b5c 668e3de cdb8b5c 94b0409 cdb8b5c 6a0b292 cdb8b5c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 |
import spaces
from snac import SNAC
import torch
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
from huggingface_hub import snapshot_download
# Check if CUDA is available
device = "cuda" if torch.cuda.is_available() else "cpu"
print("Loading SNAC model...")
snac_model = SNAC.from_pretrained("hubertsiuzdak/snac_24khz")
snac_model = snac_model.to(device)
# Available models - LFM2 models
MODELS = {
"Jenny": "Vyvo/VyvoTTS-LFM2-350M-Jenny",
"Optimus Prime": "Vyvo/VyvoTTS-LFM2-Optimus-Prime",
"Itto": "Vyvo/VyvoTTS-LFM2-Itto",
"Stephen_Fry": "Vyvo/VyvoTTS-LFM2-Stephen_Fry",
"Alhaitham": "Vyvo/VyvoTTS-LFM2-Alhaitham",
"Cyno": "Vyvo/VyvoTTS-LFM2-Cyno",
"Dehya": "Vyvo/VyvoTTS-LFM2-Dehya",
"Kaeya": "Vyvo/VyvoTTS-LFM2-Kaeya",
"Kaveh": "Vyvo/VyvoTTS-LFM2-Kaveh",
"Neuvillette": "Vyvo/VyvoTTS-LFM2-Neuvillette",
"Ningguang": "Vyvo/VyvoTTS-LFM2-Ningguang",
"Heizou": "Vyvo/VyvoTTS-LFM2-Heizou",
"Thoma": "Vyvo/VyvoTTS-LFM2-Thoma",
"Tighnari": "Vyvo/VyvoTTS-LFM2-Tighnari",
}
# Pre-load all models
print("Loading models...")
models = {}
tokenizers = {}
for lang, model_name in MODELS.items():
print(f"Loading {lang} model: {model_name}")
models[lang] = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16)
models[lang].to(device)
tokenizers[lang] = AutoTokenizer.from_pretrained(model_name)
print("All models loaded successfully!")
# LFM2 Special Tokens Configuration
TOKENIZER_LENGTH = 64400
START_OF_TEXT = 1
END_OF_TEXT = 7
START_OF_SPEECH = TOKENIZER_LENGTH + 1
END_OF_SPEECH = TOKENIZER_LENGTH + 2
START_OF_HUMAN = TOKENIZER_LENGTH + 3
END_OF_HUMAN = TOKENIZER_LENGTH + 4
START_OF_AI = TOKENIZER_LENGTH + 5
END_OF_AI = TOKENIZER_LENGTH + 6
PAD_TOKEN = TOKENIZER_LENGTH + 7
AUDIO_TOKENS_START = TOKENIZER_LENGTH + 10
# Process text prompt for LFM2
def process_prompt(prompt, tokenizer, device):
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
start_token = torch.tensor([[START_OF_HUMAN]], dtype=torch.int64)
end_tokens = torch.tensor([[END_OF_TEXT, END_OF_HUMAN]], dtype=torch.int64)
modified_input_ids = torch.cat([start_token, input_ids, end_tokens], dim=1)
# No padding needed for single input
attention_mask = torch.ones_like(modified_input_ids)
return modified_input_ids.to(device), attention_mask.to(device)
# Parse output tokens to audio for LFM2
def parse_output(generated_ids):
token_to_find = START_OF_SPEECH
token_to_remove = END_OF_SPEECH
token_indices = (generated_ids == token_to_find).nonzero(as_tuple=True)
if len(token_indices[1]) > 0:
last_occurrence_idx = token_indices[1][-1].item()
cropped_tensor = generated_ids[:, last_occurrence_idx+1:]
else:
cropped_tensor = generated_ids
processed_rows = []
for row in cropped_tensor:
masked_row = row[row != token_to_remove]
processed_rows.append(masked_row)
code_lists = []
for row in processed_rows:
row_length = row.size(0)
new_length = (row_length // 7) * 7
trimmed_row = row[:new_length]
trimmed_row = [t - AUDIO_TOKENS_START for t in trimmed_row]
code_lists.append(trimmed_row)
return code_lists[0] # Return just the first one for single sample
# Redistribute codes for audio generation
def redistribute_codes(code_list, snac_model):
device = next(snac_model.parameters()).device # Get the device of SNAC model
layer_1 = []
layer_2 = []
layer_3 = []
for i in range((len(code_list)+1)//7):
layer_1.append(code_list[7*i])
layer_2.append(code_list[7*i+1]-4096)
layer_3.append(code_list[7*i+2]-(2*4096))
layer_3.append(code_list[7*i+3]-(3*4096))
layer_2.append(code_list[7*i+4]-(4*4096))
layer_3.append(code_list[7*i+5]-(5*4096))
layer_3.append(code_list[7*i+6]-(6*4096))
# Move tensors to the same device as the SNAC model
codes = [
torch.tensor(layer_1, device=device).unsqueeze(0),
torch.tensor(layer_2, device=device).unsqueeze(0),
torch.tensor(layer_3, device=device).unsqueeze(0)
]
audio_hat = snac_model.decode(codes)
return audio_hat.detach().squeeze().cpu().numpy() # Always return CPU numpy array
# Main generation function
@spaces.GPU()
def generate_speech(text, model_choice, temperature, top_p, repetition_penalty, max_new_tokens, progress=gr.Progress()):
if not text.strip():
return None
try:
progress(0.1, "π Processing text...")
model = models[model_choice]
tokenizer = tokenizers[model_choice]
# Voice parameter is always None for LFM2 models
input_ids, attention_mask = process_prompt(text, tokenizer, device)
progress(0.3, "π΅ Generating speech tokens...")
with torch.no_grad():
generated_ids = model.generate(
input_ids=input_ids,
attention_mask=attention_mask,
max_new_tokens=max_new_tokens,
do_sample=True,
temperature=temperature,
top_p=top_p,
repetition_penalty=repetition_penalty,
num_return_sequences=1,
eos_token_id=END_OF_SPEECH,
)
progress(0.6, "π§ Processing speech tokens...")
code_list = parse_output(generated_ids)
progress(0.8, "π§ Converting to audio...")
audio_samples = redistribute_codes(code_list, snac_model)
progress(1.0, "β
Completed!")
return (24000, audio_samples)
except Exception as e:
print(f"Error generating speech: {e}")
return None
# Example texts
EXAMPLE_TEXTS = [
"Hello! I am a speech system. I can read your text with a natural voice.",
"Today is a beautiful day. The weather is perfect for a walk.",
"The sun rises from the east and sets in the west. This is a rule of nature.",
"Technology makes our lives easier every day."
]
# Create modern Gradio interface using built-in theme
with gr.Blocks(title="π΅ Modern Text-to-Speech", theme=gr.themes.Soft(), css="""
.gradio-textbox textarea { background-color: #6b7280 !important; color: white !important; }
.gradio-audio { background-color: #6b7280 !important; }
""") as demo:
# Header section
gr.Markdown("""
# π΅ VyvoTTS
### π [Github](https://github.com/Vyvo-Labs/VyvoTTS) | π€ [HF Model](https://huggingface.co/collections/Vyvo/lfm2-tts-689eedae5353ff5b048efd55)
""")
gr.Markdown("""
VyvoTTS is a text-to-speech model by Vyvo team using LFM2 architecture, trained on multiple diverse open-source datasets.
Since some datasets may contain transcription errors or quality issues, output quality can vary.
Higher quality datasets typically produce better speech synthesis results.
**Roadmap:**
- [ ] Transformers.js support
- [ ] Pretrained model release
- [ ] vLLM support
- [x] Training and inference code release
""")
with gr.Row():
with gr.Column(scale=2):
# Text input section
text_input = gr.Textbox(
label="π Text Input",
placeholder="Enter the text you want to convert to speech...",
lines=6,
max_lines=10
)
# Voice model selection (hidden since only Jenny is available)
model_choice = gr.Radio(
choices=list(MODELS.keys()),
value="Jenny Voice",
label="π€ Voice Model",
visible=True # Hide since only one option
)
# Advanced settings
with gr.Accordion("βοΈ Advanced Settings", open=False):
temperature = gr.Slider(
minimum=0.1, maximum=1.5, value=0.6, step=0.05,
label="π‘οΈ Temperature",
info="Higher values create more expressive but less stable speech"
)
top_p = gr.Slider(
minimum=0.1, maximum=1.0, value=0.95, step=0.05,
label="π― Top P",
info="Nucleus sampling threshold value"
)
repetition_penalty = gr.Slider(
minimum=1.0, maximum=2.0, value=1.1, step=0.05,
label="π Repetition Penalty",
info="Higher values discourage repetitive patterns"
)
max_new_tokens = gr.Slider(
minimum=100, maximum=2000, value=1200, step=100,
label="π Maximum Length",
info="Maximum length of generated audio (in tokens)"
)
# Action buttons
with gr.Row():
submit_btn = gr.Button("π΅ Generate Speech", variant="primary", size="lg")
clear_btn = gr.Button("ποΈ Clear", size="lg")
with gr.Column(scale=1):
# Output section
audio_output = gr.Audio(
label="π§ Generated Audio",
type="numpy",
interactive=False
)
# Example texts at the bottom
with gr.Row():
example_1_btn = gr.Button(
EXAMPLE_TEXTS[0],
size="sm",
elem_classes="example-button"
)
example_2_btn = gr.Button(
EXAMPLE_TEXTS[1],
size="sm",
elem_classes="example-button"
)
with gr.Row():
example_3_btn = gr.Button(
EXAMPLE_TEXTS[2],
size="sm",
elem_classes="example-button"
)
example_4_btn = gr.Button(
EXAMPLE_TEXTS[3],
size="sm",
elem_classes="example-button"
)
# Set up example button events
example_1_btn.click(fn=lambda: EXAMPLE_TEXTS[0], outputs=text_input)
example_2_btn.click(fn=lambda: EXAMPLE_TEXTS[1], outputs=text_input)
example_3_btn.click(fn=lambda: EXAMPLE_TEXTS[2], outputs=text_input)
example_4_btn.click(fn=lambda: EXAMPLE_TEXTS[3], outputs=text_input)
# Set up event handlers
submit_btn.click(
fn=generate_speech,
inputs=[text_input, model_choice, temperature, top_p, repetition_penalty, max_new_tokens],
outputs=audio_output,
show_progress=True
)
def clear_interface():
return "", None
clear_btn.click(
fn=clear_interface,
inputs=[],
outputs=[text_input, audio_output]
)
# Launch the app
if __name__ == "__main__":
demo.queue().launch(share=False, ssr_mode=False) |