|
import torch |
|
|
|
|
|
|
|
def init_weights(m, mean=0.0, std=0.01): |
|
if m.__class__.__name__.find("Conv") != -1: m.weight.data.normal_(mean, std) |
|
|
|
def get_padding(kernel_size, dilation=1): |
|
return int((kernel_size * dilation - dilation) / 2) |
|
|
|
def convert_pad_shape(pad_shape): |
|
return [item for sublist in pad_shape[::-1] for item in sublist] |
|
|
|
def slice_segments(x, ids_str, segment_size = 4, dim = 2): |
|
if dim == 2: ret = torch.zeros_like(x[:, :segment_size]) |
|
elif dim == 3: ret = torch.zeros_like(x[:, :, :segment_size]) |
|
|
|
for i in range(x.size(0)): |
|
idx_str = ids_str[i].item() |
|
idx_end = idx_str + segment_size |
|
|
|
if dim == 2: ret[i] = x[i, idx_str:idx_end] |
|
else: ret[i] = x[i, :, idx_str:idx_end] |
|
|
|
return ret |
|
|
|
def rand_slice_segments(x, x_lengths=None, segment_size=4): |
|
b, _, t = x.size() |
|
if x_lengths is None: x_lengths = t |
|
|
|
ids_str = (torch.rand([b]).to(device=x.device) * (x_lengths - segment_size + 1)).to(dtype=torch.long) |
|
|
|
return slice_segments(x, ids_str, segment_size, dim=3), ids_str |
|
|
|
@torch.jit.script |
|
def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels): |
|
n_channels_int = n_channels[0] |
|
|
|
in_act = input_a + input_b |
|
|
|
return torch.tanh(in_act[:, :n_channels_int, :]) * torch.sigmoid(in_act[:, n_channels_int:, :]) |
|
|
|
def sequence_mask(length, max_length = None): |
|
if max_length is None: max_length = length.max() |
|
|
|
return torch.arange(max_length, dtype=length.dtype, device=length.device).unsqueeze(0) < length.unsqueeze(1) |
|
|
|
def clip_grad_value(parameters, clip_value, norm_type=2): |
|
if isinstance(parameters, torch.Tensor): parameters = [parameters] |
|
norm_type = float(norm_type) |
|
|
|
if clip_value is not None: clip_value = float(clip_value) |
|
total_norm = 0 |
|
|
|
for p in list(filter(lambda p: p.grad is not None, parameters)): |
|
total_norm += (p.grad.data.norm(norm_type)).item() ** norm_type |
|
|
|
if clip_value is not None: p.grad.data.clamp_(min=-clip_value, max=clip_value) |
|
|
|
return total_norm ** (1.0 / norm_type) |