|
import math |
|
|
|
import numpy as np |
|
|
|
from matplotlib import mlab |
|
from scipy import interpolate |
|
from decimal import Decimal, ROUND_HALF_UP |
|
|
|
def swipe(x, fs, f0_floor=50, f0_ceil=1100, frame_period=10, sTHR=0.3): |
|
plim = np.array([f0_floor, f0_ceil]) |
|
t = np.arange(0, int(1000 * len(x) / fs / (frame_period) + 1)) * (frame_period / 1000) |
|
|
|
log2pc = np.arange(np.log2(plim[0]) * 96, np.log2(plim[-1]) * 96) |
|
log2pc *= (1 / 96) |
|
|
|
pc = 2 ** log2pc |
|
S = np.zeros((len(pc), len(t))) |
|
|
|
logWs = [round_matlab(elm) for elm in np.log2(4 * 2 * fs / plim)] |
|
ws = 2 ** np.arange(logWs[0], logWs[1] - 1, -1) |
|
p0 = 4 * 2 * fs / ws |
|
|
|
d = 1 + log2pc - np.log2(4 * 2 * fs / ws[0]) |
|
fERBs = erbs2hz(np.arange(hz2erbs(pc[0] / 4), hz2erbs(fs / 2), 0.1)) |
|
|
|
for i in range(len(ws)): |
|
dn = round_matlab(4 * fs / p0[i]) |
|
X, f, ti = mlab.specgram(x=np.r_[np.zeros(int(ws[i] / 2)), np.r_[x, np.zeros(int(dn + ws[i] / 2))]], NFFT=ws[i], Fs=fs, window=np.hanning(ws[i] + 2)[1:-1], noverlap=max(0, np.round(ws[i] - dn)), mode='complex') |
|
ti = np.r_[0, ti[:-1]] |
|
M = np.maximum(0, interpolate.interp1d(f, np.abs(X.T), kind='cubic')(fERBs)).T |
|
|
|
if i == len(ws) - 1: |
|
j = np.where(d - (i + 1) > -1)[0] |
|
k = np.where(d[j] - (i + 1) < 0)[0] |
|
elif i == 0: |
|
j = np.where(d - (i + 1) < 1)[0] |
|
k = np.where(d[j] - (i + 1) > 0)[0] |
|
else: |
|
j = np.where(np.abs(d - (i + 1)) < 1)[0] |
|
k = np.arange(len(j)) |
|
|
|
Si = pitchStrengthAllCandidates(fERBs, np.sqrt(M), pc[j]) |
|
Si = interpolate.interp1d(ti, Si, bounds_error=False, fill_value='nan')(t) if Si.shape[1] > 1 else np.full((len(Si), len(t)), np.nan) |
|
|
|
mu = np.ones(j.shape) |
|
mu[k] = 1 - np.abs(d[j[k]] - i - 1) |
|
S[j, :] = S[j, :] + np.tile(mu.reshape(-1, 1), (1, Si.shape[1])) * Si |
|
|
|
|
|
p = np.full((S.shape[1], 1), np.nan) |
|
s = np.full((S.shape[1], 1), np.nan) |
|
|
|
for j in range(S.shape[1]): |
|
s[j] = np.max(S[:, j]) |
|
i = np.argmax(S[:, j]) |
|
|
|
if s[j] < sTHR: continue |
|
|
|
if i == 0: p[j] = pc[0] |
|
elif i == len(pc) - 1: p[j] = pc[0] |
|
else: |
|
I = np.arange(i-1, i+2) |
|
tc = 1 / pc[I] |
|
|
|
ntc = (tc / tc[1] - 1) * 2 * np.pi |
|
idx = np.isfinite(S[I, j]) |
|
|
|
c = np.zeros(len(ntc)) |
|
c += np.nan |
|
|
|
I_ = I[idx] |
|
|
|
if len(I_) < 2: c[idx] = (S[I, j])[0] / ntc[0] |
|
else: c[idx] = np.polyfit(ntc[idx], (S[I_, j]), 2) |
|
|
|
pval = np.polyval(c, ((1 / (2 ** np.arange(np.log2(pc[I[0]]), np.log2(pc[I[2]]) + 1 / 12 / 64, 1 / 12 / 64))) / tc[1] - 1) * 2 * np.pi) |
|
s[j] = np.max(pval) |
|
p[j] = 2 ** (np.log2(pc[I[0]]) + (np.argmax(pval)) / 12 / 64) |
|
|
|
p = p.flatten() |
|
p[np.isnan(p)] = 0 |
|
|
|
return np.array(p, dtype=np.float32), np.array(t, dtype=np.float32) |
|
|
|
def round_matlab(n): |
|
return int(Decimal(n).quantize(0, ROUND_HALF_UP)) |
|
|
|
def pitchStrengthAllCandidates(f, L, pc): |
|
den = np.sqrt(np.sum(L * L, axis=0)) |
|
den = np.where(den == 0, 2.220446049250313e-16, den) |
|
|
|
L = L / den |
|
S = np.zeros((len(pc), L.shape[1])) |
|
|
|
for j in range(len(pc)): |
|
S[j,:] = pitchStrengthOneCandidate(f, L, pc[j]) |
|
|
|
return S |
|
|
|
def pitchStrengthOneCandidate(f, L, pc): |
|
k = np.zeros(len(f)) |
|
q = f / pc |
|
|
|
for i in ([1] + sieve(int(np.fix(f[-1] / pc - 0.75)))): |
|
a = np.abs(q - i) |
|
p = a < 0.25 |
|
k[p] = np.cos(2 * np.pi * q[p]) |
|
|
|
v = np.logical_and((0.25 < a), (a < 0.75)) |
|
k[v] = k[v] + np.cos(2 * np.pi * q[v]) / 2 |
|
|
|
k *= np.sqrt(1 / f) |
|
k /= np.linalg.norm(k[k>0]) |
|
|
|
return k @ L |
|
|
|
def hz2erbs(hz): |
|
return 21.4 * np.log10(1 + hz / 229) |
|
|
|
def erbs2hz(erbs): |
|
return (10 ** (erbs / 21.4) - 1) * 229 |
|
|
|
def sieve(n): |
|
primes = list(range(2, n + 1)) |
|
num = 2 |
|
|
|
while num < math.sqrt(n): |
|
i = num |
|
|
|
while i <= n: |
|
i += num |
|
|
|
if i in primes: primes.remove(i) |
|
|
|
for j in primes: |
|
if j > num: |
|
num = j |
|
break |
|
|
|
return primes |