|
from collections.abc import Sequence |
|
from typing import Any |
|
|
|
import numpy as np |
|
import onnxruntime |
|
from numpy.typing import NDArray |
|
from pyopenjtalk import OpenJTalk |
|
|
|
from style_bert_vits2.constants import Languages |
|
from style_bert_vits2.models.hyper_parameters import HyperParameters |
|
from style_bert_vits2.nlp import ( |
|
clean_text_with_given_phone_tone, |
|
cleaned_text_to_sequence, |
|
extract_bert_feature_onnx, |
|
) |
|
from style_bert_vits2.utils import get_onnx_device_options |
|
|
|
|
|
def __intersperse(lst: list[Any], item: Any) -> list[Any]: |
|
""" |
|
リストの要素の間に特定のアイテムを挿入する |
|
style_bert_vits2.models.commons.intersperse と同一実装 |
|
style_bert_vits2.models.commons モジュールは PyTorch に依存しているため、ONNX 推論時は import できない |
|
|
|
Args: |
|
lst (list[Any]): 元のリスト |
|
item (Any): 挿入するアイテム |
|
|
|
Returns: |
|
list[Any]: 新しいリスト |
|
""" |
|
result = [item] * (len(lst) * 2 + 1) |
|
result[1::2] = lst |
|
return result |
|
|
|
|
|
def get_text_onnx( |
|
text: str, |
|
language_str: Languages, |
|
hps: HyperParameters, |
|
onnx_providers: Sequence[str | tuple[str, dict[str, Any]]], |
|
assist_text: str | None = None, |
|
assist_text_weight: float = 0.7, |
|
given_phone: list[str] | None = None, |
|
given_tone: list[int] | None = None, |
|
jtalk: OpenJTalk | None = None, |
|
) -> tuple[ |
|
NDArray[Any], NDArray[Any], NDArray[Any], NDArray[Any], NDArray[Any], NDArray[Any] |
|
]: |
|
use_jp_extra = hps.version.endswith("JP-Extra") |
|
norm_text, phone, tone, word2ph, sep_text, _, _ = clean_text_with_given_phone_tone( |
|
text, |
|
language_str, |
|
given_phone=given_phone, |
|
given_tone=given_tone, |
|
use_jp_extra=use_jp_extra, |
|
|
|
raise_yomi_error=False, |
|
jtalk=jtalk, |
|
) |
|
phone, tone, language = cleaned_text_to_sequence(phone, tone, language_str) |
|
|
|
if hps.data.add_blank: |
|
phone = __intersperse(phone, 0) |
|
tone = __intersperse(tone, 0) |
|
language = __intersperse(language, 0) |
|
for i in range(len(word2ph)): |
|
word2ph[i] = word2ph[i] * 2 |
|
word2ph[0] += 1 |
|
bert_ori = extract_bert_feature_onnx( |
|
norm_text, |
|
word2ph, |
|
language_str, |
|
onnx_providers, |
|
assist_text, |
|
assist_text_weight, |
|
sep_text, |
|
) |
|
del word2ph |
|
assert bert_ori.shape[-1] == len(phone), phone |
|
|
|
if language_str == Languages.ZH: |
|
bert = bert_ori |
|
ja_bert = np.zeros((1024, len(phone)), dtype=np.float32) |
|
en_bert = np.zeros((1024, len(phone)), dtype=np.float32) |
|
elif language_str == Languages.JP: |
|
bert = np.zeros((1024, len(phone)), dtype=np.float32) |
|
ja_bert = bert_ori |
|
en_bert = np.zeros((1024, len(phone)), dtype=np.float32) |
|
elif language_str == Languages.EN: |
|
bert = np.zeros((1024, len(phone)), dtype=np.float32) |
|
ja_bert = np.zeros((1024, len(phone)), dtype=np.float32) |
|
en_bert = bert_ori |
|
else: |
|
raise ValueError("language_str should be ZH, JP or EN") |
|
|
|
assert bert.shape[-1] == len(phone), ( |
|
f"Bert seq len {bert.shape[-1]} != {len(phone)}" |
|
) |
|
|
|
phone = np.array(phone, dtype=np.int64) |
|
tone = np.array(tone, dtype=np.int64) |
|
language = np.array(language, dtype=np.int64) |
|
return bert, ja_bert, en_bert, phone, tone, language |
|
|
|
|
|
def infer_onnx( |
|
text: str, |
|
style_vec: NDArray[Any], |
|
sdp_ratio: float, |
|
noise_scale: float, |
|
noise_scale_w: float, |
|
length_scale: float, |
|
sid: int, |
|
language: Languages, |
|
hps: HyperParameters, |
|
onnx_session: onnxruntime.InferenceSession, |
|
onnx_providers: Sequence[str | tuple[str, dict[str, Any]]], |
|
skip_start: bool = False, |
|
skip_end: bool = False, |
|
assist_text: str | None = None, |
|
assist_text_weight: float = 0.7, |
|
given_phone: list[str] | None = None, |
|
given_tone: list[int] | None = None, |
|
jtalk: OpenJTalk | None = None, |
|
) -> NDArray[np.float32]: |
|
is_jp_extra = hps.version.endswith("JP-Extra") |
|
bert, ja_bert, en_bert, phones, tones, lang_ids = get_text_onnx( |
|
text, |
|
language, |
|
hps, |
|
onnx_providers=onnx_providers, |
|
assist_text=assist_text, |
|
assist_text_weight=assist_text_weight, |
|
given_phone=given_phone, |
|
given_tone=given_tone, |
|
jtalk=jtalk, |
|
) |
|
if skip_start: |
|
phones = phones[3:] |
|
tones = tones[3:] |
|
lang_ids = lang_ids[3:] |
|
bert = bert[:, 3:] |
|
ja_bert = ja_bert[:, 3:] |
|
en_bert = en_bert[:, 3:] |
|
if skip_end: |
|
phones = phones[:-2] |
|
tones = tones[:-2] |
|
lang_ids = lang_ids[:-2] |
|
bert = bert[:, :-2] |
|
ja_bert = ja_bert[:, :-2] |
|
en_bert = en_bert[:, :-2] |
|
|
|
x_tst = np.expand_dims(phones, axis=0) |
|
tones = np.expand_dims(tones, axis=0) |
|
lang_ids = np.expand_dims(lang_ids, axis=0) |
|
bert = np.expand_dims(bert, axis=0) |
|
ja_bert = np.expand_dims(ja_bert, axis=0) |
|
en_bert = np.expand_dims(en_bert, axis=0) |
|
x_tst_lengths = np.array([phones.shape[0]], dtype=np.int64) |
|
style_vec_tensor = np.expand_dims(style_vec, axis=0) |
|
del phones |
|
sid_tensor = np.array([sid], dtype=np.int64) |
|
|
|
input_names = [input.name for input in onnx_session.get_inputs()] |
|
output_name = onnx_session.get_outputs()[0].name |
|
if is_jp_extra: |
|
input_tensor = [ |
|
x_tst, |
|
x_tst_lengths, |
|
sid_tensor, |
|
tones, |
|
lang_ids, |
|
ja_bert, |
|
style_vec_tensor, |
|
np.array(length_scale, dtype=np.float32), |
|
np.array(sdp_ratio, dtype=np.float32), |
|
np.array(noise_scale, dtype=np.float32), |
|
np.array(noise_scale_w, dtype=np.float32), |
|
] |
|
else: |
|
input_tensor = [ |
|
x_tst, |
|
x_tst_lengths, |
|
sid_tensor, |
|
tones, |
|
lang_ids, |
|
bert, |
|
ja_bert, |
|
en_bert, |
|
style_vec_tensor, |
|
np.array(length_scale, dtype=np.float32), |
|
np.array(sdp_ratio, dtype=np.float32), |
|
np.array(noise_scale, dtype=np.float32), |
|
np.array(noise_scale_w, dtype=np.float32), |
|
] |
|
|
|
|
|
device_type, device_id, run_options = get_onnx_device_options(onnx_session, onnx_providers) |
|
|
|
|
|
|
|
io_binding = onnx_session.io_binding() |
|
for name, value in zip(input_names, input_tensor): |
|
gpu_tensor = onnxruntime.OrtValue.ortvalue_from_numpy( |
|
value, device_type, device_id |
|
) |
|
io_binding.bind_ortvalue_input(name, gpu_tensor) |
|
|
|
|
|
io_binding.bind_output(output_name, device_type) |
|
onnx_session.run_with_iobinding(io_binding, run_options=run_options) |
|
output = io_binding.get_outputs() |
|
|
|
audio = output[0].numpy()[0, 0] |
|
|
|
del ( |
|
x_tst, |
|
tones, |
|
lang_ids, |
|
bert, |
|
x_tst_lengths, |
|
sid_tensor, |
|
ja_bert, |
|
en_bert, |
|
style_vec, |
|
) |
|
|
|
return audio |
|
|