WariHima's picture
upload file
0b85fb9
from collections.abc import Sequence
from typing import Any
import numpy as np
import onnxruntime
from numpy.typing import NDArray
from pyopenjtalk import OpenJTalk
from style_bert_vits2.constants import Languages
from style_bert_vits2.models.hyper_parameters import HyperParameters
from style_bert_vits2.nlp import (
clean_text_with_given_phone_tone,
cleaned_text_to_sequence,
extract_bert_feature_onnx,
)
from style_bert_vits2.utils import get_onnx_device_options
def __intersperse(lst: list[Any], item: Any) -> list[Any]:
"""
リストの要素の間に特定のアイテムを挿入する
style_bert_vits2.models.commons.intersperse と同一実装
style_bert_vits2.models.commons モジュールは PyTorch に依存しているため、ONNX 推論時は import できない
Args:
lst (list[Any]): 元のリスト
item (Any): 挿入するアイテム
Returns:
list[Any]: 新しいリスト
"""
result = [item] * (len(lst) * 2 + 1)
result[1::2] = lst
return result
def get_text_onnx(
text: str,
language_str: Languages,
hps: HyperParameters,
onnx_providers: Sequence[str | tuple[str, dict[str, Any]]],
assist_text: str | None = None,
assist_text_weight: float = 0.7,
given_phone: list[str] | None = None,
given_tone: list[int] | None = None,
jtalk: OpenJTalk | None = None,
) -> tuple[
NDArray[Any], NDArray[Any], NDArray[Any], NDArray[Any], NDArray[Any], NDArray[Any]
]:
use_jp_extra = hps.version.endswith("JP-Extra")
norm_text, phone, tone, word2ph, sep_text, _, _ = clean_text_with_given_phone_tone(
text,
language_str,
given_phone=given_phone,
given_tone=given_tone,
use_jp_extra=use_jp_extra,
# 推論時のみ呼び出されるので、raise_yomi_error は False に設定
raise_yomi_error=False,
jtalk=jtalk,
)
phone, tone, language = cleaned_text_to_sequence(phone, tone, language_str)
if hps.data.add_blank:
phone = __intersperse(phone, 0)
tone = __intersperse(tone, 0)
language = __intersperse(language, 0)
for i in range(len(word2ph)):
word2ph[i] = word2ph[i] * 2
word2ph[0] += 1
bert_ori = extract_bert_feature_onnx(
norm_text,
word2ph,
language_str,
onnx_providers,
assist_text,
assist_text_weight,
sep_text, # clean_text_with_given_phone_tone() の中間生成物を再利用して効率向上を図る
)
del word2ph
assert bert_ori.shape[-1] == len(phone), phone
if language_str == Languages.ZH:
bert = bert_ori
ja_bert = np.zeros((1024, len(phone)), dtype=np.float32)
en_bert = np.zeros((1024, len(phone)), dtype=np.float32)
elif language_str == Languages.JP:
bert = np.zeros((1024, len(phone)), dtype=np.float32)
ja_bert = bert_ori
en_bert = np.zeros((1024, len(phone)), dtype=np.float32)
elif language_str == Languages.EN:
bert = np.zeros((1024, len(phone)), dtype=np.float32)
ja_bert = np.zeros((1024, len(phone)), dtype=np.float32)
en_bert = bert_ori
else:
raise ValueError("language_str should be ZH, JP or EN")
assert bert.shape[-1] == len(phone), (
f"Bert seq len {bert.shape[-1]} != {len(phone)}"
)
phone = np.array(phone, dtype=np.int64)
tone = np.array(tone, dtype=np.int64)
language = np.array(language, dtype=np.int64)
return bert, ja_bert, en_bert, phone, tone, language
def infer_onnx(
text: str,
style_vec: NDArray[Any],
sdp_ratio: float,
noise_scale: float,
noise_scale_w: float,
length_scale: float,
sid: int, # In the original Bert-VITS2, its speaker_name: str, but here it's id
language: Languages,
hps: HyperParameters,
onnx_session: onnxruntime.InferenceSession,
onnx_providers: Sequence[str | tuple[str, dict[str, Any]]],
skip_start: bool = False,
skip_end: bool = False,
assist_text: str | None = None,
assist_text_weight: float = 0.7,
given_phone: list[str] | None = None,
given_tone: list[int] | None = None,
jtalk: OpenJTalk | None = None,
) -> NDArray[np.float32]:
is_jp_extra = hps.version.endswith("JP-Extra")
bert, ja_bert, en_bert, phones, tones, lang_ids = get_text_onnx(
text,
language,
hps,
onnx_providers=onnx_providers,
assist_text=assist_text,
assist_text_weight=assist_text_weight,
given_phone=given_phone,
given_tone=given_tone,
jtalk=jtalk,
)
if skip_start:
phones = phones[3:]
tones = tones[3:]
lang_ids = lang_ids[3:]
bert = bert[:, 3:]
ja_bert = ja_bert[:, 3:]
en_bert = en_bert[:, 3:]
if skip_end:
phones = phones[:-2]
tones = tones[:-2]
lang_ids = lang_ids[:-2]
bert = bert[:, :-2]
ja_bert = ja_bert[:, :-2]
en_bert = en_bert[:, :-2]
x_tst = np.expand_dims(phones, axis=0)
tones = np.expand_dims(tones, axis=0)
lang_ids = np.expand_dims(lang_ids, axis=0)
bert = np.expand_dims(bert, axis=0)
ja_bert = np.expand_dims(ja_bert, axis=0)
en_bert = np.expand_dims(en_bert, axis=0)
x_tst_lengths = np.array([phones.shape[0]], dtype=np.int64)
style_vec_tensor = np.expand_dims(style_vec, axis=0)
del phones
sid_tensor = np.array([sid], dtype=np.int64)
input_names = [input.name for input in onnx_session.get_inputs()]
output_name = onnx_session.get_outputs()[0].name
if is_jp_extra:
input_tensor = [
x_tst,
x_tst_lengths,
sid_tensor,
tones,
lang_ids,
ja_bert,
style_vec_tensor,
np.array(length_scale, dtype=np.float32),
np.array(sdp_ratio, dtype=np.float32),
np.array(noise_scale, dtype=np.float32),
np.array(noise_scale_w, dtype=np.float32),
]
else:
input_tensor = [
x_tst,
x_tst_lengths,
sid_tensor,
tones,
lang_ids,
bert,
ja_bert,
en_bert,
style_vec_tensor,
np.array(length_scale, dtype=np.float32),
np.array(sdp_ratio, dtype=np.float32),
np.array(noise_scale, dtype=np.float32),
np.array(noise_scale_w, dtype=np.float32),
]
# 入力テンソルの転送に使用するデバイス種別, デバイス ID, 実行オプションを取得
device_type, device_id, run_options = get_onnx_device_options(onnx_session, onnx_providers) # fmt: skip
# 推論デバイスに入力テンソルを割り当て
## GPU 推論の場合、device_type + device_id に対応する GPU デバイスに入力テンソルが割り当てられる
io_binding = onnx_session.io_binding()
for name, value in zip(input_names, input_tensor):
gpu_tensor = onnxruntime.OrtValue.ortvalue_from_numpy(
value, device_type, device_id
)
io_binding.bind_ortvalue_input(name, gpu_tensor)
# 推論の実行
io_binding.bind_output(output_name, device_type)
onnx_session.run_with_iobinding(io_binding, run_options=run_options)
output = io_binding.get_outputs()
audio = output[0].numpy()[0, 0]
del (
x_tst,
tones,
lang_ids,
bert,
x_tst_lengths,
sid_tensor,
ja_bert,
en_bert,
style_vec,
) # , emo
return audio