Waris01 commited on
Commit
a8c1638
·
verified ·
1 Parent(s): 757770b

Application file

Browse files
Files changed (1) hide show
  1. app.py +42 -0
app.py ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ from sklearn.linear_model import LinearRegression
3
+ import pickle
4
+ import numpy as np
5
+
6
+ # Load the pre-trained model and scaler
7
+ with open('regression_model.pkl', 'rb') as model_file:
8
+ model = pickle.load(model_file)
9
+
10
+ with open('scaler.pkl', 'rb') as scaler_file:
11
+ scaler = pickle.load(scaler_file)
12
+
13
+ # Streamlit Input Fields
14
+ st.title("Boston Housing Pred App ⌨🏠")
15
+ crim = st.number_input("Enter the crim", value=0.0)
16
+ zn = st.number_input("Enter the zn", value=0.0)
17
+ indus = st.number_input("Enter the indus", value=0.0)
18
+ chas = st.number_input("Enter the chas", value=0.0)
19
+ nox = st.number_input("Enter the nox", value=0.0)
20
+ rm = st.number_input("Enter the rm", value=0.0)
21
+ age = st.number_input("Enter your age", value=0.0)
22
+ dis = st.number_input("Enter the dis", value=0.0)
23
+ rad = st.number_input("Enter the rad", value=0.0)
24
+ ptratio = st.number_input("Enter the ptratio", value=0.0)
25
+ b = st.number_input("Enter B", value=0.0)
26
+ istat = st.number_input("Enter istat", value=0.0)
27
+ tax = st.number_input("Enter tax", value=0.0)
28
+
29
+ # Predict when button is pressed
30
+ if st.button("Predict"):
31
+ # Prepare the input data
32
+ input_data = np.array([[crim,zn, indus, chas, nox, rm, age, dis, rad, ptratio, b, istat, tax]])
33
+
34
+ # Scale the input data
35
+ input_data_scaled = scaler.transform(input_data)
36
+
37
+ # Make the prediction
38
+ result = model.predict(input_data_scaled)
39
+
40
+ # Display the prediction
41
+ st.write(f"The predicted result is: {result[0]:.2f}$")
42
+