import os from dotenv import load_dotenv from groq import Groq import base64 #bit to string #setup1 groq api setup load_dotenv() GROQ_API_KEY = os.environ.get("GROQ_API_KEY") client = Groq(api_key=GROQ_API_KEY) #setup2 the image into encoded formate # image_path = "acne.jpg" model = "llama-3.2-90b-vision-preview" def encodeimage(image_path): if not os.path.exists(image_path): raise FileNotFoundError(f"Image file not found: {image_path}") with open(image_path, "rb") as image_file: return base64.b64encode(image_file.read()).decode("utf-8") #step3 Setup the grof for vision def AnalyzeImagewithQuery(query,encode_imgae): messages = [ { "role" : "user", "content" : [ { "type" : "text", "text" : query }, { "type": "image_url", "image_url": { "url": f"data:image/jpeg;base64,{encode_imgae}" } } ] } ] chat_completion = client.chat.completions.create( messages = messages, model = "meta-llama/llama-4-scout-17b-16e-instruct", temperature = 0.7 ) return chat_completion.choices[0].message.content if __name__ == "__main__": query = "What happen with my face can you analyze that?" e_image=encodeimage() AnalyzeImagewithQuery(encode_imgae=e_image,query=query)