Spaces:
Sleeping
Sleeping
from langchain_groq import ChatGroq | |
from dotenv import load_dotenv | |
import os | |
from pdfparsing import ExtractDatafrompdf | |
from Datapreprocessing import PreprocessingData | |
from vectorstore import embeddings, vectorstore | |
from langchain.chains import RetrievalQA | |
# Load environment | |
load_dotenv() | |
Groq_api_key = os.environ.get("GROQ_API_KEY") | |
# LLM setup | |
Model = ChatGroq( | |
api_key=Groq_api_key, | |
model="qwen-qwq-32b", | |
temperature=0.2, | |
) | |
def GenrateResponse(query, retrive): | |
chain = RetrievalQA.from_chain_type( | |
llm=Model, | |
chain_type="stuff", | |
retriever=retrive, | |
) | |
return chain.invoke({"query": query}) | |
if __name__ == "__main__": | |
pdf_path = r"C:\Users\HP\Desktop\MultiModel-Rag\Multimodel-Rag-Application01\Deepseek.pdf" | |
print("Extracting PDF...") | |
documents = ExtractDatafrompdf(pdf_path) | |
print("Chunking Data...") | |
chunked_data = PreprocessingData(documents) | |
print(f"Total Chunks: {len(chunked_data)}") | |
print("Vectorizing...") | |
retriever = vectorstore(data=chunked_data, embeddings=embeddings()) | |
# Example query | |
query = "what are the benchamrk of deepseek r1?" | |
print("Answering Query...") | |
result = GenrateResponse(query=query, retrive=retriever) | |
print("Response:") | |
print(result["result"]) | |