Multi-Model-Pdf-Chat / vectorstore.py
Waris01's picture
Model-Files
95305d3 verified
raw
history blame contribute delete
533 Bytes
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.vectorstores import FAISS
def embeddings():
print("Generating Embeddings...")
return HuggingFaceEmbeddings()
def vectorstore(data, embeddings):
print("Creating VectorStore...")
vectorstore = FAISS.from_documents(
documents=data,
embedding=embeddings
)
retriever = vectorstore.as_retriever(
search_type="similarity",
search_kwargs={"k": 2} # You can tune this
)
return retriever