Spaces:
Build error
Build error
Create transform
Browse files- .vscode/transform +28 -0
.vscode/transform
ADDED
|
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import AutoModel, AutoTokenizer, AutoFeatureExtractor
|
| 2 |
+
import torch
|
| 3 |
+
|
| 4 |
+
# Load pre-trained text and vision models
|
| 5 |
+
text_model = AutoModel.from_pretrained("bert-base-uncased")
|
| 6 |
+
vision_model = AutoModel.from_pretrained("google/vit-base-patch16-224")
|
| 7 |
+
|
| 8 |
+
# Define a simple multimodal model
|
| 9 |
+
class SimpleMLLM(torch.nn.Module):
|
| 10 |
+
def __init__(self, text_model, vision_model):
|
| 11 |
+
super().__init__()
|
| 12 |
+
self.text_model = text_model
|
| 13 |
+
self.vision_model = vision_model
|
| 14 |
+
self.fusion = torch.nn.Linear(text_model.config.hidden_size + vision_model.config.hidden_size, 512)
|
| 15 |
+
|
| 16 |
+
def forward(self, input_ids, attention_mask, pixel_values):
|
| 17 |
+
text_outputs = self.text_model(input_ids=input_ids, attention_mask=attention_mask)
|
| 18 |
+
vision_outputs = self.vision_model(pixel_values=pixel_values)
|
| 19 |
+
|
| 20 |
+
# Simple fusion of text and vision features
|
| 21 |
+
fused = torch.cat([text_outputs.last_hidden_state[:, 0], vision_outputs.last_hidden_state[:, 0]], dim=1)
|
| 22 |
+
output = self.fusion(fused)
|
| 23 |
+
return output
|
| 24 |
+
|
| 25 |
+
# Initialize the model
|
| 26 |
+
model = SimpleMLLM(text_model, vision_model)
|
| 27 |
+
|
| 28 |
+
# You would then need to implement data loading, training loop, etc.
|