Spaces:
Sleeping
Sleeping
File size: 1,804 Bytes
8c385d2 62712cc b6a0ce0 62712cc 8c385d2 62712cc 8c385d2 11dea74 8c385d2 62712cc 8c385d2 a92e68e 11dea74 8c385d2 11dea74 8c385d2 11dea74 8c385d2 62712cc 8c385d2 62712cc 8c385d2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 |
import gradio as gr
from huggingface_hub import InferenceClient
# ★ モデルを gemma-3-27b-it-abliterated に変更
# provider="hf-inference" でHugging Face Inference APIを明示的に指定
client = InferenceClient(
model="mlabonne/gemma-3-12b-it-abliterated"
) # :contentReference[oaicite:0]{index=0}
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
):
# system_message→history→最新ユーザー発話 の順に messages を構築
messages = [{"role": "system", "content": system_message}]
for u, a in history:
if u:
messages.append({"role": "user", "content": u})
if a:
messages.append({"role": "assistant", "content": a})
messages.append({"role": "user", "content": message})
# chat_completion を呼び出し(stream=True でトークン毎に返す)
response = ""
for chunk in client.text_to_text(
messages=messages,
max_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
stream=True,
):
delta = chunk.choices[0].delta.content
response += delta
yield response
# GradioのチャットUIをそのまま利用
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)",
),
],
)
if __name__ == "__main__":
demo.launch()
|