import gradio as gr from huggingface_hub import InferenceClient # ★ モデルを gemma-3-27b-it-abliterated に変更 # provider="hf-inference" でHugging Face Inference APIを明示的に指定 client = InferenceClient( model="mlabonne/gemma-3-12b-it-abliterated" ) # :contentReference[oaicite:0]{index=0} def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): # system_message→history→最新ユーザー発話 の順に messages を構築 messages = [{"role": "system", "content": system_message}] for u, a in history: if u: messages.append({"role": "user", "content": u}) if a: messages.append({"role": "assistant", "content": a}) messages.append({"role": "user", "content": message}) # chat_completion を呼び出し(stream=True でトークン毎に返す) response = "" for chunk in client.text_to_text( messages=messages, max_tokens=max_tokens, temperature=temperature, top_p=top_p, stream=True, ): delta = chunk.choices[0].delta.content response += delta yield response # GradioのチャットUIをそのまま利用 demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], ) if __name__ == "__main__": demo.launch()