Spaces:
Running
Running
Upload folder using huggingface_hub
Browse files- src/mcp.ts +1 -14
- src/routes/landingPageHtml.ts +27 -0
- src/routes/responses.ts +583 -462
- src/schemas.ts +11 -2
src/mcp.ts
CHANGED
@@ -6,8 +6,6 @@ import { URL } from "url";
|
|
6 |
|
7 |
import type { McpServerParams } from "./schemas";
|
8 |
import { McpResultFormatter } from "./lib/McpResultFormatter";
|
9 |
-
import { generateUniqueId } from "./lib/generateUniqueId";
|
10 |
-
import type { ResponseOutputItem } from "openai/resources/responses/responses";
|
11 |
|
12 |
export async function connectMcpServer(mcpServer: McpServerParams): Promise<Client> {
|
13 |
const mcp = new Client({ name: "@huggingface/responses.js", version: packageVersion });
|
@@ -37,9 +35,8 @@ export async function connectMcpServer(mcpServer: McpServerParams): Promise<Clie
|
|
37 |
export async function callMcpTool(
|
38 |
mcpServer: McpServerParams,
|
39 |
toolName: string,
|
40 |
-
server_label: string,
|
41 |
argumentsString: string
|
42 |
-
): Promise<
|
43 |
try {
|
44 |
const client = await connectMcpServer(mcpServer);
|
45 |
const toolArgs: Record<string, unknown> = argumentsString === "" ? {} : JSON.parse(argumentsString);
|
@@ -47,22 +44,12 @@ export async function callMcpTool(
|
|
47 |
const toolResponse = await client.callTool({ name: toolName, arguments: toolArgs });
|
48 |
const formattedResult = McpResultFormatter.format(toolResponse);
|
49 |
return {
|
50 |
-
type: "mcp_call",
|
51 |
-
id: generateUniqueId("mcp_call"),
|
52 |
-
name: toolName,
|
53 |
-
server_label: server_label,
|
54 |
-
arguments: argumentsString,
|
55 |
output: formattedResult,
|
56 |
};
|
57 |
} catch (error) {
|
58 |
const errorMessage =
|
59 |
error instanceof Error ? error.message : typeof error === "string" ? error : JSON.stringify(error);
|
60 |
return {
|
61 |
-
type: "mcp_call",
|
62 |
-
id: generateUniqueId("mcp_call"),
|
63 |
-
name: toolName,
|
64 |
-
server_label: server_label,
|
65 |
-
arguments: argumentsString,
|
66 |
error: errorMessage,
|
67 |
};
|
68 |
}
|
|
|
6 |
|
7 |
import type { McpServerParams } from "./schemas";
|
8 |
import { McpResultFormatter } from "./lib/McpResultFormatter";
|
|
|
|
|
9 |
|
10 |
export async function connectMcpServer(mcpServer: McpServerParams): Promise<Client> {
|
11 |
const mcp = new Client({ name: "@huggingface/responses.js", version: packageVersion });
|
|
|
35 |
export async function callMcpTool(
|
36 |
mcpServer: McpServerParams,
|
37 |
toolName: string,
|
|
|
38 |
argumentsString: string
|
39 |
+
): Promise<{ error: string; output?: undefined } | { error?: undefined; output: string }> {
|
40 |
try {
|
41 |
const client = await connectMcpServer(mcpServer);
|
42 |
const toolArgs: Record<string, unknown> = argumentsString === "" ? {} : JSON.parse(argumentsString);
|
|
|
44 |
const toolResponse = await client.callTool({ name: toolName, arguments: toolArgs });
|
45 |
const formattedResult = McpResultFormatter.format(toolResponse);
|
46 |
return {
|
|
|
|
|
|
|
|
|
|
|
47 |
output: formattedResult,
|
48 |
};
|
49 |
} catch (error) {
|
50 |
const errorMessage =
|
51 |
error instanceof Error ? error.message : typeof error === "string" ? error : JSON.stringify(error);
|
52 |
return {
|
|
|
|
|
|
|
|
|
|
|
53 |
error: errorMessage,
|
54 |
};
|
55 |
}
|
src/routes/landingPageHtml.ts
CHANGED
@@ -498,6 +498,7 @@ export function getLandingPageHtml(req: Request, res: Response): void {
|
|
498 |
<button class="examples-tab" type="button">Streaming</button>
|
499 |
<button class="examples-tab" type="button">Function Calling</button>
|
500 |
<button class="examples-tab" type="button">Structured Output</button>
|
|
|
501 |
</div>
|
502 |
<div class="example-panel active">
|
503 |
<pre><button class="copy-btn" onclick="copyCode(this)">Copy</button><code class="language-python">from openai import OpenAI
|
@@ -657,6 +658,32 @@ response = client.responses.parse(
|
|
657 |
|
658 |
print(response.output_parsed)</code></pre>
|
659 |
</div>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
660 |
</section>
|
661 |
<footer class="more-info-footer">
|
662 |
<div style="font-weight:600; color:var(--primary-dark); font-size:1.13em; margin-bottom:0.5em;">More Info</div>
|
|
|
498 |
<button class="examples-tab" type="button">Streaming</button>
|
499 |
<button class="examples-tab" type="button">Function Calling</button>
|
500 |
<button class="examples-tab" type="button">Structured Output</button>
|
501 |
+
<button class="examples-tab" type="button">MCP</button>
|
502 |
</div>
|
503 |
<div class="example-panel active">
|
504 |
<pre><button class="copy-btn" onclick="copyCode(this)">Copy</button><code class="language-python">from openai import OpenAI
|
|
|
658 |
|
659 |
print(response.output_parsed)</code></pre>
|
660 |
</div>
|
661 |
+
<div class="example-panel">
|
662 |
+
<pre><button class="copy-btn" onclick="copyCode(this)">Copy</button><code class="language-python">from openai import OpenAI
|
663 |
+
import os
|
664 |
+
|
665 |
+
client = OpenAI(
|
666 |
+
base_url="${baseUrl}",
|
667 |
+
api_key=os.getenv("HF_TOKEN"), # visit https://huggingface.co/settings/tokens
|
668 |
+
)
|
669 |
+
|
670 |
+
response = client.responses.create(
|
671 |
+
model="cerebras@meta-llama/Llama-3.3-70B-Instruct",
|
672 |
+
input="how does tiktoken work?",
|
673 |
+
tools=[
|
674 |
+
{
|
675 |
+
"type": "mcp",
|
676 |
+
"server_label": "gitmcp",
|
677 |
+
"server_url": "https://gitmcp.io/openai/tiktoken",
|
678 |
+
"allowed_tools": ["search_tiktoken_documentation", "fetch_tiktoken_documentation"],
|
679 |
+
"require_approval": "never",
|
680 |
+
},
|
681 |
+
],
|
682 |
+
)
|
683 |
+
|
684 |
+
for output in response.output:
|
685 |
+
print(output)</code></pre>
|
686 |
+
</div>
|
687 |
</section>
|
688 |
<footer class="more-info-footer">
|
689 |
<div style="font-weight:600; color:var(--primary-dark); font-size:1.13em; margin-bottom:0.5em;">More Info</div>
|
src/routes/responses.ts
CHANGED
@@ -17,10 +17,7 @@ import type {
|
|
17 |
ResponseFunctionToolCall,
|
18 |
ResponseOutputItem,
|
19 |
} from "openai/resources/responses/responses";
|
20 |
-
import type {
|
21 |
-
ChatCompletionInputTool,
|
22 |
-
ChatCompletionStreamOutputUsage,
|
23 |
-
} from "@huggingface/tasks/dist/commonjs/tasks/chat-completion/inference.js";
|
24 |
import { callMcpTool, connectMcpServer } from "../mcp.js";
|
25 |
|
26 |
class StreamingError extends Error {
|
@@ -30,12 +27,129 @@ class StreamingError extends Error {
|
|
30 |
}
|
31 |
}
|
32 |
|
|
|
|
|
|
|
33 |
export const postCreateResponse = async (
|
34 |
req: ValidatedRequest<CreateResponseParams>,
|
35 |
res: ExpressResponse
|
36 |
): Promise<void> => {
|
37 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
if (!apiKey) {
|
40 |
res.status(401).json({
|
41 |
success: false,
|
@@ -44,11 +158,111 @@ export const postCreateResponse = async (
|
|
44 |
return;
|
45 |
}
|
46 |
|
47 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
const messages: ChatCompletionInputMessage[] = req.body.instructions
|
49 |
? [{ role: "system", content: req.body.instructions }]
|
50 |
: [];
|
51 |
-
|
52 |
if (Array.isArray(req.body.input)) {
|
53 |
messages.push(
|
54 |
...req.body.input
|
@@ -103,13 +317,20 @@ export const postCreateResponse = async (
|
|
103 |
.filter((item) => item !== undefined),
|
104 |
};
|
105 |
case "mcp_list_tools": {
|
106 |
-
// Hacky: will be dropped by filter
|
107 |
return {
|
108 |
role: "assistant",
|
109 |
name: "mcp_list_tools",
|
110 |
content: "",
|
111 |
};
|
112 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
113 |
case "mcp_approval_request": {
|
114 |
return {
|
115 |
role: "assistant",
|
@@ -132,105 +353,7 @@ export const postCreateResponse = async (
|
|
132 |
messages.push({ role: "user", content: req.body.input });
|
133 |
}
|
134 |
|
135 |
-
|
136 |
-
let tools: ChatCompletionInputTool[] | undefined = [];
|
137 |
-
const mcpToolsMapping: Record<string, McpServerParams> = {};
|
138 |
-
if (req.body.tools) {
|
139 |
-
await Promise.all(
|
140 |
-
req.body.tools.map(async (tool) => {
|
141 |
-
switch (tool.type) {
|
142 |
-
case "function":
|
143 |
-
tools?.push({
|
144 |
-
type: tool.type,
|
145 |
-
function: {
|
146 |
-
name: tool.name,
|
147 |
-
parameters: tool.parameters,
|
148 |
-
description: tool.description,
|
149 |
-
strict: tool.strict,
|
150 |
-
},
|
151 |
-
});
|
152 |
-
break;
|
153 |
-
case "mcp": {
|
154 |
-
let mcpListTools: ResponseOutputItem.McpListTools | undefined;
|
155 |
-
|
156 |
-
// If MCP list tools is already in the input, use it
|
157 |
-
if (Array.isArray(req.body.input)) {
|
158 |
-
for (const item of req.body.input) {
|
159 |
-
if (item.type === "mcp_list_tools" && item.server_label === tool.server_label) {
|
160 |
-
mcpListTools = item;
|
161 |
-
console.debug(`Using MCP list tools from input for server '${tool.server_label}'`);
|
162 |
-
break;
|
163 |
-
}
|
164 |
-
}
|
165 |
-
}
|
166 |
-
// Otherwise, list tools from MCP server
|
167 |
-
if (!mcpListTools) {
|
168 |
-
try {
|
169 |
-
const mcp = await connectMcpServer(tool);
|
170 |
-
console.debug("Listing MCP tools from server");
|
171 |
-
const mcpTools = await mcp.listTools();
|
172 |
-
console.debug(`Fetched ${mcpTools.tools.length} tools from MCP server '${tool.server_label}'`);
|
173 |
-
|
174 |
-
// All tools are returned in Response object
|
175 |
-
mcpListTools = {
|
176 |
-
id: generateUniqueId("mcp_list_tools"),
|
177 |
-
type: "mcp_list_tools",
|
178 |
-
server_label: tool.server_label,
|
179 |
-
tools: mcpTools.tools.map((mcpTool) => ({
|
180 |
-
input_schema: mcpTool.inputSchema,
|
181 |
-
name: mcpTool.name,
|
182 |
-
annotations: mcpTool.annotations,
|
183 |
-
description: mcpTool.description,
|
184 |
-
})),
|
185 |
-
};
|
186 |
-
} catch (error) {
|
187 |
-
console.error("Error listing tools from MCP server", error);
|
188 |
-
mcpListTools = {
|
189 |
-
id: generateUniqueId("mcp_list_tools"),
|
190 |
-
type: "mcp_list_tools",
|
191 |
-
server_label: tool.server_label,
|
192 |
-
tools: [],
|
193 |
-
error: `Failed to list tools from MCP server '${tool.server_label}': ${error instanceof Error ? error.message : "Unknown error"}`,
|
194 |
-
};
|
195 |
-
}
|
196 |
-
output.push(mcpListTools);
|
197 |
-
}
|
198 |
-
|
199 |
-
// Only allowed tools are forwarded to the LLM
|
200 |
-
const allowedTools = tool.allowed_tools
|
201 |
-
? Array.isArray(tool.allowed_tools)
|
202 |
-
? tool.allowed_tools
|
203 |
-
: tool.allowed_tools.tool_names
|
204 |
-
: [];
|
205 |
-
if (mcpListTools?.tools) {
|
206 |
-
for (const mcpTool of mcpListTools.tools) {
|
207 |
-
if (allowedTools.length === 0 || allowedTools.includes(mcpTool.name)) {
|
208 |
-
tools?.push({
|
209 |
-
type: "function" as const,
|
210 |
-
function: {
|
211 |
-
name: mcpTool.name,
|
212 |
-
parameters: mcpTool.input_schema,
|
213 |
-
description: mcpTool.description ?? undefined,
|
214 |
-
},
|
215 |
-
});
|
216 |
-
}
|
217 |
-
mcpToolsMapping[mcpTool.name] = tool;
|
218 |
-
}
|
219 |
-
break;
|
220 |
-
}
|
221 |
-
}
|
222 |
-
}
|
223 |
-
})
|
224 |
-
);
|
225 |
-
}
|
226 |
-
|
227 |
-
if (tools.length === 0) {
|
228 |
-
tools = undefined;
|
229 |
-
}
|
230 |
-
|
231 |
-
const model = req.body.model.includes("@") ? req.body.model.split("@")[1] : req.body.model;
|
232 |
-
const provider = req.body.model.includes("@") ? req.body.model.split("@")[0] : undefined;
|
233 |
-
|
234 |
const payload: ChatCompletionInput = {
|
235 |
// main params
|
236 |
model: model,
|
@@ -269,391 +392,389 @@ export const postCreateResponse = async (
|
|
269 |
top_p: req.body.top_p,
|
270 |
};
|
271 |
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
instructions: req.body.instructions,
|
277 |
-
max_output_tokens: req.body.max_output_tokens,
|
278 |
-
metadata: req.body.metadata,
|
279 |
-
model: req.body.model,
|
280 |
-
object: "response",
|
281 |
-
output,
|
282 |
-
// parallel_tool_calls: req.body.parallel_tool_calls,
|
283 |
-
status: "in_progress",
|
284 |
-
text: req.body.text,
|
285 |
-
tool_choice: req.body.tool_choice ?? "auto",
|
286 |
-
tools: req.body.tools ?? [],
|
287 |
-
temperature: req.body.temperature,
|
288 |
-
top_p: req.body.top_p,
|
289 |
-
usage: {
|
290 |
-
input_tokens: 0,
|
291 |
-
input_tokens_details: { cached_tokens: 0 },
|
292 |
-
output_tokens: 0,
|
293 |
-
output_tokens_details: { reasoning_tokens: 0 },
|
294 |
-
total_tokens: 0,
|
295 |
-
},
|
296 |
-
};
|
297 |
|
298 |
-
// MCP
|
299 |
-
|
300 |
-
|
301 |
-
// Note: currently supporting only 1 mcp_approval_response per request
|
302 |
-
if (item.type === "mcp_approval_response" && item.approve) {
|
303 |
-
const approvalRequest = req.body.input.find(
|
304 |
-
(i) => i.type === "mcp_approval_request" && i.id === item.approval_request_id
|
305 |
-
) as McpApprovalRequestParams | undefined;
|
306 |
-
console.log("approvalRequest", approvalRequest);
|
307 |
-
if (approvalRequest) {
|
308 |
-
const toolParams = mcpToolsMapping[approvalRequest.name];
|
309 |
-
responseObject.output.push(
|
310 |
-
await callMcpTool(toolParams, approvalRequest.name, toolParams.server_label, approvalRequest.arguments)
|
311 |
-
);
|
312 |
-
responseObject.status = "completed";
|
313 |
-
res.json(responseObject);
|
314 |
-
return;
|
315 |
-
} else {
|
316 |
-
responseObject.status = "failed";
|
317 |
-
const errorMessage = `MCP approval response for approval request '${item.approval_request_id}' not found`;
|
318 |
-
console.error(errorMessage);
|
319 |
-
responseObject.error = {
|
320 |
-
code: "server_error",
|
321 |
-
message: errorMessage,
|
322 |
-
};
|
323 |
-
res.json(responseObject);
|
324 |
-
return;
|
325 |
-
}
|
326 |
-
}
|
327 |
-
}
|
328 |
}
|
|
|
329 |
|
330 |
-
|
331 |
-
|
332 |
-
|
333 |
-
|
334 |
-
|
|
|
|
|
|
|
335 |
|
336 |
-
|
337 |
-
const
|
338 |
-
|
|
|
|
|
|
|
339 |
};
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
340 |
|
341 |
-
|
342 |
-
|
343 |
-
|
344 |
-
|
345 |
-
|
346 |
-
|
347 |
-
|
348 |
-
|
349 |
-
|
350 |
-
|
351 |
-
|
352 |
-
|
353 |
-
|
354 |
-
|
355 |
-
|
356 |
-
|
357 |
-
|
358 |
-
|
359 |
-
|
360 |
-
|
361 |
-
|
362 |
-
|
363 |
-
|
364 |
-
if (chunk.choices[0].delta.content) {
|
365 |
-
if (responseObject.output.length === 0) {
|
366 |
-
const outputObject: ResponseOutputMessage = {
|
367 |
-
id: generateUniqueId("msg"),
|
368 |
-
type: "message",
|
369 |
-
role: "assistant",
|
370 |
-
status: "in_progress",
|
371 |
-
content: [],
|
372 |
-
};
|
373 |
-
responseObject.output = [outputObject];
|
374 |
-
|
375 |
-
// Response output item added event
|
376 |
-
emitEvent({
|
377 |
-
type: "response.output_item.added",
|
378 |
-
output_index: 0,
|
379 |
-
item: outputObject,
|
380 |
-
sequence_number: sequenceNumber++,
|
381 |
-
});
|
382 |
-
}
|
383 |
-
|
384 |
-
const outputObject = responseObject.output.at(-1);
|
385 |
-
if (!outputObject || outputObject.type !== "message") {
|
386 |
-
throw new StreamingError("Not implemented: only single output item type is supported in streaming mode.");
|
387 |
-
}
|
388 |
-
|
389 |
-
if (outputObject.content.length === 0) {
|
390 |
-
// Response content part added event
|
391 |
-
const contentPart: ResponseContentPartAddedEvent["part"] = {
|
392 |
-
type: "output_text",
|
393 |
-
text: "",
|
394 |
-
annotations: [],
|
395 |
-
};
|
396 |
-
outputObject.content.push(contentPart);
|
397 |
-
|
398 |
-
emitEvent({
|
399 |
-
type: "response.content_part.added",
|
400 |
-
item_id: outputObject.id,
|
401 |
-
output_index: 0,
|
402 |
-
content_index: 0,
|
403 |
-
part: contentPart,
|
404 |
-
sequence_number: sequenceNumber++,
|
405 |
-
});
|
406 |
-
}
|
407 |
|
408 |
-
|
409 |
-
|
410 |
-
|
411 |
-
}
|
412 |
|
413 |
-
|
414 |
-
|
415 |
-
|
416 |
-
|
417 |
-
|
418 |
-
|
419 |
-
|
420 |
-
|
421 |
-
|
422 |
-
|
423 |
-
|
424 |
-
|
425 |
-
|
426 |
-
|
|
|
|
|
|
|
|
|
|
|
427 |
|
428 |
-
|
429 |
-
|
430 |
-
|
431 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
432 |
|
433 |
-
|
434 |
-
|
435 |
-
|
436 |
-
|
437 |
-
|
438 |
-
|
439 |
-
};
|
440 |
-
responseObject.output = [outputObject];
|
441 |
-
|
442 |
-
// Response output item added event
|
443 |
-
emitEvent({
|
444 |
-
type: "response.output_item.added",
|
445 |
-
output_index: 0,
|
446 |
-
item: outputObject,
|
447 |
-
sequence_number: sequenceNumber++,
|
448 |
-
});
|
449 |
-
}
|
450 |
|
451 |
-
|
452 |
-
|
453 |
-
|
454 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
455 |
|
456 |
-
|
457 |
-
|
458 |
-
|
459 |
-
|
460 |
-
output_index: 0,
|
461 |
-
delta: chunk.choices[0].delta.tool_calls[0].function.arguments,
|
462 |
-
sequence_number: sequenceNumber++,
|
463 |
-
});
|
464 |
}
|
465 |
-
}
|
466 |
|
467 |
-
|
468 |
-
|
469 |
-
|
470 |
-
|
471 |
-
|
472 |
-
|
473 |
-
|
474 |
-
|
475 |
-
|
476 |
-
|
477 |
-
|
478 |
-
|
479 |
-
|
480 |
-
|
481 |
-
|
482 |
-
|
483 |
-
type: "response.content_part.done",
|
484 |
-
item_id: lastOutputItem.id,
|
485 |
-
output_index: responseObject.output.length - 1,
|
486 |
-
content_index: lastOutputItem.content.length - 1,
|
487 |
-
part: contentPart,
|
488 |
-
sequence_number: sequenceNumber++,
|
489 |
-
});
|
490 |
-
} else {
|
491 |
-
throw new StreamingError("Not implemented: only output_text is supported in streaming mode.");
|
492 |
-
}
|
493 |
|
494 |
-
|
495 |
-
|
496 |
-
|
497 |
-
|
498 |
-
|
499 |
-
|
500 |
-
|
501 |
-
|
502 |
-
|
503 |
-
if (!lastOutputItem.id) {
|
504 |
-
throw new StreamingError("Function call id is required.");
|
505 |
-
}
|
506 |
|
507 |
-
|
508 |
-
|
509 |
-
|
510 |
-
|
511 |
-
|
512 |
-
|
513 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
514 |
|
515 |
-
|
516 |
-
|
517 |
-
|
518 |
-
|
519 |
-
|
520 |
-
|
521 |
-
|
522 |
-
|
523 |
-
|
524 |
-
|
525 |
-
|
|
|
|
|
526 |
|
527 |
-
|
528 |
-
|
529 |
-
|
530 |
-
|
531 |
-
|
532 |
-
|
533 |
-
|
534 |
-
output_tokens_details: { reasoning_tokens: 0 },
|
535 |
-
total_tokens: usage.total_tokens,
|
536 |
};
|
|
|
|
|
537 |
}
|
538 |
-
|
539 |
-
|
540 |
-
|
541 |
-
|
542 |
-
|
543 |
-
|
544 |
-
|
545 |
-
|
546 |
-
|
547 |
-
|
548 |
-
|
549 |
-
|
550 |
-
|
551 |
-
|
552 |
-
|
553 |
-
|
554 |
-
|
555 |
-
|
556 |
-
|
557 |
-
|
558 |
-
|
559 |
-
|
560 |
-
|
|
|
561 |
};
|
562 |
-
|
563 |
-
|
564 |
-
|
565 |
-
|
566 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
567 |
}
|
568 |
-
res.end();
|
569 |
-
return;
|
570 |
}
|
|
|
571 |
|
572 |
-
|
573 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
574 |
|
575 |
-
|
576 |
-
|
577 |
-
|
578 |
-
|
579 |
-
|
580 |
-
|
581 |
-
|
582 |
-
|
583 |
-
|
584 |
-
|
585 |
-
|
586 |
-
|
587 |
-
|
588 |
-
|
589 |
-
|
590 |
-
|
591 |
-
|
592 |
-
|
593 |
-
|
594 |
-
|
595 |
-
|
596 |
-
|
597 |
-
|
598 |
-
|
599 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
600 |
? true
|
601 |
-
: toolParams.require_approval
|
602 |
? false
|
603 |
-
:
|
604 |
-
|
605 |
-
|
606 |
-
|
607 |
-
|
608 |
-
|
609 |
-
|
610 |
-
|
611 |
-
|
612 |
-
|
613 |
-
|
614 |
-
|
615 |
-
|
616 |
-
|
617 |
-
|
618 |
-
|
619 |
-
|
620 |
-
|
621 |
-
|
622 |
-
|
623 |
-
|
624 |
-
|
625 |
-
|
626 |
-
|
627 |
-
|
628 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
629 |
} else {
|
630 |
-
|
631 |
-
|
632 |
-
|
633 |
-
|
634 |
-
|
635 |
-
arguments: toolCall.function.arguments,
|
636 |
-
status: "completed",
|
637 |
-
});
|
638 |
}
|
639 |
}
|
640 |
}
|
641 |
}
|
642 |
-
|
643 |
-
responseObject.usage = {
|
644 |
-
input_tokens: chatCompletionResponse.usage.prompt_tokens,
|
645 |
-
input_tokens_details: { cached_tokens: 0 },
|
646 |
-
output_tokens: chatCompletionResponse.usage.completion_tokens,
|
647 |
-
output_tokens_details: { reasoning_tokens: 0 },
|
648 |
-
total_tokens: chatCompletionResponse.usage.total_tokens,
|
649 |
-
};
|
650 |
-
|
651 |
-
res.json(responseObject);
|
652 |
-
} catch (error) {
|
653 |
-
console.error(error);
|
654 |
-
res.status(500).json({
|
655 |
-
success: false,
|
656 |
-
error: error instanceof Error ? error.message : "Unknown error",
|
657 |
-
});
|
658 |
}
|
659 |
-
}
|
|
|
17 |
ResponseFunctionToolCall,
|
18 |
ResponseOutputItem,
|
19 |
} from "openai/resources/responses/responses";
|
20 |
+
import type { ChatCompletionInputTool } from "@huggingface/tasks/dist/commonjs/tasks/chat-completion/inference.js";
|
|
|
|
|
|
|
21 |
import { callMcpTool, connectMcpServer } from "../mcp.js";
|
22 |
|
23 |
class StreamingError extends Error {
|
|
|
27 |
}
|
28 |
}
|
29 |
|
30 |
+
type IncompleteResponse = Omit<Response, "incomplete_details" | "output_text" | "parallel_tool_calls">;
|
31 |
+
const SEQUENCE_NUMBER_PLACEHOLDER = -1;
|
32 |
+
|
33 |
export const postCreateResponse = async (
|
34 |
req: ValidatedRequest<CreateResponseParams>,
|
35 |
res: ExpressResponse
|
36 |
): Promise<void> => {
|
37 |
+
// To avoid duplicated code, we run all requests as stream.
|
38 |
+
const events = runCreateResponseStream(req, res);
|
39 |
+
|
40 |
+
// Then we return in the correct format depending on the user 'stream' flag.
|
41 |
+
if (req.body.stream) {
|
42 |
+
res.setHeader("Content-Type", "text/event-stream");
|
43 |
+
res.setHeader("Connection", "keep-alive");
|
44 |
+
console.debug("Stream request");
|
45 |
+
for await (const event of events) {
|
46 |
+
console.debug(`Event #${event.sequence_number}: ${event.type}`);
|
47 |
+
res.write(`data: ${JSON.stringify(event)}\n\n`);
|
48 |
+
}
|
49 |
+
res.end();
|
50 |
+
} else {
|
51 |
+
console.debug("Non-stream request");
|
52 |
+
for await (const event of events) {
|
53 |
+
if (event.type === "response.completed" || event.type === "response.failed") {
|
54 |
+
console.debug(event.type);
|
55 |
+
res.json(event.response);
|
56 |
+
}
|
57 |
+
}
|
58 |
+
}
|
59 |
+
};
|
60 |
|
61 |
+
/*
|
62 |
+
* Top-level stream.
|
63 |
+
*
|
64 |
+
* Handles response lifecycle + execute inner logic (MCP list tools, MCP tool calls, LLM call, etc.).
|
65 |
+
* Handles sequenceNumber by overwriting it in the events.
|
66 |
+
*/
|
67 |
+
async function* runCreateResponseStream(
|
68 |
+
req: ValidatedRequest<CreateResponseParams>,
|
69 |
+
res: ExpressResponse
|
70 |
+
): AsyncGenerator<ResponseStreamEvent> {
|
71 |
+
let sequenceNumber = 0;
|
72 |
+
// Prepare response object that will be iteratively populated
|
73 |
+
const responseObject: IncompleteResponse = {
|
74 |
+
created_at: Math.floor(new Date().getTime() / 1000),
|
75 |
+
error: null,
|
76 |
+
id: generateUniqueId("resp"),
|
77 |
+
instructions: req.body.instructions,
|
78 |
+
max_output_tokens: req.body.max_output_tokens,
|
79 |
+
metadata: req.body.metadata,
|
80 |
+
model: req.body.model,
|
81 |
+
object: "response",
|
82 |
+
output: [],
|
83 |
+
// parallel_tool_calls: req.body.parallel_tool_calls,
|
84 |
+
status: "in_progress",
|
85 |
+
text: req.body.text,
|
86 |
+
tool_choice: req.body.tool_choice ?? "auto",
|
87 |
+
tools: req.body.tools ?? [],
|
88 |
+
temperature: req.body.temperature,
|
89 |
+
top_p: req.body.top_p,
|
90 |
+
usage: {
|
91 |
+
input_tokens: 0,
|
92 |
+
input_tokens_details: { cached_tokens: 0 },
|
93 |
+
output_tokens: 0,
|
94 |
+
output_tokens_details: { reasoning_tokens: 0 },
|
95 |
+
total_tokens: 0,
|
96 |
+
},
|
97 |
+
};
|
98 |
+
|
99 |
+
// Response created event
|
100 |
+
yield {
|
101 |
+
type: "response.created",
|
102 |
+
response: responseObject as Response,
|
103 |
+
sequence_number: sequenceNumber++,
|
104 |
+
};
|
105 |
+
|
106 |
+
// Response in progress event
|
107 |
+
yield {
|
108 |
+
type: "response.in_progress",
|
109 |
+
response: responseObject as Response,
|
110 |
+
sequence_number: sequenceNumber++,
|
111 |
+
};
|
112 |
+
|
113 |
+
// Any events (LLM call, MCP call, list tools, etc.)
|
114 |
+
try {
|
115 |
+
for await (const event of innerRunStream(req, res, responseObject)) {
|
116 |
+
yield { ...event, sequence_number: sequenceNumber++ };
|
117 |
+
}
|
118 |
+
} catch (error) {
|
119 |
+
// Error event => stop
|
120 |
+
console.error("Error in stream:", error);
|
121 |
+
const message =
|
122 |
+
typeof error === "object" && error && "message" in error && typeof error.message === "string"
|
123 |
+
? error.message
|
124 |
+
: "An error occurred in stream";
|
125 |
+
responseObject.status = "failed";
|
126 |
+
responseObject.error = {
|
127 |
+
code: "server_error",
|
128 |
+
message,
|
129 |
+
};
|
130 |
+
yield {
|
131 |
+
type: "response.failed",
|
132 |
+
response: responseObject as Response,
|
133 |
+
sequence_number: sequenceNumber++,
|
134 |
+
};
|
135 |
+
return;
|
136 |
+
}
|
137 |
+
|
138 |
+
// Response completed event
|
139 |
+
yield {
|
140 |
+
type: "response.completed",
|
141 |
+
response: responseObject as Response,
|
142 |
+
sequence_number: sequenceNumber++,
|
143 |
+
};
|
144 |
+
}
|
145 |
+
|
146 |
+
async function* innerRunStream(
|
147 |
+
req: ValidatedRequest<CreateResponseParams>,
|
148 |
+
res: ExpressResponse,
|
149 |
+
responseObject: IncompleteResponse
|
150 |
+
): AsyncGenerator<ResponseStreamEvent> {
|
151 |
+
// Retrieve API key from headers
|
152 |
+
const apiKey = req.headers.authorization?.split(" ")[1];
|
153 |
if (!apiKey) {
|
154 |
res.status(401).json({
|
155 |
success: false,
|
|
|
158 |
return;
|
159 |
}
|
160 |
|
161 |
+
// List MCP tools from server (if required) + prepare tools for the LLM
|
162 |
+
let tools: ChatCompletionInputTool[] | undefined = [];
|
163 |
+
const mcpToolsMapping: Record<string, McpServerParams> = {};
|
164 |
+
if (req.body.tools) {
|
165 |
+
for (const tool of req.body.tools) {
|
166 |
+
switch (tool.type) {
|
167 |
+
case "function":
|
168 |
+
tools?.push({
|
169 |
+
type: tool.type,
|
170 |
+
function: {
|
171 |
+
name: tool.name,
|
172 |
+
parameters: tool.parameters,
|
173 |
+
description: tool.description,
|
174 |
+
strict: tool.strict,
|
175 |
+
},
|
176 |
+
});
|
177 |
+
break;
|
178 |
+
case "mcp": {
|
179 |
+
let mcpListTools: ResponseOutputItem.McpListTools | undefined;
|
180 |
+
|
181 |
+
// If MCP list tools is already in the input, use it
|
182 |
+
if (Array.isArray(req.body.input)) {
|
183 |
+
for (const item of req.body.input) {
|
184 |
+
if (item.type === "mcp_list_tools" && item.server_label === tool.server_label) {
|
185 |
+
mcpListTools = item;
|
186 |
+
console.debug(`Using MCP list tools from input for server '${tool.server_label}'`);
|
187 |
+
break;
|
188 |
+
}
|
189 |
+
}
|
190 |
+
}
|
191 |
+
// Otherwise, list tools from MCP server
|
192 |
+
if (!mcpListTools) {
|
193 |
+
for await (const event of listMcpToolsStream(tool, responseObject)) {
|
194 |
+
yield event;
|
195 |
+
}
|
196 |
+
mcpListTools = responseObject.output.at(-1) as ResponseOutputItem.McpListTools;
|
197 |
+
}
|
198 |
+
|
199 |
+
// Only allowed tools are forwarded to the LLM
|
200 |
+
const allowedTools = tool.allowed_tools
|
201 |
+
? Array.isArray(tool.allowed_tools)
|
202 |
+
? tool.allowed_tools
|
203 |
+
: tool.allowed_tools.tool_names
|
204 |
+
: [];
|
205 |
+
if (mcpListTools?.tools) {
|
206 |
+
for (const mcpTool of mcpListTools.tools) {
|
207 |
+
if (allowedTools.length === 0 || allowedTools.includes(mcpTool.name)) {
|
208 |
+
tools?.push({
|
209 |
+
type: "function" as const,
|
210 |
+
function: {
|
211 |
+
name: mcpTool.name,
|
212 |
+
parameters: mcpTool.input_schema,
|
213 |
+
description: mcpTool.description ?? undefined,
|
214 |
+
},
|
215 |
+
});
|
216 |
+
}
|
217 |
+
mcpToolsMapping[mcpTool.name] = tool;
|
218 |
+
}
|
219 |
+
break;
|
220 |
+
}
|
221 |
+
}
|
222 |
+
}
|
223 |
+
}
|
224 |
+
}
|
225 |
+
if (tools.length === 0) {
|
226 |
+
tools = undefined;
|
227 |
+
}
|
228 |
+
|
229 |
+
// If MCP approval requests => execute them and return (no LLM call)
|
230 |
+
if (Array.isArray(req.body.input)) {
|
231 |
+
for (const item of req.body.input) {
|
232 |
+
// Note: currently supporting only 1 mcp_approval_response per request
|
233 |
+
let shouldStop = false;
|
234 |
+
if (item.type === "mcp_approval_response" && item.approve) {
|
235 |
+
const approvalRequest = req.body.input.find(
|
236 |
+
(i) => i.type === "mcp_approval_request" && i.id === item.approval_request_id
|
237 |
+
) as McpApprovalRequestParams | undefined;
|
238 |
+
for await (const event of callApprovedMCPToolStream(
|
239 |
+
item.approval_request_id,
|
240 |
+
approvalRequest,
|
241 |
+
mcpToolsMapping,
|
242 |
+
responseObject
|
243 |
+
)) {
|
244 |
+
yield event;
|
245 |
+
}
|
246 |
+
shouldStop = true;
|
247 |
+
}
|
248 |
+
if (shouldStop) {
|
249 |
+
// stop if at least one approval request is processed
|
250 |
+
break;
|
251 |
+
}
|
252 |
+
}
|
253 |
+
}
|
254 |
+
|
255 |
+
// At this point, we have all tools and we know we want to call the LLM
|
256 |
+
// Let's prepare the payload and make the call!
|
257 |
+
|
258 |
+
// Resolve model and provider
|
259 |
+
const model = req.body.model.includes("@") ? req.body.model.split("@")[1] : req.body.model;
|
260 |
+
const provider = req.body.model.includes("@") ? req.body.model.split("@")[0] : undefined;
|
261 |
+
|
262 |
+
// Format input to Chat Completion format
|
263 |
const messages: ChatCompletionInputMessage[] = req.body.instructions
|
264 |
? [{ role: "system", content: req.body.instructions }]
|
265 |
: [];
|
|
|
266 |
if (Array.isArray(req.body.input)) {
|
267 |
messages.push(
|
268 |
...req.body.input
|
|
|
317 |
.filter((item) => item !== undefined),
|
318 |
};
|
319 |
case "mcp_list_tools": {
|
320 |
+
// Hacky: will be dropped by filter since tools are passed as separate objects
|
321 |
return {
|
322 |
role: "assistant",
|
323 |
name: "mcp_list_tools",
|
324 |
content: "",
|
325 |
};
|
326 |
}
|
327 |
+
case "mcp_call": {
|
328 |
+
return {
|
329 |
+
role: "assistant",
|
330 |
+
name: "mcp_call",
|
331 |
+
content: `MCP call (${item.id}). Server: '${item.server_label}'. Tool: '${item.name}'. Arguments: '${item.arguments}'.`,
|
332 |
+
};
|
333 |
+
}
|
334 |
case "mcp_approval_request": {
|
335 |
return {
|
336 |
role: "assistant",
|
|
|
353 |
messages.push({ role: "user", content: req.body.input });
|
354 |
}
|
355 |
|
356 |
+
// Prepare payload for the LLM
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
357 |
const payload: ChatCompletionInput = {
|
358 |
// main params
|
359 |
model: model,
|
|
|
392 |
top_p: req.body.top_p,
|
393 |
};
|
394 |
|
395 |
+
// Call LLM
|
396 |
+
for await (const event of callLLMStream(apiKey, payload, responseObject, mcpToolsMapping)) {
|
397 |
+
yield event;
|
398 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
399 |
|
400 |
+
// Handle MCP tool calls if any
|
401 |
+
for await (const event of handleMCPToolCallsAfterLLM(responseObject, mcpToolsMapping)) {
|
402 |
+
yield event;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
403 |
}
|
404 |
+
}
|
405 |
|
406 |
+
async function* listMcpToolsStream(
|
407 |
+
tool: McpServerParams,
|
408 |
+
responseObject: IncompleteResponse
|
409 |
+
): AsyncGenerator<ResponseStreamEvent> {
|
410 |
+
yield {
|
411 |
+
type: "response.mcp_list_tools.in_progress",
|
412 |
+
sequence_number: SEQUENCE_NUMBER_PLACEHOLDER,
|
413 |
+
};
|
414 |
|
415 |
+
try {
|
416 |
+
const mcp = await connectMcpServer(tool);
|
417 |
+
const mcpTools = await mcp.listTools();
|
418 |
+
yield {
|
419 |
+
type: "response.mcp_list_tools.completed",
|
420 |
+
sequence_number: SEQUENCE_NUMBER_PLACEHOLDER,
|
421 |
};
|
422 |
+
responseObject.output.push({
|
423 |
+
id: generateUniqueId("mcp_list_tools"),
|
424 |
+
type: "mcp_list_tools",
|
425 |
+
server_label: tool.server_label,
|
426 |
+
tools: mcpTools.tools.map((mcpTool) => ({
|
427 |
+
input_schema: mcpTool.inputSchema,
|
428 |
+
name: mcpTool.name,
|
429 |
+
annotations: mcpTool.annotations,
|
430 |
+
description: mcpTool.description,
|
431 |
+
})),
|
432 |
+
});
|
433 |
+
} catch (error) {
|
434 |
+
const errorMessage = `Failed to list tools from MCP server '${tool.server_label}': ${error instanceof Error ? error.message : "Unknown error"}`;
|
435 |
+
console.error(errorMessage);
|
436 |
+
yield {
|
437 |
+
type: "response.mcp_list_tools.failed",
|
438 |
+
sequence_number: SEQUENCE_NUMBER_PLACEHOLDER,
|
439 |
+
};
|
440 |
+
throw new Error(errorMessage);
|
441 |
+
}
|
442 |
+
}
|
443 |
|
444 |
+
/*
|
445 |
+
* Call LLM and stream the response.
|
446 |
+
*/
|
447 |
+
async function* callLLMStream(
|
448 |
+
apiKey: string | undefined,
|
449 |
+
payload: ChatCompletionInput,
|
450 |
+
responseObject: IncompleteResponse,
|
451 |
+
mcpToolsMapping: Record<string, McpServerParams>
|
452 |
+
): AsyncGenerator<ResponseStreamEvent> {
|
453 |
+
const stream = new InferenceClient(apiKey).chatCompletionStream(payload);
|
454 |
+
|
455 |
+
for await (const chunk of stream) {
|
456 |
+
if (chunk.usage) {
|
457 |
+
// Overwrite usage with the latest chunk's usage
|
458 |
+
responseObject.usage = {
|
459 |
+
input_tokens: chunk.usage.prompt_tokens,
|
460 |
+
input_tokens_details: { cached_tokens: 0 },
|
461 |
+
output_tokens: chunk.usage.completion_tokens,
|
462 |
+
output_tokens_details: { reasoning_tokens: 0 },
|
463 |
+
total_tokens: chunk.usage.total_tokens,
|
464 |
+
};
|
465 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
466 |
|
467 |
+
const delta = chunk.choices[0].delta;
|
468 |
+
if (delta.content) {
|
469 |
+
let currentOutputItem = responseObject.output.at(-1);
|
|
|
470 |
|
471 |
+
// If start of a new message, create it
|
472 |
+
if (currentOutputItem?.type !== "message" || currentOutputItem?.status !== "in_progress") {
|
473 |
+
const outputObject: ResponseOutputMessage = {
|
474 |
+
id: generateUniqueId("msg"),
|
475 |
+
type: "message",
|
476 |
+
role: "assistant",
|
477 |
+
status: "in_progress",
|
478 |
+
content: [],
|
479 |
+
};
|
480 |
+
responseObject.output.push(outputObject);
|
481 |
+
|
482 |
+
// Response output item added event
|
483 |
+
yield {
|
484 |
+
type: "response.output_item.added",
|
485 |
+
output_index: 0,
|
486 |
+
item: outputObject,
|
487 |
+
sequence_number: SEQUENCE_NUMBER_PLACEHOLDER,
|
488 |
+
};
|
489 |
+
}
|
490 |
|
491 |
+
// If start of a new content part, create it
|
492 |
+
currentOutputItem = responseObject.output.at(-1) as ResponseOutputMessage;
|
493 |
+
if (currentOutputItem.content.length === 0) {
|
494 |
+
// Response content part added event
|
495 |
+
const contentPart: ResponseContentPartAddedEvent["part"] = {
|
496 |
+
type: "output_text",
|
497 |
+
text: "",
|
498 |
+
annotations: [],
|
499 |
+
};
|
500 |
+
currentOutputItem.content.push(contentPart);
|
501 |
+
|
502 |
+
yield {
|
503 |
+
type: "response.content_part.added",
|
504 |
+
item_id: currentOutputItem.id,
|
505 |
+
output_index: responseObject.output.length - 1,
|
506 |
+
content_index: currentOutputItem.content.length - 1,
|
507 |
+
part: contentPart,
|
508 |
+
sequence_number: SEQUENCE_NUMBER_PLACEHOLDER,
|
509 |
+
};
|
510 |
+
}
|
511 |
|
512 |
+
const contentPart = currentOutputItem.content.at(-1);
|
513 |
+
if (!contentPart || contentPart.type !== "output_text") {
|
514 |
+
throw new StreamingError(
|
515 |
+
`Not implemented: only output_text is supported in response.output[].content[].type. Got ${contentPart?.type}`
|
516 |
+
);
|
517 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
518 |
|
519 |
+
// Add text delta
|
520 |
+
contentPart.text += delta.content;
|
521 |
+
yield {
|
522 |
+
type: "response.output_text.delta",
|
523 |
+
item_id: currentOutputItem.id,
|
524 |
+
output_index: responseObject.output.length - 1,
|
525 |
+
content_index: currentOutputItem.content.length - 1,
|
526 |
+
delta: delta.content,
|
527 |
+
sequence_number: SEQUENCE_NUMBER_PLACEHOLDER,
|
528 |
+
};
|
529 |
+
} else if (delta.tool_calls && delta.tool_calls.length > 0) {
|
530 |
+
if (delta.tool_calls.length > 1) {
|
531 |
+
throw new StreamingError("Not implemented: multiple tool calls are not supported.");
|
532 |
+
}
|
533 |
|
534 |
+
let currentOutputItem = responseObject.output.at(-1);
|
535 |
+
if (currentOutputItem?.type !== "mcp_call" && currentOutputItem?.type !== "function_call") {
|
536 |
+
if (!delta.tool_calls[0].function.name) {
|
537 |
+
throw new StreamingError("Tool call function name is required when starting a new tool call.");
|
|
|
|
|
|
|
|
|
538 |
}
|
|
|
539 |
|
540 |
+
const newOutputObject: ResponseOutputItem.McpCall | ResponseFunctionToolCall =
|
541 |
+
delta.tool_calls[0].function.name in mcpToolsMapping
|
542 |
+
? {
|
543 |
+
type: "mcp_call",
|
544 |
+
id: generateUniqueId("mcp_call"),
|
545 |
+
name: delta.tool_calls[0].function.name,
|
546 |
+
server_label: mcpToolsMapping[delta.tool_calls[0].function.name].server_label,
|
547 |
+
arguments: "",
|
548 |
+
}
|
549 |
+
: {
|
550 |
+
type: "function_call",
|
551 |
+
id: generateUniqueId("fc"),
|
552 |
+
call_id: delta.tool_calls[0].id,
|
553 |
+
name: delta.tool_calls[0].function.name,
|
554 |
+
arguments: "",
|
555 |
+
};
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
556 |
|
557 |
+
// Response output item added event
|
558 |
+
responseObject.output.push(newOutputObject);
|
559 |
+
yield {
|
560 |
+
type: "response.output_item.added",
|
561 |
+
output_index: responseObject.output.length - 1,
|
562 |
+
item: newOutputObject,
|
563 |
+
sequence_number: SEQUENCE_NUMBER_PLACEHOLDER,
|
564 |
+
};
|
565 |
+
}
|
|
|
|
|
|
|
566 |
|
567 |
+
// Current item is necessarily a tool call
|
568 |
+
currentOutputItem = responseObject.output.at(-1) as ResponseOutputItem.McpCall | ResponseFunctionToolCall;
|
569 |
+
currentOutputItem.arguments += delta.tool_calls[0].function.arguments;
|
570 |
+
yield {
|
571 |
+
type:
|
572 |
+
currentOutputItem.type === "mcp_call"
|
573 |
+
? "response.mcp_call.arguments_delta"
|
574 |
+
: "response.function_call_arguments.delta",
|
575 |
+
item_id: currentOutputItem.id as string,
|
576 |
+
output_index: responseObject.output.length - 1,
|
577 |
+
delta: delta.tool_calls[0].function.arguments,
|
578 |
+
sequence_number: SEQUENCE_NUMBER_PLACEHOLDER,
|
579 |
+
};
|
580 |
+
}
|
581 |
+
}
|
582 |
|
583 |
+
const lastOutputItem = responseObject.output.at(-1);
|
584 |
+
if (lastOutputItem) {
|
585 |
+
if (lastOutputItem?.type === "message") {
|
586 |
+
const contentPart = lastOutputItem.content.at(-1);
|
587 |
+
if (contentPart?.type === "output_text") {
|
588 |
+
yield {
|
589 |
+
type: "response.output_text.done",
|
590 |
+
item_id: lastOutputItem.id,
|
591 |
+
output_index: responseObject.output.length - 1,
|
592 |
+
content_index: lastOutputItem.content.length - 1,
|
593 |
+
text: contentPart.text,
|
594 |
+
sequence_number: SEQUENCE_NUMBER_PLACEHOLDER,
|
595 |
+
};
|
596 |
|
597 |
+
yield {
|
598 |
+
type: "response.content_part.done",
|
599 |
+
item_id: lastOutputItem.id,
|
600 |
+
output_index: responseObject.output.length - 1,
|
601 |
+
content_index: lastOutputItem.content.length - 1,
|
602 |
+
part: contentPart,
|
603 |
+
sequence_number: SEQUENCE_NUMBER_PLACEHOLDER,
|
|
|
|
|
604 |
};
|
605 |
+
} else {
|
606 |
+
throw new StreamingError("Not implemented: only output_text is supported in streaming mode.");
|
607 |
}
|
608 |
+
|
609 |
+
// Response output item done event
|
610 |
+
lastOutputItem.status = "completed";
|
611 |
+
yield {
|
612 |
+
type: "response.output_item.done",
|
613 |
+
output_index: responseObject.output.length - 1,
|
614 |
+
item: lastOutputItem,
|
615 |
+
sequence_number: SEQUENCE_NUMBER_PLACEHOLDER,
|
616 |
+
};
|
617 |
+
} else if (lastOutputItem?.type === "function_call") {
|
618 |
+
yield {
|
619 |
+
type: "response.function_call_arguments.done",
|
620 |
+
item_id: lastOutputItem.id as string,
|
621 |
+
output_index: responseObject.output.length - 1,
|
622 |
+
arguments: lastOutputItem.arguments,
|
623 |
+
sequence_number: SEQUENCE_NUMBER_PLACEHOLDER,
|
624 |
+
};
|
625 |
+
|
626 |
+
lastOutputItem.status = "completed";
|
627 |
+
yield {
|
628 |
+
type: "response.output_item.done",
|
629 |
+
output_index: responseObject.output.length - 1,
|
630 |
+
item: lastOutputItem,
|
631 |
+
sequence_number: SEQUENCE_NUMBER_PLACEHOLDER,
|
632 |
};
|
633 |
+
} else if (lastOutputItem?.type === "mcp_call") {
|
634 |
+
yield {
|
635 |
+
type: "response.mcp_call.arguments_done",
|
636 |
+
item_id: lastOutputItem.id as string,
|
637 |
+
output_index: responseObject.output.length - 1,
|
638 |
+
arguments: lastOutputItem.arguments,
|
639 |
+
sequence_number: SEQUENCE_NUMBER_PLACEHOLDER,
|
640 |
+
};
|
641 |
+
yield {
|
642 |
+
type: "response.output_item.done",
|
643 |
+
output_index: responseObject.output.length - 1,
|
644 |
+
item: lastOutputItem,
|
645 |
+
sequence_number: SEQUENCE_NUMBER_PLACEHOLDER,
|
646 |
+
};
|
647 |
+
} else {
|
648 |
+
throw new StreamingError(
|
649 |
+
`Not implemented: expected message, function_call, or mcp_call, got ${lastOutputItem?.type}`
|
650 |
+
);
|
651 |
}
|
|
|
|
|
652 |
}
|
653 |
+
}
|
654 |
|
655 |
+
/*
|
656 |
+
* Perform an approved MCP tool call and stream the response.
|
657 |
+
*/
|
658 |
+
async function* callApprovedMCPToolStream(
|
659 |
+
approval_request_id: string,
|
660 |
+
approvalRequest: McpApprovalRequestParams | undefined,
|
661 |
+
mcpToolsMapping: Record<string, McpServerParams>,
|
662 |
+
responseObject: IncompleteResponse
|
663 |
+
): AsyncGenerator<ResponseStreamEvent> {
|
664 |
+
if (!approvalRequest) {
|
665 |
+
throw new Error(`MCP approval request '${approval_request_id}' not found`);
|
666 |
+
}
|
667 |
|
668 |
+
const outputObject: ResponseOutputItem.McpCall = {
|
669 |
+
type: "mcp_call",
|
670 |
+
id: generateUniqueId("mcp_call"),
|
671 |
+
name: approvalRequest.name,
|
672 |
+
server_label: approvalRequest.server_label,
|
673 |
+
arguments: approvalRequest.arguments,
|
674 |
+
};
|
675 |
+
responseObject.output.push(outputObject);
|
676 |
+
|
677 |
+
// Response output item added event
|
678 |
+
yield {
|
679 |
+
type: "response.output_item.added",
|
680 |
+
output_index: responseObject.output.length - 1,
|
681 |
+
item: outputObject,
|
682 |
+
sequence_number: SEQUENCE_NUMBER_PLACEHOLDER,
|
683 |
+
};
|
684 |
+
|
685 |
+
yield {
|
686 |
+
type: "response.mcp_call.in_progress",
|
687 |
+
item_id: outputObject.id,
|
688 |
+
output_index: responseObject.output.length - 1,
|
689 |
+
sequence_number: SEQUENCE_NUMBER_PLACEHOLDER,
|
690 |
+
};
|
691 |
+
|
692 |
+
const toolParams = mcpToolsMapping[approvalRequest.name];
|
693 |
+
const toolResult = await callMcpTool(toolParams, approvalRequest.name, approvalRequest.arguments);
|
694 |
+
|
695 |
+
if (toolResult.error) {
|
696 |
+
outputObject.error = toolResult.error;
|
697 |
+
yield {
|
698 |
+
type: "response.mcp_call.failed",
|
699 |
+
sequence_number: SEQUENCE_NUMBER_PLACEHOLDER,
|
700 |
+
};
|
701 |
+
throw new Error(outputObject.error);
|
702 |
+
}
|
703 |
+
|
704 |
+
outputObject.output = toolResult.output;
|
705 |
+
yield {
|
706 |
+
type: "response.mcp_call.completed",
|
707 |
+
sequence_number: SEQUENCE_NUMBER_PLACEHOLDER,
|
708 |
+
};
|
709 |
+
yield {
|
710 |
+
type: "response.output_item.done",
|
711 |
+
output_index: responseObject.output.length - 1,
|
712 |
+
item: outputObject,
|
713 |
+
sequence_number: SEQUENCE_NUMBER_PLACEHOLDER,
|
714 |
+
};
|
715 |
+
}
|
716 |
+
|
717 |
+
async function* handleMCPToolCallsAfterLLM(
|
718 |
+
responseObject: IncompleteResponse,
|
719 |
+
mcpToolsMapping: Record<string, McpServerParams>
|
720 |
+
): AsyncGenerator<ResponseStreamEvent> {
|
721 |
+
for (let output_index = 0; output_index < responseObject.output.length; output_index++) {
|
722 |
+
const outputItem = responseObject.output[output_index];
|
723 |
+
if (outputItem.type === "mcp_call") {
|
724 |
+
const toolCall = outputItem as ResponseOutputItem.McpCall;
|
725 |
+
const toolParams = mcpToolsMapping[toolCall.name];
|
726 |
+
if (toolParams) {
|
727 |
+
const approvalRequired =
|
728 |
+
toolParams.require_approval === "always"
|
729 |
+
? true
|
730 |
+
: toolParams.require_approval === "never"
|
731 |
+
? false
|
732 |
+
: toolParams.require_approval.always?.tool_names?.includes(toolCall.name)
|
733 |
? true
|
734 |
+
: toolParams.require_approval.never?.tool_names?.includes(toolCall.name)
|
735 |
? false
|
736 |
+
: true; // behavior is undefined in specs, let's default to
|
737 |
+
|
738 |
+
if (approvalRequired) {
|
739 |
+
const approvalRequest: ResponseOutputItem.McpApprovalRequest = {
|
740 |
+
type: "mcp_approval_request",
|
741 |
+
id: generateUniqueId("mcp_approval_request"),
|
742 |
+
name: toolCall.name,
|
743 |
+
server_label: toolParams.server_label,
|
744 |
+
arguments: toolCall.arguments,
|
745 |
+
};
|
746 |
+
responseObject.output.push(approvalRequest);
|
747 |
+
yield {
|
748 |
+
type: "response.output_item.added",
|
749 |
+
output_index: responseObject.output.length,
|
750 |
+
item: approvalRequest,
|
751 |
+
sequence_number: SEQUENCE_NUMBER_PLACEHOLDER,
|
752 |
+
};
|
753 |
+
} else {
|
754 |
+
responseObject.output.push;
|
755 |
+
yield {
|
756 |
+
type: "response.mcp_call.in_progress",
|
757 |
+
item_id: toolCall.id,
|
758 |
+
sequence_number: SEQUENCE_NUMBER_PLACEHOLDER,
|
759 |
+
output_index,
|
760 |
+
};
|
761 |
+
const toolResult = await callMcpTool(toolParams, toolCall.name, toolCall.arguments);
|
762 |
+
if (toolResult.error) {
|
763 |
+
toolCall.error = toolResult.error;
|
764 |
+
yield {
|
765 |
+
type: "response.mcp_call.failed",
|
766 |
+
sequence_number: SEQUENCE_NUMBER_PLACEHOLDER,
|
767 |
+
};
|
768 |
+
throw new Error(toolCall.error);
|
769 |
} else {
|
770 |
+
toolCall.output = toolResult.output;
|
771 |
+
yield {
|
772 |
+
type: "response.mcp_call.completed",
|
773 |
+
sequence_number: SEQUENCE_NUMBER_PLACEHOLDER,
|
774 |
+
};
|
|
|
|
|
|
|
775 |
}
|
776 |
}
|
777 |
}
|
778 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
779 |
}
|
780 |
+
}
|
src/schemas.ts
CHANGED
@@ -60,10 +60,17 @@ const mcpApprovalRequestParamsSchema = z.object({
|
|
60 |
});
|
61 |
const mcpApprovalResponseParamsSchema = z.object({
|
62 |
type: z.literal("mcp_approval_response"),
|
63 |
-
id: z.string().
|
64 |
approval_request_id: z.string(),
|
65 |
approve: z.boolean(),
|
66 |
-
reason: z.string().
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
});
|
68 |
|
69 |
export const createResponseParamsSchema = z.object({
|
@@ -136,6 +143,7 @@ export const createResponseParamsSchema = z.object({
|
|
136 |
}),
|
137 |
mcpApprovalRequestParamsSchema,
|
138 |
mcpApprovalResponseParamsSchema,
|
|
|
139 |
])
|
140 |
),
|
141 |
]),
|
@@ -215,3 +223,4 @@ export type CreateResponseParams = z.infer<typeof createResponseParamsSchema>;
|
|
215 |
export type McpServerParams = z.infer<typeof mcpServerParamsSchema>;
|
216 |
export type McpApprovalRequestParams = z.infer<typeof mcpApprovalRequestParamsSchema>;
|
217 |
export type McpApprovalResponseParams = z.infer<typeof mcpApprovalResponseParamsSchema>;
|
|
|
|
60 |
});
|
61 |
const mcpApprovalResponseParamsSchema = z.object({
|
62 |
type: z.literal("mcp_approval_response"),
|
63 |
+
id: z.string().nullable().default(null),
|
64 |
approval_request_id: z.string(),
|
65 |
approve: z.boolean(),
|
66 |
+
reason: z.string().nullable().default(null),
|
67 |
+
});
|
68 |
+
const mcpCallParamsSchema = z.object({
|
69 |
+
type: z.literal("mcp_call"),
|
70 |
+
id: z.string(),
|
71 |
+
name: z.string(),
|
72 |
+
server_label: z.string(),
|
73 |
+
arguments: z.string(),
|
74 |
});
|
75 |
|
76 |
export const createResponseParamsSchema = z.object({
|
|
|
143 |
}),
|
144 |
mcpApprovalRequestParamsSchema,
|
145 |
mcpApprovalResponseParamsSchema,
|
146 |
+
mcpCallParamsSchema,
|
147 |
])
|
148 |
),
|
149 |
]),
|
|
|
223 |
export type McpServerParams = z.infer<typeof mcpServerParamsSchema>;
|
224 |
export type McpApprovalRequestParams = z.infer<typeof mcpApprovalRequestParamsSchema>;
|
225 |
export type McpApprovalResponseParams = z.infer<typeof mcpApprovalResponseParamsSchema>;
|
226 |
+
export type McpCallParams = z.infer<typeof mcpCallParamsSchema>;
|