Update app.py
Browse files
app.py
CHANGED
|
@@ -82,10 +82,10 @@ os.makedirs(app.config['MODEL_FOLDER'], exist_ok=True)
|
|
| 82 |
# Prediction analysis models loaded from Hugging Face.
|
| 83 |
src_path = hf_hub_download(
|
| 84 |
repo_id="WebashalarForML/Diamond_model_",
|
| 85 |
-
filename="models_list/mkble/
|
| 86 |
cache_dir=MODEL_FOLDER
|
| 87 |
)
|
| 88 |
-
dst_path = os.path.join(MODEL_FOLDER, "
|
| 89 |
shutil.copy(src_path, dst_path)
|
| 90 |
makable_model = load(dst_path)
|
| 91 |
|
|
@@ -119,11 +119,25 @@ shutil.copy(src_path, dst_path)
|
|
| 119 |
gia_model = load(dst_path)
|
| 120 |
|
| 121 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 122 |
|
| 123 |
print("makable_model type:", type(makable_model))
|
| 124 |
print("grade_model type:", type(grade_model))
|
| 125 |
print("bygrade_model type:", type(bygrade_model))
|
| 126 |
print("gia_model type:", type(gia_model))
|
|
|
|
|
|
|
| 127 |
|
| 128 |
#gia_model = load("models/StackingRegressor_best_pipeline_mkble_0_to_1.01.pkl")
|
| 129 |
#grade_model = load("models/StackingRegressor_best_pipeline_grd_0_to_1.01.pkl")
|
|
@@ -278,13 +292,19 @@ def process_dataframe(df):
|
|
| 278 |
# -------------------------
|
| 279 |
try:
|
| 280 |
x = df_pred.copy()
|
| 281 |
-
df_pred['GIA_Predicted'] = pd.DataFrame(np.expm1(gia_model.predict(x)), columns=["Predicted"])
|
| 282 |
-
df_pred['Grade_Predicted'] = pd.DataFrame(np.expm1(grade_model.predict(x)), columns=["Predicted"])
|
| 283 |
-
df_pred['ByGrade_Predicted'] = pd.DataFrame(np.expm1(bygrade_model.predict(x)), columns=["Predicted"])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 284 |
df_pred['Makable_Predicted'] = pd.DataFrame(np.expm1(makable_model.predict(x)), columns=["Predicted"])
|
| 285 |
-
|
| 286 |
-
df_pred['
|
| 287 |
-
df_pred['
|
|
|
|
| 288 |
df_pred['Makable_Diff'] = df_pred['EngAmt'] - df_pred['Makable_Predicted']
|
| 289 |
|
| 290 |
for col in ['Tag', 'EngShp', 'EngQua', 'EngCol', 'EngCut', 'EngPol', 'EngSym', 'EngFlo', 'EngNts', 'EngMikly','EngBlk', 'EngWht', 'EngOpen', 'EngPav']:
|
|
|
|
| 82 |
# Prediction analysis models loaded from Hugging Face.
|
| 83 |
src_path = hf_hub_download(
|
| 84 |
repo_id="WebashalarForML/Diamond_model_",
|
| 85 |
+
filename="models_list/mkble/DecisionTree_best_pipeline_mkble_with_assitance.pkl",
|
| 86 |
cache_dir=MODEL_FOLDER
|
| 87 |
)
|
| 88 |
+
dst_path = os.path.join(MODEL_FOLDER, "DecisionTree_best_pipeline_mkble_with_assitance.pkl")
|
| 89 |
shutil.copy(src_path, dst_path)
|
| 90 |
makable_model = load(dst_path)
|
| 91 |
|
|
|
|
| 119 |
gia_model = load(dst_path)
|
| 120 |
|
| 121 |
|
| 122 |
+
#classsification model on the task
|
| 123 |
+
src_path = hf_hub_download(
|
| 124 |
+
repo_id="WebashalarForML/Diamond_model_",
|
| 125 |
+
filename="models_list/classification/3_pipeline.pkl",
|
| 126 |
+
cache_dir=MODEL_FOLDER
|
| 127 |
+
)
|
| 128 |
+
dst_path = os.path.join(MODEL_FOLDER, "3_pipeline.pkl")
|
| 129 |
+
shutil.copy(src_path, dst_path)
|
| 130 |
+
mkble_amt_class_model = load(dst_path)
|
| 131 |
+
|
| 132 |
+
|
| 133 |
+
|
| 134 |
|
| 135 |
print("makable_model type:", type(makable_model))
|
| 136 |
print("grade_model type:", type(grade_model))
|
| 137 |
print("bygrade_model type:", type(bygrade_model))
|
| 138 |
print("gia_model type:", type(gia_model))
|
| 139 |
+
print("================================")
|
| 140 |
+
print("mkble_amt_class_model type:", type(mkble_amt_class_model))
|
| 141 |
|
| 142 |
#gia_model = load("models/StackingRegressor_best_pipeline_mkble_0_to_1.01.pkl")
|
| 143 |
#grade_model = load("models/StackingRegressor_best_pipeline_grd_0_to_1.01.pkl")
|
|
|
|
| 292 |
# -------------------------
|
| 293 |
try:
|
| 294 |
x = df_pred.copy()
|
| 295 |
+
#df_pred['GIA_Predicted'] = pd.DataFrame(np.expm1(gia_model.predict(x)), columns=["Predicted"])
|
| 296 |
+
#df_pred['Grade_Predicted'] = pd.DataFrame(np.expm1(grade_model.predict(x)), columns=["Predicted"])
|
| 297 |
+
#df_pred['ByGrade_Predicted'] = pd.DataFrame(np.expm1(bygrade_model.predict(x)), columns=["Predicted"])
|
| 298 |
+
df_pred['change_in_amt_mkble'] = pd.DataFrame(mkble_amt_class_model.predict(x), columns=["pred_change_in_eng_to_mkble"])
|
| 299 |
+
print("df_pred")
|
| 300 |
+
df_pred = df_pred[['Tag', 'EngCts', 'EngShp', 'EngQua', 'EngCol', 'EngCut', 'EngPol',
|
| 301 |
+
'EngSym', 'EngFlo', 'EngNts', 'EngMikly', 'EngBlk', 'EngWht', 'EngOpen',
|
| 302 |
+
'EngPav', 'EngAmt', 'change_in_amt_mkble']]
|
| 303 |
df_pred['Makable_Predicted'] = pd.DataFrame(np.expm1(makable_model.predict(x)), columns=["Predicted"])
|
| 304 |
+
|
| 305 |
+
#df_pred['GIA_Diff'] = df_pred['EngAmt'] - df_pred['GIA_Predicted']
|
| 306 |
+
#df_pred['Grade_Diff'] = df_pred['EngAmt'] - df_pred['Grade_Predicted']
|
| 307 |
+
#df_pred['ByGrade_Diff'] = df_pred['EngAmt'] - df_pred['ByGrade_Predicted']
|
| 308 |
df_pred['Makable_Diff'] = df_pred['EngAmt'] - df_pred['Makable_Predicted']
|
| 309 |
|
| 310 |
for col in ['Tag', 'EngShp', 'EngQua', 'EngCol', 'EngCut', 'EngPol', 'EngSym', 'EngFlo', 'EngNts', 'EngMikly','EngBlk', 'EngWht', 'EngOpen', 'EngPav']:
|