Update app.py
Browse files
app.py
CHANGED
|
@@ -241,7 +241,8 @@ def process_dataframe(df):
|
|
| 241 |
required_columns = ['Tag', 'EngCts', 'EngShp', 'EngQua', 'EngCol', 'EngCut', 'EngPol',
|
| 242 |
'EngSym', 'EngFlo', 'EngNts', 'EngMikly', 'EngBlk', 'EngWht', 'EngOpen',
|
| 243 |
'EngPav', 'EngAmt']
|
| 244 |
-
required_columns_2 =
|
|
|
|
| 245 |
|
| 246 |
# Create two DataFrames: one for prediction and one for classification.
|
| 247 |
df_pred = df[required_columns].copy()
|
|
@@ -294,22 +295,22 @@ def process_dataframe(df):
|
|
| 294 |
dx['cut_change'] = cut_model.predict(x)
|
| 295 |
dx['qua_change'] = qua_model.predict(x)
|
| 296 |
dx['shp_change'] = shp_model.predict(x)
|
| 297 |
-
dx['Change_Blk_Eng_to_Mkbl_value'] = blk_eng_to_mkbl_model.predict(
|
| 298 |
-
dx['Change_Wht_Eng_to_Mkbl_value'] = wht_eng_to_mkbl_model.predict(
|
| 299 |
-
dx['Change_Open_Eng_to_Mkbl_value'] = open_eng_to_mkbl_model.predict(
|
| 300 |
-
dx['Change_Pav_Eng_to_Mkbl_value'] = pav_eng_to_mkbl_model.predict(
|
| 301 |
-
dx['Change_Blk_Eng_to_Grd_value'] = blk_eng_to_grade_model.predict(
|
| 302 |
-
dx['Change_Wht_Eng_to_Grd_value'] = wht_eng_to_grade_model.predict(
|
| 303 |
-
dx['Change_Open_Eng_to_Grd_value'] = open_eng_to_grade_model.predict(
|
| 304 |
-
dx['Change_Pav_Eng_to_Grd_value'] = pav_eng_to_grade_model.predict(
|
| 305 |
-
dx['Change_Blk_Eng_to_ByGrd_value'] = blk_eng_to_bygrade_model.predict(
|
| 306 |
-
dx['Change_Wht_Eng_to_ByGrd_value'] = wht_eng_to_bygrade_model.predict(
|
| 307 |
-
dx['Change_Open_Eng_to_ByGrd_value'] = open_eng_to_bygrade_model.predict(
|
| 308 |
-
dx['Change_Pav_Eng_to_ByGrd_value'] = pav_eng_to_bygrade_model.predict(
|
| 309 |
-
dx['Change_Blk_Eng_to_Gia_value'] = blk_eng_to_gia_model.predict(
|
| 310 |
-
dx['Change_Wht_Eng_to_Gia_value'] = wht_eng_to_gia_model.predict(
|
| 311 |
-
dx['Change_Open_Eng_to_Gia_value'] = open_eng_to_gia_model.predict(
|
| 312 |
-
dx['Change_Pav_Eng_to_Gia_value'] = pav_eng_to_gia_model.predict(
|
| 313 |
|
| 314 |
# Inverse transform classification predictions.
|
| 315 |
dx['col_change'] = loaded_label_encoder['Change_color_value'].inverse_transform(dx['col_change'])
|
|
|
|
| 241 |
required_columns = ['Tag', 'EngCts', 'EngShp', 'EngQua', 'EngCol', 'EngCut', 'EngPol',
|
| 242 |
'EngSym', 'EngFlo', 'EngNts', 'EngMikly', 'EngBlk', 'EngWht', 'EngOpen',
|
| 243 |
'EngPav', 'EngAmt']
|
| 244 |
+
required_columns_2 = ['Tag', 'EngCts', 'EngShp', 'EngQua', 'EngCol', 'EngCut', 'EngPol',
|
| 245 |
+
'EngSym', 'EngFlo', 'EngNts', 'EngMikly', 'EngAmt']
|
| 246 |
|
| 247 |
# Create two DataFrames: one for prediction and one for classification.
|
| 248 |
df_pred = df[required_columns].copy()
|
|
|
|
| 295 |
dx['cut_change'] = cut_model.predict(x)
|
| 296 |
dx['qua_change'] = qua_model.predict(x)
|
| 297 |
dx['shp_change'] = shp_model.predict(x)
|
| 298 |
+
dx['Change_Blk_Eng_to_Mkbl_value'] = blk_eng_to_mkbl_model.predict(x)
|
| 299 |
+
dx['Change_Wht_Eng_to_Mkbl_value'] = wht_eng_to_mkbl_model.predict(x)
|
| 300 |
+
dx['Change_Open_Eng_to_Mkbl_value'] = open_eng_to_mkbl_model.predict(x)
|
| 301 |
+
dx['Change_Pav_Eng_to_Mkbl_value'] = pav_eng_to_mkbl_model.predict(x)
|
| 302 |
+
dx['Change_Blk_Eng_to_Grd_value'] = blk_eng_to_grade_model.predict(x)
|
| 303 |
+
dx['Change_Wht_Eng_to_Grd_value'] = wht_eng_to_grade_model.predict(x)
|
| 304 |
+
dx['Change_Open_Eng_to_Grd_value'] = open_eng_to_grade_model.predict(x)
|
| 305 |
+
dx['Change_Pav_Eng_to_Grd_value'] = pav_eng_to_grade_model.predict(x)
|
| 306 |
+
dx['Change_Blk_Eng_to_ByGrd_value'] = blk_eng_to_bygrade_model.predict(x)
|
| 307 |
+
dx['Change_Wht_Eng_to_ByGrd_value'] = wht_eng_to_bygrade_model.predict(x)
|
| 308 |
+
dx['Change_Open_Eng_to_ByGrd_value'] = open_eng_to_bygrade_model.predict(x)
|
| 309 |
+
dx['Change_Pav_Eng_to_ByGrd_value'] = pav_eng_to_bygrade_model.predict(x)
|
| 310 |
+
dx['Change_Blk_Eng_to_Gia_value'] = blk_eng_to_gia_model.predict(x)
|
| 311 |
+
dx['Change_Wht_Eng_to_Gia_value'] = wht_eng_to_gia_model.predict(x)
|
| 312 |
+
dx['Change_Open_Eng_to_Gia_value'] = open_eng_to_gia_model.predict(x)
|
| 313 |
+
dx['Change_Pav_Eng_to_Gia_value'] = pav_eng_to_gia_model.predict(x)
|
| 314 |
|
| 315 |
# Inverse transform classification predictions.
|
| 316 |
dx['col_change'] = loaded_label_encoder['Change_color_value'].inverse_transform(dx['col_change'])
|