|
|
|
|
|
import os
|
|
import json
|
|
import logging
|
|
from huggingface_hub import InferenceClient
|
|
from huggingface_hub.utils._errors import BadRequestError
|
|
from dotenv import load_dotenv
|
|
from utils.fileTotext import extract_text_based_on_format
|
|
import re
|
|
from utils.spacy import Parser_from_model
|
|
|
|
|
|
load_dotenv()
|
|
|
|
|
|
HFT = os.getenv('HF_TOKEN')
|
|
if not HFT:
|
|
raise ValueError("Hugging Face token is not set in environment variables.")
|
|
client = InferenceClient(model="mistralai/Mistral-Nemo-Instruct-2407", token=HFT)
|
|
|
|
|
|
def Data_Cleaner(text):
|
|
pattern = r".*?format:"
|
|
result = re.split(pattern, text, maxsplit=1)
|
|
if len(result) > 1:
|
|
text_after_format = result[1].strip().strip('`').strip('json')
|
|
else:
|
|
text_after_format = text.strip().strip('`').strip('json')
|
|
|
|
return text_after_format
|
|
|
|
|
|
def Model_ProfessionalDetails_Output(resume, client):
|
|
system_role = {
|
|
"role": "system",
|
|
"content": "You are a skilled resume parser. Your task is to extract professional details from resumes in a structured JSON format defined by the User. Ensure accuracy and completeness while maintaining the format provided and if field are missing just return 'not found'."
|
|
}
|
|
user_prompt = {
|
|
"role": "user",
|
|
"content": f'''Act as a resume parser for the following text given in text: {resume}
|
|
Extract the text in the following output JSON string as:
|
|
{{
|
|
"professional": {{
|
|
"skills": "Extract and list all technical skills, non-technical skills, programming languages, frameworks, domains, and technologies based on the resume.",
|
|
"soft_skills": "Extract non-technical skills, Communication skills, and soft skills based on the resume."
|
|
"projects": "Include only the project names, titles, or headers mentioned in the resume. ",
|
|
"projects_experience": ["Include overall project Experiences and about project in short mentioned in the resume.] ",
|
|
"experience": "Include the total experience in months or years as mentioned in the resume.",
|
|
"companies_worked_at": "Include the names of all companies worked at according to the resume. ",
|
|
"certification": "Include any certifications obtained based on the resume. ",
|
|
"worked_as": "Include the names of roles worked as according to the resume.",
|
|
"qualification":"Extract and list the qualifications based on the resume, (qualifications likes B.Tech). If none are found, return 'No education listed'.",
|
|
"course": "Extract the name of the Learning Course completed based on the resume. If not found, return 'No Course listed'.",
|
|
"university": "Extract the name of the university or Collage or Intitute attended based on the resume. If not found, return 'No university listed'.",
|
|
"year_of_graduation": "Extract the year of graduation from the resume. If not found, return 'No year of graduation listed'."
|
|
}}
|
|
}}
|
|
Json Output:
|
|
'''
|
|
}
|
|
|
|
|
|
response = ""
|
|
for message in client.chat_completion(messages=[system_role, user_prompt], max_tokens=3000, stream=True, temperature=0.35):
|
|
response += message.choices[0].delta.content
|
|
|
|
try:
|
|
clean_response = Data_Cleaner(response)
|
|
parsed_response = json.loads(clean_response)
|
|
except json.JSONDecodeError as e:
|
|
logging.error(f"JSON Decode Error: {e}")
|
|
return {}
|
|
|
|
return parsed_response
|
|
|
|
def Model_PersonalDetails_Output(resume, client):
|
|
system_role = {
|
|
"role": "system",
|
|
"content": "You are a skilled resume parser. Your task is to extract professional details from resumes in a structured JSON format defined by the User. Ensure accuracy and completeness while maintaining the format provided and if field are missing just return 'not found'."
|
|
}
|
|
user_prompt = {
|
|
"role": "user",
|
|
"content": f'''Act as a resume parser for the following text given in text: {resume}
|
|
Extract the text in the following output JSON string as:
|
|
{{
|
|
"personal": {{
|
|
"name": "Extract the full name based on the resume. If not found, return 'No name listed'.",
|
|
"contact_number": "Extract the contact number from the resume. If not found, return 'No contact number listed'.",
|
|
"email": "Extract the email address from the resume. If not found, return 'No email listed'.",
|
|
"Address": "Extract the Address or address from the resume. If not found, return 'No Address listed'.",
|
|
"link": "Extract any relevant links (e.g., portfolio, LinkedIn) from the resume. If not found, return 'No link listed'."
|
|
}}
|
|
}}
|
|
output:
|
|
'''
|
|
}
|
|
|
|
|
|
response = ""
|
|
for message in client.chat_completion(
|
|
messages=[system_role, user_prompt],
|
|
max_tokens=3000,
|
|
stream=True,
|
|
temperature=0.35,
|
|
):
|
|
response += message.choices[0].delta.content
|
|
|
|
|
|
try:
|
|
|
|
clean_response=Data_Cleaner(response)
|
|
|
|
parsed_response = json.loads(clean_response)
|
|
|
|
except json.JSONDecodeError as e:
|
|
print("JSON Decode Error:", e)
|
|
print("Raw Response:", response)
|
|
return {}
|
|
|
|
return parsed_response
|
|
|
|
|
|
|
|
|
|
def process_resume_data(file_path):
|
|
resume_text, hyperlinks = extract_text_based_on_format(file_path)
|
|
print("Resume converted to text successfully.")
|
|
|
|
if not resume_text:
|
|
return {"error": "Text extraction failed"}
|
|
|
|
|
|
try:
|
|
|
|
per_data = Model_PersonalDetails_Output(resume_text, client)
|
|
|
|
|
|
pro_data = Model_ProfessionalDetails_Output(resume_text, client)
|
|
|
|
|
|
|
|
|
|
if not per_data:
|
|
logging.warning("Mistral personal data extraction failed.")
|
|
per_data = {}
|
|
|
|
if not pro_data:
|
|
logging.warning("Mistral professional data extraction failed.")
|
|
pro_data = {}
|
|
|
|
|
|
result = {
|
|
"personal": {
|
|
"name": per_data.get('personal', {}).get('name', 'Not found'),
|
|
"contact": per_data.get('personal', {}).get('contact_number', 'Not found'),
|
|
"email": per_data.get('personal', {}).get('email', 'Not found'),
|
|
"location": per_data.get('personal', {}).get('Address', 'Not found'),
|
|
"link": hyperlinks
|
|
},
|
|
"professional": {
|
|
"skills": pro_data.get('professional', {}).get('skills', 'Not found'),
|
|
"soft_skills": pro_data.get('professional', {}).get('soft_skills', 'Not found'),
|
|
"experience": [
|
|
{
|
|
"company": pro_data.get('professional', {}).get('companies_worked_at', 'Not found'),
|
|
"projects": pro_data.get('professional', {}).get('projects', 'Not found'),
|
|
"role": pro_data.get('professional', {}).get('worked_as', 'Not found'),
|
|
"years": pro_data.get('professional', {}).get('experience', 'Not found'),
|
|
"project_experience": pro_data.get('professional', {}).get('projects_experience', 'Not found')
|
|
}
|
|
],
|
|
"education": [
|
|
{
|
|
"qualification": pro_data.get('professional', {}).get('qualification', 'Not found'),
|
|
"university": pro_data.get('professional', {}).get('university', 'Not found'),
|
|
"course": pro_data.get('professional', {}).get('course', 'Not found'),
|
|
"certificate": pro_data.get('professional', {}).get('certification', 'Not found')
|
|
}
|
|
]
|
|
}
|
|
}
|
|
|
|
|
|
if per_data or pro_data:
|
|
print("------Mistral-----")
|
|
return result
|
|
else:
|
|
raise ValueError("Mistral returned no output")
|
|
|
|
|
|
except BadRequestError as e:
|
|
logging.error(f"HuggingFace API error: {e}. Falling back to SpaCy.")
|
|
print(f"HuggingFace API error: {e}. Falling back to SpaCy.")
|
|
except Exception as e:
|
|
logging.error(f"An error occurred while processing with Mistral: {e}. Falling back to SpaCy.")
|
|
print(f"An error occurred while processing with Mistral: {e}. Falling back to SpaCy.")
|
|
|
|
|
|
logging.warning("Mistral failed, switching to SpaCy.")
|
|
print("------Spacy-----")
|
|
return Parser_from_model(file_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import spacy
|
|
from spacy.training import Example
|
|
from spacy.util import minibatch, compounding
|
|
from pathlib import Path
|
|
from spacy.tokens import DocBin
|
|
import random
|
|
|
|
|
|
def load_data_from_spacy_file(file_path):
|
|
|
|
nlp = spacy.blank("en")
|
|
|
|
|
|
try:
|
|
doc_bin = DocBin().from_disk(file_path)
|
|
docs = list(doc_bin.get_docs(nlp.vocab))
|
|
return docs
|
|
except Exception as e:
|
|
print(f"Error loading data from .spacy file: {e}")
|
|
return []
|
|
|
|
|
|
|
|
def train_model(epochs, model_path):
|
|
|
|
nlp = spacy.blank("en")
|
|
|
|
|
|
if "ner" not in nlp.pipe_names:
|
|
ner = nlp.add_pipe("ner")
|
|
|
|
nlp.add_pipe("sentencizer")
|
|
|
|
|
|
labels = [
|
|
"PERSON", "CONTACT", "EMAIL", "ABOUT", "EXPERIENCE", "YEARS_EXPERIENCE",
|
|
"UNIVERSITY", "SOFT_SKILL", "INSTITUTE", "LAST_QUALIFICATION_YEAR", "JOB_TITLE",
|
|
"COMPANY", "COURSE", "DOB", "HOBBIES", "LINK", "SCHOOL", "QUALIFICATION",
|
|
"LANGUAGE", "LOCATION", "PROJECTS", "SKILL", "CERTIFICATE"
|
|
]
|
|
|
|
|
|
for label in labels:
|
|
ner.add_label(label)
|
|
|
|
|
|
train_data = load_data_from_spacy_file("./data/Spacy_data.spacy")
|
|
|
|
|
|
optimizer = nlp.begin_training()
|
|
|
|
epoch_losses = []
|
|
best_loss = float('inf')
|
|
|
|
|
|
for epoch in range(epochs):
|
|
losses = {}
|
|
random.shuffle(train_data)
|
|
|
|
|
|
batches = minibatch(train_data, size=compounding(4.0, 32.0, 1.001))
|
|
|
|
for batch in batches:
|
|
texts, annotations = zip(*[(doc.text, {"entities": [(ent.start_char, ent.end_char, ent.label_) for ent in doc.ents]}) for doc in batch])
|
|
|
|
|
|
examples = [Example.from_dict(nlp.make_doc(text), annotation) for text, annotation in zip(texts, annotations)]
|
|
|
|
|
|
nlp.update(examples, sgd=optimizer, drop=0.35, losses=losses)
|
|
|
|
current_loss = losses.get("ner", float('inf'))
|
|
epoch_losses.append(current_loss)
|
|
|
|
print(f"Losses at epoch {epoch + 1}: {losses}")
|
|
|
|
|
|
if current_loss == 0:
|
|
break
|
|
|
|
|
|
if current_loss < best_loss:
|
|
best_loss = current_loss
|
|
nlp.to_disk(model_path)
|
|
|
|
|
|
nlp.to_disk(model_path)
|
|
|
|
return epoch_losses
|
|
|