Spaces:
Running
Running
Commit
·
4a3d698
1
Parent(s):
02bf03c
init
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +1 -0
- app.py +386 -0
- edit.py +486 -0
- generate.py +412 -0
- requirements.txt +19 -0
- video_list/bear_g.mp4 +3 -0
- video_list/blackswan.mp4 +3 -0
- video_list/cat_box.mp4 +3 -0
- video_list/cockatiel.mp4 +3 -0
- video_list/dog_flower_g.mp4 +3 -0
- video_list/girl_and_dog.mp4 +3 -0
- video_list/gym_woman.mp4 +3 -0
- video_list/jeep.mp4 +3 -0
- video_list/puppy.mp4 +3 -0
- video_list/rabbit.mp4 +3 -0
- video_list/sea_lion.mp4 +3 -0
- video_list/sea_turtle.mp4 +3 -0
- video_list/wolf.mp4 +3 -0
- video_list/woman.mp4 +3 -0
- wan/__init__.py +3 -0
- wan/__pycache__/__init__.cpython-310.pyc +0 -0
- wan/__pycache__/__init__.cpython-312.pyc +0 -0
- wan/__pycache__/image2video.cpython-310.pyc +0 -0
- wan/__pycache__/image2video.cpython-312.pyc +0 -0
- wan/__pycache__/text2video.cpython-310.pyc +0 -0
- wan/__pycache__/text2video.cpython-312.pyc +0 -0
- wan/configs/__init__.py +42 -0
- wan/configs/__pycache__/__init__.cpython-310.pyc +0 -0
- wan/configs/__pycache__/__init__.cpython-312.pyc +0 -0
- wan/configs/__pycache__/shared_config.cpython-310.pyc +0 -0
- wan/configs/__pycache__/shared_config.cpython-312.pyc +0 -0
- wan/configs/__pycache__/wan_i2v_14B.cpython-310.pyc +0 -0
- wan/configs/__pycache__/wan_i2v_14B.cpython-312.pyc +0 -0
- wan/configs/__pycache__/wan_t2v_14B.cpython-310.pyc +0 -0
- wan/configs/__pycache__/wan_t2v_14B.cpython-312.pyc +0 -0
- wan/configs/__pycache__/wan_t2v_1_3B.cpython-310.pyc +0 -0
- wan/configs/__pycache__/wan_t2v_1_3B.cpython-312.pyc +0 -0
- wan/configs/shared_config.py +19 -0
- wan/configs/wan_i2v_14B.py +35 -0
- wan/configs/wan_t2v_14B.py +29 -0
- wan/configs/wan_t2v_1_3B.py +29 -0
- wan/distributed/__init__.py +0 -0
- wan/distributed/__pycache__/__init__.cpython-310.pyc +0 -0
- wan/distributed/__pycache__/__init__.cpython-312.pyc +0 -0
- wan/distributed/__pycache__/fsdp.cpython-310.pyc +0 -0
- wan/distributed/__pycache__/fsdp.cpython-312.pyc +0 -0
- wan/distributed/__pycache__/xdit_context_parallel.cpython-310.pyc +0 -0
- wan/distributed/__pycache__/xdit_context_parallel.cpython-312.pyc +0 -0
- wan/distributed/fsdp.py +32 -0
- wan/distributed/xdit_context_parallel.py +420 -0
.gitattributes
CHANGED
|
@@ -30,6 +30,7 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 30 |
*.tgz filter=lfs diff=lfs merge=lfs -text
|
| 31 |
*.wasm filter=lfs diff=lfs merge=lfs -text
|
| 32 |
*.xz filter=lfs diff=lfs merge=lfs -text
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
| 30 |
*.tgz filter=lfs diff=lfs merge=lfs -text
|
| 31 |
*.wasm filter=lfs diff=lfs merge=lfs -text
|
| 32 |
*.xz filter=lfs diff=lfs merge=lfs -text
|
| 33 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 36 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
app.py
ADDED
|
@@ -0,0 +1,386 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# app.py
|
| 2 |
+
import gradio as gr
|
| 3 |
+
import subprocess
|
| 4 |
+
import os
|
| 5 |
+
import sys
|
| 6 |
+
import datetime
|
| 7 |
+
import shutil
|
| 8 |
+
import time # Moved import time to the top for global access
|
| 9 |
+
import argparse
|
| 10 |
+
|
| 11 |
+
# --- Configuration ---
|
| 12 |
+
# !!! IMPORTANT: Ensure this path is correct for your environment !!!
|
| 13 |
+
CKPT_DIR = "./checkpoints/Wan2.1-T2V-1.3B"
|
| 14 |
+
EDIT_SCRIPT_PATH = "edit.py" # Assumes edit.py is in the same directory
|
| 15 |
+
OUTPUT_DIR = "gradio_outputs"
|
| 16 |
+
PYTHON_EXECUTABLE = sys.executable # Uses the same python that runs gradio
|
| 17 |
+
VIDEO_EXAMPLES_DIR = "video_list" # Directory for example videos
|
| 18 |
+
|
| 19 |
+
# Create output directory if it doesn't exist
|
| 20 |
+
os.makedirs(OUTPUT_DIR, exist_ok=True)
|
| 21 |
+
os.makedirs(VIDEO_EXAMPLES_DIR, exist_ok=True) # Ensure video_list exists for clarity
|
| 22 |
+
|
| 23 |
+
def _parse_args():
|
| 24 |
+
parser = argparse.ArgumentParser(
|
| 25 |
+
description="Generate a image or video from a text prompt or image using Wan"
|
| 26 |
+
)
|
| 27 |
+
parser.add_argument(
|
| 28 |
+
"--ckpt",
|
| 29 |
+
type=str,
|
| 30 |
+
default="./checkpoints/Wan2.1-T2V-1.3B",
|
| 31 |
+
help="The path to the checkpoint directory.")
|
| 32 |
+
|
| 33 |
+
return parser.parse_args()
|
| 34 |
+
|
| 35 |
+
def generate_safe_filename_part(text, max_len=20):
|
| 36 |
+
"""Generates a filesystem-safe string from text."""
|
| 37 |
+
if not text:
|
| 38 |
+
return "untitled"
|
| 39 |
+
safe_text = "".join(c if c.isalnum() or c in [' ', '_'] else '_' for c in text).strip()
|
| 40 |
+
safe_text = "_".join(safe_text.split()) # Replace spaces with underscores
|
| 41 |
+
return safe_text[:max_len]
|
| 42 |
+
|
| 43 |
+
def run_video_edit(source_video_path, source_prompt, target_prompt, source_words, target_words,
|
| 44 |
+
omega_value, n_max_value, n_avg_value, progress=gr.Progress(track_tqdm=True)):
|
| 45 |
+
if not source_video_path:
|
| 46 |
+
raise gr.Error("Please upload a source video.")
|
| 47 |
+
if not source_prompt:
|
| 48 |
+
raise gr.Error("Please provide a source prompt.")
|
| 49 |
+
if not target_prompt:
|
| 50 |
+
raise gr.Error("Please provide a target prompt (the 'prompt' for edit.py).")
|
| 51 |
+
# Allow empty source_words for additive edits
|
| 52 |
+
if source_words is None: # Check for None, as empty string is valid
|
| 53 |
+
raise gr.Error("Please provide source words (can be empty string for additions).")
|
| 54 |
+
if not target_words:
|
| 55 |
+
raise gr.Error("Please provide target words.")
|
| 56 |
+
|
| 57 |
+
progress(0, desc="Preparing for video editing...")
|
| 58 |
+
print(f"Source video received at: {source_video_path}")
|
| 59 |
+
print(f"Omega value: {omega_value}")
|
| 60 |
+
print(f"N_max value: {n_max_value}")
|
| 61 |
+
print(f"N_avg value: {n_avg_value}")
|
| 62 |
+
|
| 63 |
+
worse_avg_value = n_avg_value // 2
|
| 64 |
+
print(f"Calculated Worse_avg value: {worse_avg_value}")
|
| 65 |
+
|
| 66 |
+
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
|
| 67 |
+
src_words_fn = generate_safe_filename_part(source_words)
|
| 68 |
+
tar_words_fn = generate_safe_filename_part(target_words)
|
| 69 |
+
|
| 70 |
+
output_filename_base = f"{timestamp}_{src_words_fn}_to_{tar_words_fn}_omega{omega_value}_nmax{n_max_value}_navg{n_avg_value}"
|
| 71 |
+
output_video_path = os.path.join(OUTPUT_DIR, f"{output_filename_base}.mp4")
|
| 72 |
+
|
| 73 |
+
cmd = [
|
| 74 |
+
PYTHON_EXECUTABLE, EDIT_SCRIPT_PATH,
|
| 75 |
+
"--task", "t2v-1.3B",
|
| 76 |
+
"--size", "832*480",
|
| 77 |
+
"--base_seed", "42",
|
| 78 |
+
"--ckpt_dir", CKPT_DIR,
|
| 79 |
+
"--sample_solver", "unipc",
|
| 80 |
+
"--source_video_path", source_video_path,
|
| 81 |
+
"--source_prompt", source_prompt,
|
| 82 |
+
"--source_words", source_words, # Pass as is, even if empty
|
| 83 |
+
"--prompt", target_prompt,
|
| 84 |
+
"--target_words", target_words,
|
| 85 |
+
"--sample_guide_scale", "3.5",
|
| 86 |
+
"--tar_guide_scale", "10.5",
|
| 87 |
+
"--sample_shift", "12",
|
| 88 |
+
"--sample_steps", "50",
|
| 89 |
+
"--n_max", str(n_max_value),
|
| 90 |
+
"--n_min", "0",
|
| 91 |
+
"--n_avg", str(n_avg_value),
|
| 92 |
+
"--worse_avg", str(worse_avg_value),
|
| 93 |
+
"--omega", str(omega_value),
|
| 94 |
+
"--window_size", "11",
|
| 95 |
+
"--decay_factor", "0.25",
|
| 96 |
+
"--frame_num", "41",
|
| 97 |
+
"--save_file", output_video_path
|
| 98 |
+
]
|
| 99 |
+
|
| 100 |
+
print(f"Executing command: {' '.join(cmd)}")
|
| 101 |
+
progress(0.1, desc="Starting video editing process...")
|
| 102 |
+
|
| 103 |
+
try:
|
| 104 |
+
process = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True, bufsize=1, universal_newlines=True)
|
| 105 |
+
|
| 106 |
+
# Simulate progress
|
| 107 |
+
for i in range(10):
|
| 108 |
+
if process.poll() is not None:
|
| 109 |
+
break
|
| 110 |
+
progress(0.1 + i * 0.08, desc=f"Editing in progress... (simulated step {i+1}/10)")
|
| 111 |
+
time.sleep(1)
|
| 112 |
+
|
| 113 |
+
stdout, stderr = process.communicate()
|
| 114 |
+
|
| 115 |
+
progress(0.9, desc="Finalizing video...")
|
| 116 |
+
|
| 117 |
+
if process.returncode != 0:
|
| 118 |
+
print(f"Error during video editing:\nStdout:\n{stdout}\nStderr:\n{stderr}")
|
| 119 |
+
raise gr.Error(f"Video editing failed. Stderr: {stderr[:500]}")
|
| 120 |
+
|
| 121 |
+
print(f"Video editing successful. Output at: {output_video_path}")
|
| 122 |
+
if not os.path.exists(output_video_path):
|
| 123 |
+
print(f"Error: Output file {output_video_path} was not created.")
|
| 124 |
+
raise gr.Error(f"Output file not found, though script reported success. Stdout: {stdout}")
|
| 125 |
+
|
| 126 |
+
progress(1, desc="Video ready!")
|
| 127 |
+
return output_video_path
|
| 128 |
+
|
| 129 |
+
except FileNotFoundError:
|
| 130 |
+
progress(1, desc="Error")
|
| 131 |
+
print(f"Error: The script '{EDIT_SCRIPT_PATH}' or python executable '{PYTHON_EXECUTABLE}' was not found.")
|
| 132 |
+
raise gr.Error(f"Execution error: Ensure '{EDIT_SCRIPT_PATH}' and Python are correctly pathed.")
|
| 133 |
+
except Exception as e:
|
| 134 |
+
progress(1, desc="Error")
|
| 135 |
+
print(f"An unexpected error occurred: {e}")
|
| 136 |
+
raise gr.Error(f"An unexpected error: {str(e)}")
|
| 137 |
+
|
| 138 |
+
# --- Gradio UI Definition ---
|
| 139 |
+
|
| 140 |
+
# Define all examples to be loaded
|
| 141 |
+
examples_to_load_definitions = [
|
| 142 |
+
{ # Original bear_g example (corresponds to bear_g_03 in YAML)
|
| 143 |
+
"video_base_name": "bear_g",
|
| 144 |
+
"src_prompt": "A large brown bear is walking slowly across a rocky terrain in a zoo enclosure, surrounded by stone walls and scattered greenery. The camera remains fixed, capturing the bear's deliberate movements.",
|
| 145 |
+
"tar_prompt": "A large dinosaur is walking slowly across a rocky terrain in a zoo enclosure, surrounded by stone walls and scattered greenery. The camera remains fixed, capturing the dinosaur's deliberate movements.",
|
| 146 |
+
"src_words": "large brown bear",
|
| 147 |
+
"tar_words": "large dinosaur",
|
| 148 |
+
},
|
| 149 |
+
{ # blackswan_02
|
| 150 |
+
"video_base_name": "blackswan",
|
| 151 |
+
"src_prompt": "A black swan with a red beak swimming in a river near a wall and bushes.",
|
| 152 |
+
"tar_prompt": "A white duck with a red beak swimming in a river near a wall and bushes.",
|
| 153 |
+
"src_words": "black swan",
|
| 154 |
+
"tar_words": "white duck",
|
| 155 |
+
},
|
| 156 |
+
{ # jeep_01
|
| 157 |
+
"video_base_name": "jeep",
|
| 158 |
+
"src_prompt": "A silver jeep driving down a curvy road in the countryside.",
|
| 159 |
+
"tar_prompt": "A Porsche car driving down a curvy road in the countryside.",
|
| 160 |
+
"src_words": "silver jeep",
|
| 161 |
+
"tar_words": "Porsche car",
|
| 162 |
+
},
|
| 163 |
+
{ # woman_02 (additive edit)
|
| 164 |
+
"video_base_name": "woman",
|
| 165 |
+
"src_prompt": "A woman in a black dress is walking along a paved path in a lush green park, with trees and a wooden bench in the background. The camera remains fixed, capturing her steady movement.",
|
| 166 |
+
"tar_prompt": "A woman in a black dress and a red baseball cap is walking along a paved path in a lush green park, with trees and a wooden bench in the background. The camera remains fixed, capturing her steady movement.",
|
| 167 |
+
"src_words": "", # Empty source words for addition
|
| 168 |
+
"tar_words": "a red baseball cap",
|
| 169 |
+
}
|
| 170 |
+
]
|
| 171 |
+
|
| 172 |
+
examples_data = []
|
| 173 |
+
# Default advanced parameters for all examples
|
| 174 |
+
default_omega = 2.75
|
| 175 |
+
default_n_max = 40
|
| 176 |
+
default_n_avg = 4
|
| 177 |
+
|
| 178 |
+
for ex_def in examples_to_load_definitions:
|
| 179 |
+
# Assuming .mp4 extension for all videos
|
| 180 |
+
video_file_name = f"{ex_def['video_base_name']}.mp4"
|
| 181 |
+
example_video_path = os.path.join(VIDEO_EXAMPLES_DIR, video_file_name)
|
| 182 |
+
|
| 183 |
+
if os.path.exists(example_video_path):
|
| 184 |
+
examples_data.append([
|
| 185 |
+
example_video_path,
|
| 186 |
+
ex_def["src_prompt"],
|
| 187 |
+
ex_def["tar_prompt"],
|
| 188 |
+
ex_def["src_words"],
|
| 189 |
+
ex_def["tar_words"],
|
| 190 |
+
default_omega,
|
| 191 |
+
default_n_max,
|
| 192 |
+
default_n_avg
|
| 193 |
+
])
|
| 194 |
+
else:
|
| 195 |
+
print(f"Warning: Example video {example_video_path} not found. Example for '{ex_def['video_base_name']}' will be skipped.")
|
| 196 |
+
|
| 197 |
+
if not examples_data:
|
| 198 |
+
print(f"Warning: No example videos found in '{VIDEO_EXAMPLES_DIR}'. Examples section will be empty or not show.")
|
| 199 |
+
|
| 200 |
+
|
| 201 |
+
with gr.Blocks(theme=gr.themes.Soft(), css="""
|
| 202 |
+
/* Main container - maximize width and improve spacing */
|
| 203 |
+
.gradio-container {
|
| 204 |
+
max-width: 98% !important;
|
| 205 |
+
width: 98% !important;
|
| 206 |
+
margin: 0 auto !important;
|
| 207 |
+
padding: 20px !important;
|
| 208 |
+
min-height: 100vh !important;
|
| 209 |
+
}
|
| 210 |
+
|
| 211 |
+
/* All containers should use full width */
|
| 212 |
+
.contain, .container {
|
| 213 |
+
max-width: 100% !important;
|
| 214 |
+
width: 100% !important;
|
| 215 |
+
padding: 0 !important;
|
| 216 |
+
}
|
| 217 |
+
|
| 218 |
+
/* Remove default padding from main wrapper */
|
| 219 |
+
.main, .wrap, .panel {
|
| 220 |
+
max-width: 100% !important;
|
| 221 |
+
width: 100% !important;
|
| 222 |
+
padding: 0 !important;
|
| 223 |
+
}
|
| 224 |
+
|
| 225 |
+
/* Improve spacing for components */
|
| 226 |
+
.gap, .form {
|
| 227 |
+
gap: 15px !important;
|
| 228 |
+
}
|
| 229 |
+
|
| 230 |
+
/* Make all components full width */
|
| 231 |
+
#component-0, .block {
|
| 232 |
+
max-width: 100% !important;
|
| 233 |
+
width: 100% !important;
|
| 234 |
+
}
|
| 235 |
+
|
| 236 |
+
/* Better padding for groups */
|
| 237 |
+
.group {
|
| 238 |
+
padding: 20px !important;
|
| 239 |
+
margin-bottom: 15px !important;
|
| 240 |
+
border-radius: 8px !important;
|
| 241 |
+
}
|
| 242 |
+
|
| 243 |
+
/* Make rows and columns use full space with better gaps */
|
| 244 |
+
.row {
|
| 245 |
+
gap: 30px !important;
|
| 246 |
+
margin-bottom: 20px !important;
|
| 247 |
+
}
|
| 248 |
+
|
| 249 |
+
/* Improve column spacing */
|
| 250 |
+
.column {
|
| 251 |
+
padding: 0 10px !important;
|
| 252 |
+
}
|
| 253 |
+
|
| 254 |
+
/* Better video component sizing */
|
| 255 |
+
.video-container {
|
| 256 |
+
width: 100% !important;
|
| 257 |
+
}
|
| 258 |
+
|
| 259 |
+
/* Textbox improvements */
|
| 260 |
+
.textbox, .input-field {
|
| 261 |
+
width: 100% !important;
|
| 262 |
+
}
|
| 263 |
+
|
| 264 |
+
/* Button styling */
|
| 265 |
+
.primary {
|
| 266 |
+
width: 100% !important;
|
| 267 |
+
padding: 12px !important;
|
| 268 |
+
font-size: 16px !important;
|
| 269 |
+
margin-top: 20px !important;
|
| 270 |
+
}
|
| 271 |
+
|
| 272 |
+
/* Examples section spacing */
|
| 273 |
+
.examples {
|
| 274 |
+
margin-top: 30px !important;
|
| 275 |
+
padding: 20px !important;
|
| 276 |
+
}
|
| 277 |
+
|
| 278 |
+
/* Accordion improvements */
|
| 279 |
+
.accordion {
|
| 280 |
+
margin: 15px 0 !important;
|
| 281 |
+
}
|
| 282 |
+
""") as demo:
|
| 283 |
+
gr.Markdown(
|
| 284 |
+
"""
|
| 285 |
+
<h1 style="text-align: center; font-size: 2.5em;">🪄 FlowDirector Video Edit</h1>
|
| 286 |
+
<p style="text-align: center;">
|
| 287 |
+
Edit videos by providing a source video, descriptive prompts, and specifying words to change.<br>
|
| 288 |
+
Powered by FlowDirector.
|
| 289 |
+
</p>
|
| 290 |
+
"""
|
| 291 |
+
)
|
| 292 |
+
|
| 293 |
+
with gr.Row():
|
| 294 |
+
with gr.Column(scale=5): # Input column - increased scale for better space usage
|
| 295 |
+
with gr.Group():
|
| 296 |
+
gr.Markdown("### 🎬 Source Material")
|
| 297 |
+
source_video_input = gr.Video(label="Upload Source Video", height=540)
|
| 298 |
+
source_prompt_input = gr.Textbox(
|
| 299 |
+
label="Source Prompt",
|
| 300 |
+
placeholder="Describe the original video content accurately.",
|
| 301 |
+
lines=3,
|
| 302 |
+
show_label=True
|
| 303 |
+
)
|
| 304 |
+
target_prompt_input = gr.Textbox(
|
| 305 |
+
label="Target Prompt (Desired Edit)",
|
| 306 |
+
placeholder="Describe how you want the video to be after editing.",
|
| 307 |
+
lines=3,
|
| 308 |
+
show_label=True
|
| 309 |
+
)
|
| 310 |
+
|
| 311 |
+
with gr.Group():
|
| 312 |
+
gr.Markdown("### ✍️ Editing Instructions")
|
| 313 |
+
source_words_input = gr.Textbox(
|
| 314 |
+
label="Source Words (to be replaced, or empty for addition)",
|
| 315 |
+
placeholder="e.g., large brown bear (leave empty to add target words globally)"
|
| 316 |
+
)
|
| 317 |
+
target_words_input = gr.Textbox(
|
| 318 |
+
label="Target Words (replacement or addition)",
|
| 319 |
+
placeholder="e.g., large dinosaur OR a red baseball cap"
|
| 320 |
+
)
|
| 321 |
+
|
| 322 |
+
with gr.Accordion("🔧 Advanced Parameters", open=False):
|
| 323 |
+
omega_slider = gr.Slider(
|
| 324 |
+
minimum=0.0, maximum=5.0, step=0.05, value=default_omega, label="Omega (ω)",
|
| 325 |
+
info="Controls the intensity/style of the edit. Higher values might lead to stronger edits."
|
| 326 |
+
)
|
| 327 |
+
n_max_slider = gr.Slider(
|
| 328 |
+
minimum=0, maximum=50, step=1, value=default_n_max, label="N_max",
|
| 329 |
+
info="Max value for an adaptive param. `n_min` is fixed at 0."
|
| 330 |
+
)
|
| 331 |
+
n_avg_slider = gr.Slider(
|
| 332 |
+
minimum=0, maximum=5, step=1, value=default_n_avg, label="N_avg",
|
| 333 |
+
info="Average value for an adaptive param. `worse_avg` will be N_avg // 2."
|
| 334 |
+
)
|
| 335 |
+
|
| 336 |
+
submit_button = gr.Button("✨ Generate Edited Video", variant="primary")
|
| 337 |
+
|
| 338 |
+
with gr.Column(scale=4): # Output column - increased scale for better proportion
|
| 339 |
+
gr.Markdown("### 🖼️ Edited Video Output")
|
| 340 |
+
output_video = gr.Video(label="Result", height=540, show_label=False)
|
| 341 |
+
|
| 342 |
+
|
| 343 |
+
if examples_data: # Only show examples if some were successfully loaded
|
| 344 |
+
gr.Examples(
|
| 345 |
+
examples=examples_data,
|
| 346 |
+
inputs=[
|
| 347 |
+
source_video_input,
|
| 348 |
+
source_prompt_input,
|
| 349 |
+
target_prompt_input,
|
| 350 |
+
source_words_input,
|
| 351 |
+
target_words_input,
|
| 352 |
+
omega_slider,
|
| 353 |
+
n_max_slider,
|
| 354 |
+
n_avg_slider
|
| 355 |
+
],
|
| 356 |
+
outputs=output_video,
|
| 357 |
+
fn=run_video_edit,
|
| 358 |
+
cache_examples=False # For long processes, False is better
|
| 359 |
+
)
|
| 360 |
+
|
| 361 |
+
all_process_inputs = [
|
| 362 |
+
source_video_input,
|
| 363 |
+
source_prompt_input,
|
| 364 |
+
target_prompt_input,
|
| 365 |
+
source_words_input,
|
| 366 |
+
target_words_input,
|
| 367 |
+
omega_slider,
|
| 368 |
+
n_max_slider,
|
| 369 |
+
n_avg_slider
|
| 370 |
+
]
|
| 371 |
+
|
| 372 |
+
submit_button.click(
|
| 373 |
+
fn=run_video_edit,
|
| 374 |
+
inputs=all_process_inputs,
|
| 375 |
+
outputs=output_video
|
| 376 |
+
)
|
| 377 |
+
|
| 378 |
+
if __name__ == "__main__":
|
| 379 |
+
# print(f"Make sure your checkpoint directory is correctly set to: {CKPT_DIR}")
|
| 380 |
+
# print(f"And that '{EDIT_SCRIPT_PATH}' is in the same directory as app.py or correctly pathed.")
|
| 381 |
+
# print(f"Outputs will be saved to: {os.path.abspath(OUTPUT_DIR)}")
|
| 382 |
+
# print(f"Place example videos (e.g., bear_g.mp4, blackswan.mp4, etc.) in: {os.path.abspath(VIDEO_EXAMPLES_DIR)}")
|
| 383 |
+
|
| 384 |
+
args = _parse_args()
|
| 385 |
+
CKPT_DIR = args.ckpt
|
| 386 |
+
demo.launch()
|
edit.py
ADDED
|
@@ -0,0 +1,486 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
|
| 2 |
+
import argparse
|
| 3 |
+
from datetime import datetime
|
| 4 |
+
import logging
|
| 5 |
+
import os
|
| 6 |
+
import sys
|
| 7 |
+
import warnings
|
| 8 |
+
|
| 9 |
+
warnings.filterwarnings('ignore')
|
| 10 |
+
|
| 11 |
+
import torch, random
|
| 12 |
+
import torch.distributed as dist
|
| 13 |
+
from PIL import Image
|
| 14 |
+
|
| 15 |
+
import wan
|
| 16 |
+
from wan.configs import WAN_CONFIGS, SIZE_CONFIGS, MAX_AREA_CONFIGS, SUPPORTED_SIZES
|
| 17 |
+
from wan.utils.prompt_extend import DashScopePromptExpander, QwenPromptExpander
|
| 18 |
+
from wan.utils.utils import cache_video, cache_image, str2bool
|
| 19 |
+
|
| 20 |
+
EXAMPLE_PROMPT = {
|
| 21 |
+
"t2v-1.3B": {
|
| 22 |
+
"prompt": "Two anthropomorphic cats in comfy boxing gear and bright gloves fight intensely on a spotlighted stage.",
|
| 23 |
+
},
|
| 24 |
+
"t2v-14B": {
|
| 25 |
+
"prompt": "Two anthropomorphic cats in comfy boxing gear and bright gloves fight intensely on a spotlighted stage.",
|
| 26 |
+
},
|
| 27 |
+
"t2i-14B": {
|
| 28 |
+
"prompt": "一个朴素端庄的美人",
|
| 29 |
+
},
|
| 30 |
+
"i2v-14B": {
|
| 31 |
+
"prompt":
|
| 32 |
+
"Summer beach vacation style, a white cat wearing sunglasses sits on a surfboard. The fluffy-furred feline gazes directly at the camera with a relaxed expression. Blurred beach scenery forms the background featuring crystal-clear waters, distant green hills, and a blue sky dotted with white clouds. The cat assumes a naturally relaxed posture, as if savoring the sea breeze and warm sunlight. A close-up shot highlights the feline's intricate details and the refreshing atmosphere of the seaside.",
|
| 33 |
+
"image":
|
| 34 |
+
"examples/i2v_input.JPG",
|
| 35 |
+
},
|
| 36 |
+
}
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
def _validate_args(args):
|
| 40 |
+
# Basic check
|
| 41 |
+
assert args.ckpt_dir is not None, "Please specify the checkpoint directory."
|
| 42 |
+
assert args.task in WAN_CONFIGS, f"Unsupport task: {args.task}"
|
| 43 |
+
assert args.task in EXAMPLE_PROMPT, f"Unsupport task: {args.task}"
|
| 44 |
+
|
| 45 |
+
# The default sampling steps are 40 for image-to-video tasks and 50 for text-to-video tasks.
|
| 46 |
+
if args.sample_steps is None:
|
| 47 |
+
args.sample_steps = 40 if "i2v" in args.task else 50
|
| 48 |
+
|
| 49 |
+
if args.sample_shift is None:
|
| 50 |
+
args.sample_shift = 5.0
|
| 51 |
+
if "i2v" in args.task and args.size in ["832*480", "480*832"]:
|
| 52 |
+
args.sample_shift = 3.0
|
| 53 |
+
|
| 54 |
+
# The default number of frames are 1 for text-to-image tasks and 81 for other tasks.
|
| 55 |
+
if args.frame_num is None:
|
| 56 |
+
args.frame_num = 1 if "t2i" in args.task else 81
|
| 57 |
+
|
| 58 |
+
# T2I frame_num check
|
| 59 |
+
if "t2i" in args.task:
|
| 60 |
+
assert args.frame_num == 1, f"Unsupport frame_num {args.frame_num} for task {args.task}"
|
| 61 |
+
|
| 62 |
+
args.base_seed = args.base_seed if args.base_seed >= 0 else random.randint(
|
| 63 |
+
0, sys.maxsize)
|
| 64 |
+
# Size check
|
| 65 |
+
assert args.size in SUPPORTED_SIZES[
|
| 66 |
+
args.
|
| 67 |
+
task], f"Unsupport size {args.size} for task {args.task}, supported sizes are: {', '.join(SUPPORTED_SIZES[args.task])}"
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
def _parse_args():
|
| 71 |
+
parser = argparse.ArgumentParser(
|
| 72 |
+
description="Generate a image or video from a text prompt or image using Wan"
|
| 73 |
+
)
|
| 74 |
+
parser.add_argument(
|
| 75 |
+
"--task",
|
| 76 |
+
type=str,
|
| 77 |
+
default="t2v-14B",
|
| 78 |
+
choices=list(WAN_CONFIGS.keys()),
|
| 79 |
+
help="The task to run.")
|
| 80 |
+
parser.add_argument(
|
| 81 |
+
"--size",
|
| 82 |
+
type=str,
|
| 83 |
+
default="1280*720",
|
| 84 |
+
choices=list(SIZE_CONFIGS.keys()),
|
| 85 |
+
help="The area (width*height) of the generated video. For the I2V task, the aspect ratio of the output video will follow that of the input image."
|
| 86 |
+
)
|
| 87 |
+
parser.add_argument(
|
| 88 |
+
"--frame_num",
|
| 89 |
+
type=int,
|
| 90 |
+
default=None,
|
| 91 |
+
help="How many frames to sample from a image or video. The number should be 4n+1"
|
| 92 |
+
)
|
| 93 |
+
parser.add_argument(
|
| 94 |
+
"--ckpt_dir",
|
| 95 |
+
type=str,
|
| 96 |
+
default=None,
|
| 97 |
+
help="The path to the checkpoint directory.")
|
| 98 |
+
parser.add_argument(
|
| 99 |
+
"--offload_model",
|
| 100 |
+
type=str2bool,
|
| 101 |
+
default=None,
|
| 102 |
+
help="Whether to offload the model to CPU after each model forward, reducing GPU memory usage."
|
| 103 |
+
)
|
| 104 |
+
parser.add_argument(
|
| 105 |
+
"--ulysses_size",
|
| 106 |
+
type=int,
|
| 107 |
+
default=1,
|
| 108 |
+
help="The size of the ulysses parallelism in DiT.")
|
| 109 |
+
parser.add_argument(
|
| 110 |
+
"--ring_size",
|
| 111 |
+
type=int,
|
| 112 |
+
default=1,
|
| 113 |
+
help="The size of the ring attention parallelism in DiT.")
|
| 114 |
+
parser.add_argument(
|
| 115 |
+
"--t5_fsdp",
|
| 116 |
+
action="store_true",
|
| 117 |
+
default=False,
|
| 118 |
+
help="Whether to use FSDP for T5.")
|
| 119 |
+
parser.add_argument(
|
| 120 |
+
"--t5_cpu",
|
| 121 |
+
action="store_true",
|
| 122 |
+
default=False,
|
| 123 |
+
help="Whether to place T5 model on CPU.")
|
| 124 |
+
parser.add_argument(
|
| 125 |
+
"--dit_fsdp",
|
| 126 |
+
action="store_true",
|
| 127 |
+
default=False,
|
| 128 |
+
help="Whether to use FSDP for DiT.")
|
| 129 |
+
parser.add_argument(
|
| 130 |
+
"--save_file",
|
| 131 |
+
type=str,
|
| 132 |
+
default=None,
|
| 133 |
+
help="The file to save the generated image or video to.")
|
| 134 |
+
parser.add_argument(
|
| 135 |
+
"--prompt",
|
| 136 |
+
type=str,
|
| 137 |
+
default=None,
|
| 138 |
+
help="The prompt to generate the image or video from.")
|
| 139 |
+
parser.add_argument(
|
| 140 |
+
"--use_prompt_extend",
|
| 141 |
+
action="store_true",
|
| 142 |
+
default=False,
|
| 143 |
+
help="Whether to use prompt extend.")
|
| 144 |
+
parser.add_argument(
|
| 145 |
+
"--prompt_extend_method",
|
| 146 |
+
type=str,
|
| 147 |
+
default="local_qwen",
|
| 148 |
+
choices=["dashscope", "local_qwen"],
|
| 149 |
+
help="The prompt extend method to use.")
|
| 150 |
+
parser.add_argument(
|
| 151 |
+
"--prompt_extend_model",
|
| 152 |
+
type=str,
|
| 153 |
+
default=None,
|
| 154 |
+
help="The prompt extend model to use.")
|
| 155 |
+
parser.add_argument(
|
| 156 |
+
"--prompt_extend_target_lang",
|
| 157 |
+
type=str,
|
| 158 |
+
default="ch",
|
| 159 |
+
choices=["ch", "en"],
|
| 160 |
+
help="The target language of prompt extend.")
|
| 161 |
+
parser.add_argument(
|
| 162 |
+
"--base_seed",
|
| 163 |
+
type=int,
|
| 164 |
+
default=-1,
|
| 165 |
+
help="The seed to use for generating the image or video.")
|
| 166 |
+
parser.add_argument(
|
| 167 |
+
"--image",
|
| 168 |
+
type=str,
|
| 169 |
+
default=None,
|
| 170 |
+
help="The image to generate the video from.")
|
| 171 |
+
parser.add_argument(
|
| 172 |
+
"--sample_solver",
|
| 173 |
+
type=str,
|
| 174 |
+
default='unipc',
|
| 175 |
+
choices=['unipc', 'dpm++'],
|
| 176 |
+
help="The solver used to sample.")
|
| 177 |
+
parser.add_argument(
|
| 178 |
+
"--sample_steps", type=int, default=None, help="The sampling steps.")
|
| 179 |
+
parser.add_argument(
|
| 180 |
+
"--sample_shift",
|
| 181 |
+
type=float,
|
| 182 |
+
default=None,
|
| 183 |
+
help="Sampling shift factor for flow matching schedulers.")
|
| 184 |
+
parser.add_argument(
|
| 185 |
+
"--sample_guide_scale",
|
| 186 |
+
type=float,
|
| 187 |
+
default=5.0,
|
| 188 |
+
help="Classifier free guidance scale.")
|
| 189 |
+
parser.add_argument(
|
| 190 |
+
"--tar_guide_scale",
|
| 191 |
+
type=float,
|
| 192 |
+
default=10.0,
|
| 193 |
+
help="Classifier free guidance scale for target video.")
|
| 194 |
+
parser.add_argument(
|
| 195 |
+
"--source_video_path",
|
| 196 |
+
type=str,
|
| 197 |
+
default=None,
|
| 198 |
+
help="Path to the source video for editing.")
|
| 199 |
+
parser.add_argument(
|
| 200 |
+
"--source_prompt",
|
| 201 |
+
type=str,
|
| 202 |
+
default=None,
|
| 203 |
+
help="Text prompt describing the source video.")
|
| 204 |
+
parser.add_argument(
|
| 205 |
+
"--n_max",
|
| 206 |
+
type=int,
|
| 207 |
+
default=35,
|
| 208 |
+
help="Number of steps to start editing, controlling the editing intensity.")
|
| 209 |
+
parser.add_argument(
|
| 210 |
+
"--n_min",
|
| 211 |
+
type=int,
|
| 212 |
+
default=0,
|
| 213 |
+
help="Number of steps at the end of editing, using the vector from tar after completion to control the intensity of style transfer.")
|
| 214 |
+
parser.add_argument(
|
| 215 |
+
"--n_avg",
|
| 216 |
+
type=int,
|
| 217 |
+
default=5,
|
| 218 |
+
help="number of steps to average")
|
| 219 |
+
parser.add_argument(
|
| 220 |
+
"--worse_avg",
|
| 221 |
+
type=int,
|
| 222 |
+
default=3,
|
| 223 |
+
help="number of steps for worse average")
|
| 224 |
+
parser.add_argument(
|
| 225 |
+
"--omega",
|
| 226 |
+
type=float,
|
| 227 |
+
default=3,
|
| 228 |
+
help="omega")
|
| 229 |
+
parser.add_argument(
|
| 230 |
+
"--source_words",
|
| 231 |
+
type=str,
|
| 232 |
+
default=None,
|
| 233 |
+
help="Object edited in the source prompt.")
|
| 234 |
+
parser.add_argument(
|
| 235 |
+
"--target_words",
|
| 236 |
+
type=str,
|
| 237 |
+
default=None,
|
| 238 |
+
help="Object edited in the target prompt.")
|
| 239 |
+
parser.add_argument(
|
| 240 |
+
"--window_size",
|
| 241 |
+
type=int,
|
| 242 |
+
default=13,
|
| 243 |
+
help="window size")
|
| 244 |
+
parser.add_argument(
|
| 245 |
+
"--decay_factor",
|
| 246 |
+
type=float,
|
| 247 |
+
default=0.1,
|
| 248 |
+
help="Window decay factor")
|
| 249 |
+
|
| 250 |
+
|
| 251 |
+
args = parser.parse_args()
|
| 252 |
+
|
| 253 |
+
_validate_args(args)
|
| 254 |
+
|
| 255 |
+
return args
|
| 256 |
+
|
| 257 |
+
|
| 258 |
+
def _init_logging(rank):
|
| 259 |
+
# logging
|
| 260 |
+
if rank == 0:
|
| 261 |
+
# set format
|
| 262 |
+
logging.basicConfig(
|
| 263 |
+
level=logging.INFO,
|
| 264 |
+
format="[%(asctime)s] %(levelname)s: %(message)s",
|
| 265 |
+
handlers=[logging.StreamHandler(stream=sys.stdout)])
|
| 266 |
+
else:
|
| 267 |
+
logging.basicConfig(level=logging.ERROR)
|
| 268 |
+
|
| 269 |
+
|
| 270 |
+
def edit(args):
|
| 271 |
+
rank = int(os.getenv("RANK", 0))
|
| 272 |
+
world_size = int(os.getenv("WORLD_SIZE", 1))
|
| 273 |
+
local_rank = int(os.getenv("LOCAL_RANK", 0))
|
| 274 |
+
device = local_rank
|
| 275 |
+
_init_logging(rank)
|
| 276 |
+
|
| 277 |
+
if args.offload_model is None:
|
| 278 |
+
args.offload_model = False if world_size > 1 else True
|
| 279 |
+
logging.info(
|
| 280 |
+
f"offload_model is not specified, set to {args.offload_model}.")
|
| 281 |
+
if world_size > 1:
|
| 282 |
+
torch.cuda.set_device(local_rank)
|
| 283 |
+
dist.init_process_group(
|
| 284 |
+
backend="nccl",
|
| 285 |
+
init_method="env://",
|
| 286 |
+
rank=rank,
|
| 287 |
+
world_size=world_size)
|
| 288 |
+
else:
|
| 289 |
+
assert not (
|
| 290 |
+
args.t5_fsdp or args.dit_fsdp
|
| 291 |
+
), f"t5_fsdp and dit_fsdp are not supported in non-distributed environments."
|
| 292 |
+
assert not (
|
| 293 |
+
args.ulysses_size > 1 or args.ring_size > 1
|
| 294 |
+
), f"context parallel are not supported in non-distributed environments."
|
| 295 |
+
|
| 296 |
+
if args.ulysses_size > 1 or args.ring_size > 1:
|
| 297 |
+
assert args.ulysses_size * args.ring_size == world_size, f"The number of ulysses_size and ring_size should be equal to the world size."
|
| 298 |
+
from xfuser.core.distributed import (initialize_model_parallel,
|
| 299 |
+
init_distributed_environment)
|
| 300 |
+
init_distributed_environment(
|
| 301 |
+
rank=dist.get_rank(), world_size=dist.get_world_size())
|
| 302 |
+
|
| 303 |
+
initialize_model_parallel(
|
| 304 |
+
sequence_parallel_degree=dist.get_world_size(),
|
| 305 |
+
ring_degree=args.ring_size,
|
| 306 |
+
ulysses_degree=args.ulysses_size,
|
| 307 |
+
)
|
| 308 |
+
|
| 309 |
+
if args.use_prompt_extend:
|
| 310 |
+
if args.prompt_extend_method == "dashscope":
|
| 311 |
+
prompt_expander = DashScopePromptExpander(
|
| 312 |
+
model_name=args.prompt_extend_model, is_vl="i2v" in args.task)
|
| 313 |
+
elif args.prompt_extend_method == "local_qwen":
|
| 314 |
+
prompt_expander = QwenPromptExpander(
|
| 315 |
+
model_name=args.prompt_extend_model,
|
| 316 |
+
is_vl="i2v" in args.task,
|
| 317 |
+
device=rank)
|
| 318 |
+
else:
|
| 319 |
+
raise NotImplementedError(
|
| 320 |
+
f"Unsupport prompt_extend_method: {args.prompt_extend_method}")
|
| 321 |
+
|
| 322 |
+
cfg = WAN_CONFIGS[args.task]
|
| 323 |
+
if args.ulysses_size > 1:
|
| 324 |
+
assert cfg.num_heads % args.ulysses_size == 0, f"`num_heads` must be divisible by `ulysses_size`."
|
| 325 |
+
|
| 326 |
+
logging.info(f"Generation job args: {args}")
|
| 327 |
+
logging.info(f"Generation model config: {cfg}")
|
| 328 |
+
|
| 329 |
+
if dist.is_initialized():
|
| 330 |
+
base_seed = [args.base_seed] if rank == 0 else [None]
|
| 331 |
+
dist.broadcast_object_list(base_seed, src=0)
|
| 332 |
+
args.base_seed = base_seed[0]
|
| 333 |
+
|
| 334 |
+
if "t2v" in args.task or "t2i" in args.task:
|
| 335 |
+
if args.prompt is None:
|
| 336 |
+
args.prompt = EXAMPLE_PROMPT[args.task]["prompt"]
|
| 337 |
+
logging.info(f"Input prompt: {args.prompt}")
|
| 338 |
+
if args.use_prompt_extend:
|
| 339 |
+
logging.info("Extending prompt ...")
|
| 340 |
+
if rank == 0:
|
| 341 |
+
prompt_output = prompt_expander(
|
| 342 |
+
args.prompt,
|
| 343 |
+
tar_lang=args.prompt_extend_target_lang,
|
| 344 |
+
seed=args.base_seed)
|
| 345 |
+
if prompt_output.status == False:
|
| 346 |
+
logging.info(
|
| 347 |
+
f"Extending prompt failed: {prompt_output.message}")
|
| 348 |
+
logging.info("Falling back to original prompt.")
|
| 349 |
+
input_prompt = args.prompt
|
| 350 |
+
else:
|
| 351 |
+
input_prompt = prompt_output.prompt
|
| 352 |
+
input_prompt = [input_prompt]
|
| 353 |
+
else:
|
| 354 |
+
input_prompt = [None]
|
| 355 |
+
if dist.is_initialized():
|
| 356 |
+
dist.broadcast_object_list(input_prompt, src=0)
|
| 357 |
+
args.prompt = input_prompt[0]
|
| 358 |
+
logging.info(f"Extended prompt: {args.prompt}")
|
| 359 |
+
|
| 360 |
+
logging.info("Creating WanT2V pipeline.")
|
| 361 |
+
wan_t2v = wan.WanT2V(
|
| 362 |
+
config=cfg,
|
| 363 |
+
checkpoint_dir=args.ckpt_dir,
|
| 364 |
+
device_id=device,
|
| 365 |
+
rank=rank,
|
| 366 |
+
t5_fsdp=args.t5_fsdp,
|
| 367 |
+
dit_fsdp=args.dit_fsdp,
|
| 368 |
+
# use_usp=False,
|
| 369 |
+
use_usp=(args.ulysses_size > 1 or args.ring_size > 1),
|
| 370 |
+
t5_cpu=args.t5_cpu,
|
| 371 |
+
)
|
| 372 |
+
|
| 373 |
+
logging.info(
|
| 374 |
+
f"Generating {'image' if 't2i' in args.task else 'video'} ...")
|
| 375 |
+
video = wan_t2v.edit(
|
| 376 |
+
args.prompt,
|
| 377 |
+
size=SIZE_CONFIGS[args.size],
|
| 378 |
+
frame_num=args.frame_num,
|
| 379 |
+
shift=args.sample_shift,
|
| 380 |
+
sample_solver=args.sample_solver,
|
| 381 |
+
sampling_steps=args.sample_steps,
|
| 382 |
+
guide_scale=args.sample_guide_scale,
|
| 383 |
+
tar_guide_scale=args.tar_guide_scale,
|
| 384 |
+
seed=args.base_seed,
|
| 385 |
+
offload_model=args.offload_model,
|
| 386 |
+
source_video_path=args.source_video_path,
|
| 387 |
+
source_prompt=args.source_prompt,
|
| 388 |
+
nmax_step=args.n_max,
|
| 389 |
+
nmin_step=args.n_min,
|
| 390 |
+
n_avg=args.n_avg,
|
| 391 |
+
worse_avg=args.worse_avg,
|
| 392 |
+
omega=args.omega,
|
| 393 |
+
source_words=args.source_words,
|
| 394 |
+
target_words=args.target_words,
|
| 395 |
+
window_size=args.window_size,
|
| 396 |
+
decay_factor=args.decay_factor)
|
| 397 |
+
|
| 398 |
+
else:
|
| 399 |
+
if args.prompt is None:
|
| 400 |
+
args.prompt = EXAMPLE_PROMPT[args.task]["prompt"]
|
| 401 |
+
if args.image is None:
|
| 402 |
+
args.image = EXAMPLE_PROMPT[args.task]["image"]
|
| 403 |
+
logging.info(f"Input prompt: {args.prompt}")
|
| 404 |
+
logging.info(f"Input image: {args.image}")
|
| 405 |
+
|
| 406 |
+
img = Image.open(args.image).convert("RGB")
|
| 407 |
+
if args.use_prompt_extend:
|
| 408 |
+
logging.info("Extending prompt ...")
|
| 409 |
+
if rank == 0:
|
| 410 |
+
prompt_output = prompt_expander(
|
| 411 |
+
args.prompt,
|
| 412 |
+
tar_lang=args.prompt_extend_target_lang,
|
| 413 |
+
image=img,
|
| 414 |
+
seed=args.base_seed)
|
| 415 |
+
if prompt_output.status == False:
|
| 416 |
+
logging.info(
|
| 417 |
+
f"Extending prompt failed: {prompt_output.message}")
|
| 418 |
+
logging.info("Falling back to original prompt.")
|
| 419 |
+
input_prompt = args.prompt
|
| 420 |
+
else:
|
| 421 |
+
input_prompt = prompt_output.prompt
|
| 422 |
+
input_prompt = [input_prompt]
|
| 423 |
+
else:
|
| 424 |
+
input_prompt = [None]
|
| 425 |
+
if dist.is_initialized():
|
| 426 |
+
dist.broadcast_object_list(input_prompt, src=0)
|
| 427 |
+
args.prompt = input_prompt[0]
|
| 428 |
+
logging.info(f"Extended prompt: {args.prompt}")
|
| 429 |
+
|
| 430 |
+
logging.info("Creating WanI2V pipeline.")
|
| 431 |
+
wan_i2v = wan.WanI2V(
|
| 432 |
+
config=cfg,
|
| 433 |
+
checkpoint_dir=args.ckpt_dir,
|
| 434 |
+
device_id=device,
|
| 435 |
+
rank=rank,
|
| 436 |
+
t5_fsdp=args.t5_fsdp,
|
| 437 |
+
dit_fsdp=args.dit_fsdp,
|
| 438 |
+
use_usp=(args.ulysses_size > 1 or args.ring_size > 1),
|
| 439 |
+
t5_cpu=args.t5_cpu,
|
| 440 |
+
)
|
| 441 |
+
|
| 442 |
+
logging.info("Generating video ...")
|
| 443 |
+
video = wan_i2v.edit(
|
| 444 |
+
args.prompt,
|
| 445 |
+
img,
|
| 446 |
+
max_area=MAX_AREA_CONFIGS[args.size],
|
| 447 |
+
frame_num=args.frame_num,
|
| 448 |
+
shift=args.sample_shift,
|
| 449 |
+
sample_solver=args.sample_solver,
|
| 450 |
+
sampling_steps=args.sample_steps,
|
| 451 |
+
guide_scale=args.sample_guide_scale,
|
| 452 |
+
seed=args.base_seed,
|
| 453 |
+
offload_model=args.offload_model)
|
| 454 |
+
|
| 455 |
+
if rank == 0:
|
| 456 |
+
if args.save_file is None:
|
| 457 |
+
formatted_time = datetime.now().strftime("%m%d_%H%M")
|
| 458 |
+
formatted_prompt = args.prompt.replace(" ", "_").replace("/",
|
| 459 |
+
"_")[:30]
|
| 460 |
+
suffix = '.png' if "t2i" in args.task else '.mp4'
|
| 461 |
+
args.save_file = f"videos/{formatted_time}_{args.source_words.replace(' ', '_').replace('/', '_')}_{args.target_words.replace(' ', '_').replace('/', '_')}_n{args.n_avg}_w{args.worse_avg}_omega{args.omega}_s{args.base_seed}" + suffix
|
| 462 |
+
|
| 463 |
+
if "t2i" in args.task:
|
| 464 |
+
logging.info(f"Saving generated image to {args.save_file}")
|
| 465 |
+
cache_image(
|
| 466 |
+
tensor=video.squeeze(1)[None],
|
| 467 |
+
save_file=args.save_file,
|
| 468 |
+
nrow=1,
|
| 469 |
+
normalize=True,
|
| 470 |
+
value_range=(-1, 1))
|
| 471 |
+
else:
|
| 472 |
+
logging.info(f"Saving generated video to {args.save_file}")
|
| 473 |
+
cache_video(
|
| 474 |
+
tensor=video[None],
|
| 475 |
+
save_file=args.save_file,
|
| 476 |
+
fps=cfg.sample_fps,
|
| 477 |
+
nrow=1,
|
| 478 |
+
normalize=True,
|
| 479 |
+
value_range=(-1, 1))
|
| 480 |
+
logging.info("Finished.")
|
| 481 |
+
|
| 482 |
+
|
| 483 |
+
|
| 484 |
+
if __name__ == "__main__":
|
| 485 |
+
args = _parse_args()
|
| 486 |
+
edit(args)
|
generate.py
ADDED
|
@@ -0,0 +1,412 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
|
| 2 |
+
import argparse
|
| 3 |
+
from datetime import datetime
|
| 4 |
+
import logging
|
| 5 |
+
import os
|
| 6 |
+
import sys
|
| 7 |
+
import warnings
|
| 8 |
+
|
| 9 |
+
warnings.filterwarnings('ignore')
|
| 10 |
+
|
| 11 |
+
import torch, random
|
| 12 |
+
import torch.distributed as dist
|
| 13 |
+
from PIL import Image
|
| 14 |
+
|
| 15 |
+
import wan
|
| 16 |
+
from wan.configs import WAN_CONFIGS, SIZE_CONFIGS, MAX_AREA_CONFIGS, SUPPORTED_SIZES
|
| 17 |
+
from wan.utils.prompt_extend import DashScopePromptExpander, QwenPromptExpander
|
| 18 |
+
from wan.utils.utils import cache_video, cache_image, str2bool
|
| 19 |
+
|
| 20 |
+
EXAMPLE_PROMPT = {
|
| 21 |
+
"t2v-1.3B": {
|
| 22 |
+
"prompt": "Two anthropomorphic cats in comfy boxing gear and bright gloves fight intensely on a spotlighted stage.",
|
| 23 |
+
},
|
| 24 |
+
"t2v-14B": {
|
| 25 |
+
"prompt": "Two anthropomorphic cats in comfy boxing gear and bright gloves fight intensely on a spotlighted stage.",
|
| 26 |
+
},
|
| 27 |
+
"t2i-14B": {
|
| 28 |
+
"prompt": "一个朴素端庄的美人",
|
| 29 |
+
},
|
| 30 |
+
"i2v-14B": {
|
| 31 |
+
"prompt":
|
| 32 |
+
"Summer beach vacation style, a white cat wearing sunglasses sits on a surfboard. The fluffy-furred feline gazes directly at the camera with a relaxed expression. Blurred beach scenery forms the background featuring crystal-clear waters, distant green hills, and a blue sky dotted with white clouds. The cat assumes a naturally relaxed posture, as if savoring the sea breeze and warm sunlight. A close-up shot highlights the feline's intricate details and the refreshing atmosphere of the seaside.",
|
| 33 |
+
"image":
|
| 34 |
+
"examples/i2v_input.JPG",
|
| 35 |
+
},
|
| 36 |
+
}
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
def _validate_args(args):
|
| 40 |
+
# Basic check
|
| 41 |
+
assert args.ckpt_dir is not None, "Please specify the checkpoint directory."
|
| 42 |
+
assert args.task in WAN_CONFIGS, f"Unsupport task: {args.task}"
|
| 43 |
+
assert args.task in EXAMPLE_PROMPT, f"Unsupport task: {args.task}"
|
| 44 |
+
|
| 45 |
+
# The default sampling steps are 40 for image-to-video tasks and 50 for text-to-video tasks.
|
| 46 |
+
if args.sample_steps is None:
|
| 47 |
+
args.sample_steps = 40 if "i2v" in args.task else 50
|
| 48 |
+
|
| 49 |
+
if args.sample_shift is None:
|
| 50 |
+
args.sample_shift = 5.0
|
| 51 |
+
if "i2v" in args.task and args.size in ["832*480", "480*832"]:
|
| 52 |
+
args.sample_shift = 3.0
|
| 53 |
+
|
| 54 |
+
# The default number of frames are 1 for text-to-image tasks and 81 for other tasks.
|
| 55 |
+
if args.frame_num is None:
|
| 56 |
+
args.frame_num = 1 if "t2i" in args.task else 81
|
| 57 |
+
|
| 58 |
+
# T2I frame_num check
|
| 59 |
+
if "t2i" in args.task:
|
| 60 |
+
assert args.frame_num == 1, f"Unsupport frame_num {args.frame_num} for task {args.task}"
|
| 61 |
+
|
| 62 |
+
args.base_seed = args.base_seed if args.base_seed >= 0 else random.randint(
|
| 63 |
+
0, sys.maxsize)
|
| 64 |
+
# Size check
|
| 65 |
+
assert args.size in SUPPORTED_SIZES[
|
| 66 |
+
args.
|
| 67 |
+
task], f"Unsupport size {args.size} for task {args.task}, supported sizes are: {', '.join(SUPPORTED_SIZES[args.task])}"
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
def _parse_args():
|
| 71 |
+
parser = argparse.ArgumentParser(
|
| 72 |
+
description="Generate a image or video from a text prompt or image using Wan"
|
| 73 |
+
)
|
| 74 |
+
parser.add_argument(
|
| 75 |
+
"--task",
|
| 76 |
+
type=str,
|
| 77 |
+
default="t2v-14B",
|
| 78 |
+
choices=list(WAN_CONFIGS.keys()),
|
| 79 |
+
help="The task to run.")
|
| 80 |
+
parser.add_argument(
|
| 81 |
+
"--size",
|
| 82 |
+
type=str,
|
| 83 |
+
default="1280*720",
|
| 84 |
+
choices=list(SIZE_CONFIGS.keys()),
|
| 85 |
+
help="The area (width*height) of the generated video. For the I2V task, the aspect ratio of the output video will follow that of the input image."
|
| 86 |
+
)
|
| 87 |
+
parser.add_argument(
|
| 88 |
+
"--frame_num",
|
| 89 |
+
type=int,
|
| 90 |
+
default=None,
|
| 91 |
+
help="How many frames to sample from a image or video. The number should be 4n+1"
|
| 92 |
+
)
|
| 93 |
+
parser.add_argument(
|
| 94 |
+
"--ckpt_dir",
|
| 95 |
+
type=str,
|
| 96 |
+
default=None,
|
| 97 |
+
help="The path to the checkpoint directory.")
|
| 98 |
+
parser.add_argument(
|
| 99 |
+
"--offload_model",
|
| 100 |
+
type=str2bool,
|
| 101 |
+
default=None,
|
| 102 |
+
help="Whether to offload the model to CPU after each model forward, reducing GPU memory usage."
|
| 103 |
+
)
|
| 104 |
+
parser.add_argument(
|
| 105 |
+
"--ulysses_size",
|
| 106 |
+
type=int,
|
| 107 |
+
default=1,
|
| 108 |
+
help="The size of the ulysses parallelism in DiT.")
|
| 109 |
+
parser.add_argument(
|
| 110 |
+
"--ring_size",
|
| 111 |
+
type=int,
|
| 112 |
+
default=1,
|
| 113 |
+
help="The size of the ring attention parallelism in DiT.")
|
| 114 |
+
parser.add_argument(
|
| 115 |
+
"--t5_fsdp",
|
| 116 |
+
action="store_true",
|
| 117 |
+
default=False,
|
| 118 |
+
help="Whether to use FSDP for T5.")
|
| 119 |
+
parser.add_argument(
|
| 120 |
+
"--t5_cpu",
|
| 121 |
+
action="store_true",
|
| 122 |
+
default=False,
|
| 123 |
+
help="Whether to place T5 model on CPU.")
|
| 124 |
+
parser.add_argument(
|
| 125 |
+
"--dit_fsdp",
|
| 126 |
+
action="store_true",
|
| 127 |
+
default=False,
|
| 128 |
+
help="Whether to use FSDP for DiT.")
|
| 129 |
+
parser.add_argument(
|
| 130 |
+
"--save_file",
|
| 131 |
+
type=str,
|
| 132 |
+
default=None,
|
| 133 |
+
help="The file to save the generated image or video to.")
|
| 134 |
+
parser.add_argument(
|
| 135 |
+
"--prompt",
|
| 136 |
+
type=str,
|
| 137 |
+
default=None,
|
| 138 |
+
help="The prompt to generate the image or video from.")
|
| 139 |
+
parser.add_argument(
|
| 140 |
+
"--use_prompt_extend",
|
| 141 |
+
action="store_true",
|
| 142 |
+
default=False,
|
| 143 |
+
help="Whether to use prompt extend.")
|
| 144 |
+
parser.add_argument(
|
| 145 |
+
"--prompt_extend_method",
|
| 146 |
+
type=str,
|
| 147 |
+
default="local_qwen",
|
| 148 |
+
choices=["dashscope", "local_qwen"],
|
| 149 |
+
help="The prompt extend method to use.")
|
| 150 |
+
parser.add_argument(
|
| 151 |
+
"--prompt_extend_model",
|
| 152 |
+
type=str,
|
| 153 |
+
default=None,
|
| 154 |
+
help="The prompt extend model to use.")
|
| 155 |
+
parser.add_argument(
|
| 156 |
+
"--prompt_extend_target_lang",
|
| 157 |
+
type=str,
|
| 158 |
+
default="ch",
|
| 159 |
+
choices=["ch", "en"],
|
| 160 |
+
help="The target language of prompt extend.")
|
| 161 |
+
parser.add_argument(
|
| 162 |
+
"--base_seed",
|
| 163 |
+
type=int,
|
| 164 |
+
default=-1,
|
| 165 |
+
help="The seed to use for generating the image or video.")
|
| 166 |
+
parser.add_argument(
|
| 167 |
+
"--image",
|
| 168 |
+
type=str,
|
| 169 |
+
default=None,
|
| 170 |
+
help="The image to generate the video from.")
|
| 171 |
+
parser.add_argument(
|
| 172 |
+
"--sample_solver",
|
| 173 |
+
type=str,
|
| 174 |
+
default='unipc',
|
| 175 |
+
choices=['unipc', 'dpm++'],
|
| 176 |
+
help="The solver used to sample.")
|
| 177 |
+
parser.add_argument(
|
| 178 |
+
"--sample_steps", type=int, default=None, help="The sampling steps.")
|
| 179 |
+
parser.add_argument(
|
| 180 |
+
"--sample_shift",
|
| 181 |
+
type=float,
|
| 182 |
+
default=None,
|
| 183 |
+
help="Sampling shift factor for flow matching schedulers.")
|
| 184 |
+
parser.add_argument(
|
| 185 |
+
"--sample_guide_scale",
|
| 186 |
+
type=float,
|
| 187 |
+
default=5.0,
|
| 188 |
+
help="Classifier free guidance scale.")
|
| 189 |
+
|
| 190 |
+
args = parser.parse_args()
|
| 191 |
+
|
| 192 |
+
_validate_args(args)
|
| 193 |
+
|
| 194 |
+
return args
|
| 195 |
+
|
| 196 |
+
|
| 197 |
+
def _init_logging(rank):
|
| 198 |
+
# logging
|
| 199 |
+
if rank == 0:
|
| 200 |
+
# set format
|
| 201 |
+
logging.basicConfig(
|
| 202 |
+
level=logging.INFO,
|
| 203 |
+
format="[%(asctime)s] %(levelname)s: %(message)s",
|
| 204 |
+
handlers=[logging.StreamHandler(stream=sys.stdout)])
|
| 205 |
+
else:
|
| 206 |
+
logging.basicConfig(level=logging.ERROR)
|
| 207 |
+
|
| 208 |
+
|
| 209 |
+
def generate(args):
|
| 210 |
+
rank = int(os.getenv("RANK", 0))
|
| 211 |
+
world_size = int(os.getenv("WORLD_SIZE", 1))
|
| 212 |
+
local_rank = int(os.getenv("LOCAL_RANK", 0))
|
| 213 |
+
device = local_rank
|
| 214 |
+
_init_logging(rank)
|
| 215 |
+
|
| 216 |
+
if args.offload_model is None:
|
| 217 |
+
args.offload_model = False if world_size > 1 else True
|
| 218 |
+
logging.info(
|
| 219 |
+
f"offload_model is not specified, set to {args.offload_model}.")
|
| 220 |
+
if world_size > 1:
|
| 221 |
+
torch.cuda.set_device(local_rank)
|
| 222 |
+
dist.init_process_group(
|
| 223 |
+
backend="nccl",
|
| 224 |
+
init_method="env://",
|
| 225 |
+
rank=rank,
|
| 226 |
+
world_size=world_size)
|
| 227 |
+
else:
|
| 228 |
+
assert not (
|
| 229 |
+
args.t5_fsdp or args.dit_fsdp
|
| 230 |
+
), f"t5_fsdp and dit_fsdp are not supported in non-distributed environments."
|
| 231 |
+
assert not (
|
| 232 |
+
args.ulysses_size > 1 or args.ring_size > 1
|
| 233 |
+
), f"context parallel are not supported in non-distributed environments."
|
| 234 |
+
|
| 235 |
+
if args.ulysses_size > 1 or args.ring_size > 1:
|
| 236 |
+
assert args.ulysses_size * args.ring_size == world_size, f"The number of ulysses_size and ring_size should be equal to the world size."
|
| 237 |
+
from xfuser.core.distributed import (initialize_model_parallel,
|
| 238 |
+
init_distributed_environment)
|
| 239 |
+
init_distributed_environment(
|
| 240 |
+
rank=dist.get_rank(), world_size=dist.get_world_size())
|
| 241 |
+
|
| 242 |
+
initialize_model_parallel(
|
| 243 |
+
sequence_parallel_degree=dist.get_world_size(),
|
| 244 |
+
ring_degree=args.ring_size,
|
| 245 |
+
ulysses_degree=args.ulysses_size,
|
| 246 |
+
)
|
| 247 |
+
|
| 248 |
+
if args.use_prompt_extend:
|
| 249 |
+
if args.prompt_extend_method == "dashscope":
|
| 250 |
+
prompt_expander = DashScopePromptExpander(
|
| 251 |
+
model_name=args.prompt_extend_model, is_vl="i2v" in args.task)
|
| 252 |
+
elif args.prompt_extend_method == "local_qwen":
|
| 253 |
+
prompt_expander = QwenPromptExpander(
|
| 254 |
+
model_name=args.prompt_extend_model,
|
| 255 |
+
is_vl="i2v" in args.task,
|
| 256 |
+
device=rank)
|
| 257 |
+
else:
|
| 258 |
+
raise NotImplementedError(
|
| 259 |
+
f"Unsupport prompt_extend_method: {args.prompt_extend_method}")
|
| 260 |
+
|
| 261 |
+
cfg = WAN_CONFIGS[args.task]
|
| 262 |
+
if args.ulysses_size > 1:
|
| 263 |
+
assert cfg.num_heads % args.ulysses_size == 0, f"`num_heads` must be divisible by `ulysses_size`."
|
| 264 |
+
|
| 265 |
+
logging.info(f"Generation job args: {args}")
|
| 266 |
+
logging.info(f"Generation model config: {cfg}")
|
| 267 |
+
|
| 268 |
+
if dist.is_initialized():
|
| 269 |
+
base_seed = [args.base_seed] if rank == 0 else [None]
|
| 270 |
+
dist.broadcast_object_list(base_seed, src=0)
|
| 271 |
+
args.base_seed = base_seed[0]
|
| 272 |
+
|
| 273 |
+
if "t2v" in args.task or "t2i" in args.task:
|
| 274 |
+
if args.prompt is None:
|
| 275 |
+
args.prompt = EXAMPLE_PROMPT[args.task]["prompt"]
|
| 276 |
+
logging.info(f"Input prompt: {args.prompt}")
|
| 277 |
+
if args.use_prompt_extend:
|
| 278 |
+
logging.info("Extending prompt ...")
|
| 279 |
+
if rank == 0:
|
| 280 |
+
prompt_output = prompt_expander(
|
| 281 |
+
args.prompt,
|
| 282 |
+
tar_lang=args.prompt_extend_target_lang,
|
| 283 |
+
seed=args.base_seed)
|
| 284 |
+
if prompt_output.status == False:
|
| 285 |
+
logging.info(
|
| 286 |
+
f"Extending prompt failed: {prompt_output.message}")
|
| 287 |
+
logging.info("Falling back to original prompt.")
|
| 288 |
+
input_prompt = args.prompt
|
| 289 |
+
else:
|
| 290 |
+
input_prompt = prompt_output.prompt
|
| 291 |
+
input_prompt = [input_prompt]
|
| 292 |
+
else:
|
| 293 |
+
input_prompt = [None]
|
| 294 |
+
if dist.is_initialized():
|
| 295 |
+
dist.broadcast_object_list(input_prompt, src=0)
|
| 296 |
+
args.prompt = input_prompt[0]
|
| 297 |
+
logging.info(f"Extended prompt: {args.prompt}")
|
| 298 |
+
|
| 299 |
+
logging.info("Creating WanT2V pipeline.")
|
| 300 |
+
wan_t2v = wan.WanT2V(
|
| 301 |
+
config=cfg,
|
| 302 |
+
checkpoint_dir=args.ckpt_dir,
|
| 303 |
+
device_id=device,
|
| 304 |
+
rank=rank,
|
| 305 |
+
t5_fsdp=args.t5_fsdp,
|
| 306 |
+
dit_fsdp=args.dit_fsdp,
|
| 307 |
+
use_usp=(args.ulysses_size > 1 or args.ring_size > 1),
|
| 308 |
+
t5_cpu=args.t5_cpu,
|
| 309 |
+
)
|
| 310 |
+
|
| 311 |
+
logging.info(
|
| 312 |
+
f"Generating {'image' if 't2i' in args.task else 'video'} ...")
|
| 313 |
+
video = wan_t2v.generate(
|
| 314 |
+
args.prompt,
|
| 315 |
+
size=SIZE_CONFIGS[args.size],
|
| 316 |
+
frame_num=args.frame_num,
|
| 317 |
+
shift=args.sample_shift,
|
| 318 |
+
sample_solver=args.sample_solver,
|
| 319 |
+
sampling_steps=args.sample_steps,
|
| 320 |
+
guide_scale=args.sample_guide_scale,
|
| 321 |
+
seed=args.base_seed,
|
| 322 |
+
offload_model=args.offload_model)
|
| 323 |
+
|
| 324 |
+
else:
|
| 325 |
+
if args.prompt is None:
|
| 326 |
+
args.prompt = EXAMPLE_PROMPT[args.task]["prompt"]
|
| 327 |
+
if args.image is None:
|
| 328 |
+
args.image = EXAMPLE_PROMPT[args.task]["image"]
|
| 329 |
+
logging.info(f"Input prompt: {args.prompt}")
|
| 330 |
+
logging.info(f"Input image: {args.image}")
|
| 331 |
+
|
| 332 |
+
img = Image.open(args.image).convert("RGB")
|
| 333 |
+
if args.use_prompt_extend:
|
| 334 |
+
logging.info("Extending prompt ...")
|
| 335 |
+
if rank == 0:
|
| 336 |
+
prompt_output = prompt_expander(
|
| 337 |
+
args.prompt,
|
| 338 |
+
tar_lang=args.prompt_extend_target_lang,
|
| 339 |
+
image=img,
|
| 340 |
+
seed=args.base_seed)
|
| 341 |
+
if prompt_output.status == False:
|
| 342 |
+
logging.info(
|
| 343 |
+
f"Extending prompt failed: {prompt_output.message}")
|
| 344 |
+
logging.info("Falling back to original prompt.")
|
| 345 |
+
input_prompt = args.prompt
|
| 346 |
+
else:
|
| 347 |
+
input_prompt = prompt_output.prompt
|
| 348 |
+
input_prompt = [input_prompt]
|
| 349 |
+
else:
|
| 350 |
+
input_prompt = [None]
|
| 351 |
+
if dist.is_initialized():
|
| 352 |
+
dist.broadcast_object_list(input_prompt, src=0)
|
| 353 |
+
args.prompt = input_prompt[0]
|
| 354 |
+
logging.info(f"Extended prompt: {args.prompt}")
|
| 355 |
+
|
| 356 |
+
logging.info("Creating WanI2V pipeline.")
|
| 357 |
+
wan_i2v = wan.WanI2V(
|
| 358 |
+
config=cfg,
|
| 359 |
+
checkpoint_dir=args.ckpt_dir,
|
| 360 |
+
device_id=device,
|
| 361 |
+
rank=rank,
|
| 362 |
+
t5_fsdp=args.t5_fsdp,
|
| 363 |
+
dit_fsdp=args.dit_fsdp,
|
| 364 |
+
use_usp=(args.ulysses_size > 1 or args.ring_size > 1),
|
| 365 |
+
t5_cpu=args.t5_cpu,
|
| 366 |
+
)
|
| 367 |
+
|
| 368 |
+
logging.info("Generating video ...")
|
| 369 |
+
video = wan_i2v.generate(
|
| 370 |
+
args.prompt,
|
| 371 |
+
img,
|
| 372 |
+
max_area=MAX_AREA_CONFIGS[args.size],
|
| 373 |
+
frame_num=args.frame_num,
|
| 374 |
+
shift=args.sample_shift,
|
| 375 |
+
sample_solver=args.sample_solver,
|
| 376 |
+
sampling_steps=args.sample_steps,
|
| 377 |
+
guide_scale=args.sample_guide_scale,
|
| 378 |
+
seed=args.base_seed,
|
| 379 |
+
offload_model=args.offload_model)
|
| 380 |
+
|
| 381 |
+
if rank == 0:
|
| 382 |
+
if args.save_file is None:
|
| 383 |
+
formatted_time = datetime.now().strftime("%Y%m%d_%H%M%S")
|
| 384 |
+
formatted_prompt = args.prompt.replace(" ", "_").replace("/",
|
| 385 |
+
"_")[:50]
|
| 386 |
+
suffix = '.png' if "t2i" in args.task else '.mp4'
|
| 387 |
+
args.save_file = f"videos/{args.task}_{args.size}_{args.ulysses_size}_{args.ring_size}_{formatted_prompt}_{formatted_time}" + suffix
|
| 388 |
+
|
| 389 |
+
if "t2i" in args.task:
|
| 390 |
+
logging.info(f"Saving generated image to {args.save_file}")
|
| 391 |
+
cache_image(
|
| 392 |
+
tensor=video.squeeze(1)[None],
|
| 393 |
+
save_file=args.save_file,
|
| 394 |
+
nrow=1,
|
| 395 |
+
normalize=True,
|
| 396 |
+
value_range=(-1, 1))
|
| 397 |
+
else:
|
| 398 |
+
logging.info(f"Saving generated video to {args.save_file}")
|
| 399 |
+
cache_video(
|
| 400 |
+
tensor=video[None],
|
| 401 |
+
save_file=args.save_file,
|
| 402 |
+
fps=cfg.sample_fps,
|
| 403 |
+
nrow=1,
|
| 404 |
+
normalize=True,
|
| 405 |
+
value_range=(-1, 1))
|
| 406 |
+
logging.info("Finished.")
|
| 407 |
+
|
| 408 |
+
|
| 409 |
+
|
| 410 |
+
if __name__ == "__main__":
|
| 411 |
+
args = _parse_args()
|
| 412 |
+
generate(args)
|
requirements.txt
ADDED
|
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
torch>=2.4.0
|
| 2 |
+
torchvision>=0.19.0
|
| 3 |
+
opencv-python>=4.9.0.80
|
| 4 |
+
diffusers>=0.31.0
|
| 5 |
+
transformers>=4.49.0
|
| 6 |
+
tokenizers>=0.20.3
|
| 7 |
+
accelerate>=1.1.1
|
| 8 |
+
tqdm
|
| 9 |
+
imageio
|
| 10 |
+
easydict
|
| 11 |
+
ftfy
|
| 12 |
+
dashscope
|
| 13 |
+
imageio-ffmpeg
|
| 14 |
+
# flash_attn
|
| 15 |
+
gradio>=5.0.0
|
| 16 |
+
kornia
|
| 17 |
+
scikit-image==0.25.2
|
| 18 |
+
scipy==1.15.2
|
| 19 |
+
xfuser==0.4.3.post3
|
video_list/bear_g.mp4
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:9ac72d17e79d3d4bbe047725f1c8ed86de7cc09d2d19dc6b80158f77967c9d12
|
| 3 |
+
size 677684
|
video_list/blackswan.mp4
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d79222bae7552dff46dc9cccd4117595a4e2d419c3129383649b37b76116f512
|
| 3 |
+
size 718245
|
video_list/cat_box.mp4
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:081c4604f94766e1f984e0748d842470e5bf547e174bfe0dd9e6f7b2bb521e28
|
| 3 |
+
size 473103
|
video_list/cockatiel.mp4
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:dfd0bbe2cb8785addde99965d33e23c03e7795426120decd419c87968a2e2248
|
| 3 |
+
size 739609
|
video_list/dog_flower_g.mp4
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:4a89adfe04aba2fdda8ba9dc701edc97936c6840893424af1c780ae21854ee60
|
| 3 |
+
size 264406
|
video_list/girl_and_dog.mp4
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:0a9fdd6c2621e82a52236703b60211fe6b5d9bf26aba256742bae795aa37f65c
|
| 3 |
+
size 560330
|
video_list/gym_woman.mp4
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:95f324cd4cc528600a88a76c2d176fa2efbb825d9c67166a61d3d27e8ff9bdf1
|
| 3 |
+
size 326086
|
video_list/jeep.mp4
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ba0a4604c475c4b9e9ed0af4e2c087186c73b5f7ec32757c6ae1fa13c3023cd5
|
| 3 |
+
size 605012
|
video_list/puppy.mp4
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:640841865905d8185583f77ea687544ca98861d8a84b30088de4dfa0d170b6aa
|
| 3 |
+
size 160233
|
video_list/rabbit.mp4
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b537200243ef47033a3ca1b69aa2eac988eb547f330dbc319d9acc493db56fe9
|
| 3 |
+
size 212112
|
video_list/sea_lion.mp4
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ac0786d7565882956c8000b470c38837144d0211ed380e2b4169040778da016c
|
| 3 |
+
size 695222
|
video_list/sea_turtle.mp4
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b0759b3562748c13d4fdf92d3f596de9b3f8786a7d7431c09ad3f8df24ca0d2d
|
| 3 |
+
size 917310
|
video_list/wolf.mp4
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:90879c594eb4ca1133144f07a96138396c49dcb0732c37a7816c657c3f451cae
|
| 3 |
+
size 382231
|
video_list/woman.mp4
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:80e8f0bdbab6aa26b510f5a90be3f6e689901d8837e2e69cd4163bba0e8de72e
|
| 3 |
+
size 949087
|
wan/__init__.py
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from . import configs, distributed, modules
|
| 2 |
+
from .image2video import WanI2V
|
| 3 |
+
from .text2video import WanT2V
|
wan/__pycache__/__init__.cpython-310.pyc
ADDED
|
Binary file (276 Bytes). View file
|
|
|
wan/__pycache__/__init__.cpython-312.pyc
ADDED
|
Binary file (288 Bytes). View file
|
|
|
wan/__pycache__/image2video.cpython-310.pyc
ADDED
|
Binary file (9.73 kB). View file
|
|
|
wan/__pycache__/image2video.cpython-312.pyc
ADDED
|
Binary file (16.7 kB). View file
|
|
|
wan/__pycache__/text2video.cpython-310.pyc
ADDED
|
Binary file (25 kB). View file
|
|
|
wan/__pycache__/text2video.cpython-312.pyc
ADDED
|
Binary file (76.5 kB). View file
|
|
|
wan/configs/__init__.py
ADDED
|
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
|
| 2 |
+
import copy
|
| 3 |
+
import os
|
| 4 |
+
|
| 5 |
+
os.environ['TOKENIZERS_PARALLELISM'] = 'false'
|
| 6 |
+
|
| 7 |
+
from .wan_i2v_14B import i2v_14B
|
| 8 |
+
from .wan_t2v_1_3B import t2v_1_3B
|
| 9 |
+
from .wan_t2v_14B import t2v_14B
|
| 10 |
+
|
| 11 |
+
# the config of t2i_14B is the same as t2v_14B
|
| 12 |
+
t2i_14B = copy.deepcopy(t2v_14B)
|
| 13 |
+
t2i_14B.__name__ = 'Config: Wan T2I 14B'
|
| 14 |
+
|
| 15 |
+
WAN_CONFIGS = {
|
| 16 |
+
't2v-14B': t2v_14B,
|
| 17 |
+
't2v-1.3B': t2v_1_3B,
|
| 18 |
+
'i2v-14B': i2v_14B,
|
| 19 |
+
't2i-14B': t2i_14B,
|
| 20 |
+
}
|
| 21 |
+
|
| 22 |
+
SIZE_CONFIGS = {
|
| 23 |
+
'720*1280': (720, 1280),
|
| 24 |
+
'1280*720': (1280, 720),
|
| 25 |
+
'480*832': (480, 832),
|
| 26 |
+
'832*480': (832, 480),
|
| 27 |
+
'1024*1024': (1024, 1024),
|
| 28 |
+
}
|
| 29 |
+
|
| 30 |
+
MAX_AREA_CONFIGS = {
|
| 31 |
+
'720*1280': 720 * 1280,
|
| 32 |
+
'1280*720': 1280 * 720,
|
| 33 |
+
'480*832': 480 * 832,
|
| 34 |
+
'832*480': 832 * 480,
|
| 35 |
+
}
|
| 36 |
+
|
| 37 |
+
SUPPORTED_SIZES = {
|
| 38 |
+
't2v-14B': ('720*1280', '1280*720', '480*832', '832*480'),
|
| 39 |
+
't2v-1.3B': ('480*832', '832*480'),
|
| 40 |
+
'i2v-14B': ('720*1280', '1280*720', '480*832', '832*480'),
|
| 41 |
+
't2i-14B': tuple(SIZE_CONFIGS.keys()),
|
| 42 |
+
}
|
wan/configs/__pycache__/__init__.cpython-310.pyc
ADDED
|
Binary file (794 Bytes). View file
|
|
|
wan/configs/__pycache__/__init__.cpython-312.pyc
ADDED
|
Binary file (986 Bytes). View file
|
|
|
wan/configs/__pycache__/shared_config.cpython-310.pyc
ADDED
|
Binary file (814 Bytes). View file
|
|
|
wan/configs/__pycache__/shared_config.cpython-312.pyc
ADDED
|
Binary file (988 Bytes). View file
|
|
|
wan/configs/__pycache__/wan_i2v_14B.cpython-310.pyc
ADDED
|
Binary file (938 Bytes). View file
|
|
|
wan/configs/__pycache__/wan_i2v_14B.cpython-312.pyc
ADDED
|
Binary file (1.28 kB). View file
|
|
|
wan/configs/__pycache__/wan_t2v_14B.cpython-310.pyc
ADDED
|
Binary file (718 Bytes). View file
|
|
|
wan/configs/__pycache__/wan_t2v_14B.cpython-312.pyc
ADDED
|
Binary file (977 Bytes). View file
|
|
|
wan/configs/__pycache__/wan_t2v_1_3B.cpython-310.pyc
ADDED
|
Binary file (726 Bytes). View file
|
|
|
wan/configs/__pycache__/wan_t2v_1_3B.cpython-312.pyc
ADDED
|
Binary file (987 Bytes). View file
|
|
|
wan/configs/shared_config.py
ADDED
|
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
|
| 2 |
+
import torch
|
| 3 |
+
from easydict import EasyDict
|
| 4 |
+
|
| 5 |
+
#------------------------ Wan shared config ------------------------#
|
| 6 |
+
wan_shared_cfg = EasyDict()
|
| 7 |
+
|
| 8 |
+
# t5
|
| 9 |
+
wan_shared_cfg.t5_model = 'umt5_xxl'
|
| 10 |
+
wan_shared_cfg.t5_dtype = torch.bfloat16
|
| 11 |
+
wan_shared_cfg.text_len = 512
|
| 12 |
+
|
| 13 |
+
# transformer
|
| 14 |
+
wan_shared_cfg.param_dtype = torch.bfloat16
|
| 15 |
+
|
| 16 |
+
# inference
|
| 17 |
+
wan_shared_cfg.num_train_timesteps = 1000
|
| 18 |
+
wan_shared_cfg.sample_fps = 16
|
| 19 |
+
wan_shared_cfg.sample_neg_prompt = '色调艳丽,过曝,静态,细节模糊不清,字幕,风格,作品,画作,画面,静止,整体发灰,最差质量,低质量,JPEG压缩残留,丑陋的,残缺的,多余的手指,画得不好的手部,画得不好的脸部,畸形的,毁容的,形态畸形的肢体,手指融合,静止不动的画面,杂乱的背景,三条腿,背景人很多,倒着走'
|
wan/configs/wan_i2v_14B.py
ADDED
|
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
|
| 2 |
+
import torch
|
| 3 |
+
from easydict import EasyDict
|
| 4 |
+
|
| 5 |
+
from .shared_config import wan_shared_cfg
|
| 6 |
+
|
| 7 |
+
#------------------------ Wan I2V 14B ------------------------#
|
| 8 |
+
|
| 9 |
+
i2v_14B = EasyDict(__name__='Config: Wan I2V 14B')
|
| 10 |
+
i2v_14B.update(wan_shared_cfg)
|
| 11 |
+
|
| 12 |
+
i2v_14B.t5_checkpoint = 'models_t5_umt5-xxl-enc-bf16.pth'
|
| 13 |
+
i2v_14B.t5_tokenizer = 'google/umt5-xxl'
|
| 14 |
+
|
| 15 |
+
# clip
|
| 16 |
+
i2v_14B.clip_model = 'clip_xlm_roberta_vit_h_14'
|
| 17 |
+
i2v_14B.clip_dtype = torch.float16
|
| 18 |
+
i2v_14B.clip_checkpoint = 'models_clip_open-clip-xlm-roberta-large-vit-huge-14.pth'
|
| 19 |
+
i2v_14B.clip_tokenizer = 'xlm-roberta-large'
|
| 20 |
+
|
| 21 |
+
# vae
|
| 22 |
+
i2v_14B.vae_checkpoint = 'Wan2.1_VAE.pth'
|
| 23 |
+
i2v_14B.vae_stride = (4, 8, 8)
|
| 24 |
+
|
| 25 |
+
# transformer
|
| 26 |
+
i2v_14B.patch_size = (1, 2, 2)
|
| 27 |
+
i2v_14B.dim = 5120
|
| 28 |
+
i2v_14B.ffn_dim = 13824
|
| 29 |
+
i2v_14B.freq_dim = 256
|
| 30 |
+
i2v_14B.num_heads = 40
|
| 31 |
+
i2v_14B.num_layers = 40
|
| 32 |
+
i2v_14B.window_size = (-1, -1)
|
| 33 |
+
i2v_14B.qk_norm = True
|
| 34 |
+
i2v_14B.cross_attn_norm = True
|
| 35 |
+
i2v_14B.eps = 1e-6
|
wan/configs/wan_t2v_14B.py
ADDED
|
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
|
| 2 |
+
from easydict import EasyDict
|
| 3 |
+
|
| 4 |
+
from .shared_config import wan_shared_cfg
|
| 5 |
+
|
| 6 |
+
#------------------------ Wan T2V 14B ------------------------#
|
| 7 |
+
|
| 8 |
+
t2v_14B = EasyDict(__name__='Config: Wan T2V 14B')
|
| 9 |
+
t2v_14B.update(wan_shared_cfg)
|
| 10 |
+
|
| 11 |
+
# t5
|
| 12 |
+
t2v_14B.t5_checkpoint = 'models_t5_umt5-xxl-enc-bf16.pth'
|
| 13 |
+
t2v_14B.t5_tokenizer = 'google/umt5-xxl'
|
| 14 |
+
|
| 15 |
+
# vae
|
| 16 |
+
t2v_14B.vae_checkpoint = 'Wan2.1_VAE.pth'
|
| 17 |
+
t2v_14B.vae_stride = (4, 8, 8)
|
| 18 |
+
|
| 19 |
+
# transformer
|
| 20 |
+
t2v_14B.patch_size = (1, 2, 2)
|
| 21 |
+
t2v_14B.dim = 5120
|
| 22 |
+
t2v_14B.ffn_dim = 13824
|
| 23 |
+
t2v_14B.freq_dim = 256
|
| 24 |
+
t2v_14B.num_heads = 40
|
| 25 |
+
t2v_14B.num_layers = 40
|
| 26 |
+
t2v_14B.window_size = (-1, -1)
|
| 27 |
+
t2v_14B.qk_norm = True
|
| 28 |
+
t2v_14B.cross_attn_norm = True
|
| 29 |
+
t2v_14B.eps = 1e-6
|
wan/configs/wan_t2v_1_3B.py
ADDED
|
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
|
| 2 |
+
from easydict import EasyDict
|
| 3 |
+
|
| 4 |
+
from .shared_config import wan_shared_cfg
|
| 5 |
+
|
| 6 |
+
#------------------------ Wan T2V 1.3B ------------------------#
|
| 7 |
+
|
| 8 |
+
t2v_1_3B = EasyDict(__name__='Config: Wan T2V 1.3B')
|
| 9 |
+
t2v_1_3B.update(wan_shared_cfg)
|
| 10 |
+
|
| 11 |
+
# t5
|
| 12 |
+
t2v_1_3B.t5_checkpoint = 'models_t5_umt5-xxl-enc-bf16.pth'
|
| 13 |
+
t2v_1_3B.t5_tokenizer = 'google/umt5-xxl'
|
| 14 |
+
|
| 15 |
+
# vae
|
| 16 |
+
t2v_1_3B.vae_checkpoint = 'Wan2.1_VAE.pth'
|
| 17 |
+
t2v_1_3B.vae_stride = (4, 8, 8)
|
| 18 |
+
|
| 19 |
+
# transformer
|
| 20 |
+
t2v_1_3B.patch_size = (1, 2, 2)
|
| 21 |
+
t2v_1_3B.dim = 1536
|
| 22 |
+
t2v_1_3B.ffn_dim = 8960
|
| 23 |
+
t2v_1_3B.freq_dim = 256
|
| 24 |
+
t2v_1_3B.num_heads = 12
|
| 25 |
+
t2v_1_3B.num_layers = 30
|
| 26 |
+
t2v_1_3B.window_size = (-1, -1)
|
| 27 |
+
t2v_1_3B.qk_norm = True
|
| 28 |
+
t2v_1_3B.cross_attn_norm = True
|
| 29 |
+
t2v_1_3B.eps = 1e-6
|
wan/distributed/__init__.py
ADDED
|
File without changes
|
wan/distributed/__pycache__/__init__.cpython-310.pyc
ADDED
|
Binary file (133 Bytes). View file
|
|
|
wan/distributed/__pycache__/__init__.cpython-312.pyc
ADDED
|
Binary file (137 Bytes). View file
|
|
|
wan/distributed/__pycache__/fsdp.cpython-310.pyc
ADDED
|
Binary file (1 kB). View file
|
|
|
wan/distributed/__pycache__/fsdp.cpython-312.pyc
ADDED
|
Binary file (1.24 kB). View file
|
|
|
wan/distributed/__pycache__/xdit_context_parallel.cpython-310.pyc
ADDED
|
Binary file (5.29 kB). View file
|
|
|
wan/distributed/__pycache__/xdit_context_parallel.cpython-312.pyc
ADDED
|
Binary file (27.2 kB). View file
|
|
|
wan/distributed/fsdp.py
ADDED
|
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
|
| 2 |
+
from functools import partial
|
| 3 |
+
|
| 4 |
+
import torch
|
| 5 |
+
from torch.distributed.fsdp import FullyShardedDataParallel as FSDP
|
| 6 |
+
from torch.distributed.fsdp import MixedPrecision, ShardingStrategy
|
| 7 |
+
from torch.distributed.fsdp.wrap import lambda_auto_wrap_policy
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
def shard_model(
|
| 11 |
+
model,
|
| 12 |
+
device_id,
|
| 13 |
+
param_dtype=torch.bfloat16,
|
| 14 |
+
reduce_dtype=torch.float32,
|
| 15 |
+
buffer_dtype=torch.float32,
|
| 16 |
+
process_group=None,
|
| 17 |
+
sharding_strategy=ShardingStrategy.FULL_SHARD,
|
| 18 |
+
sync_module_states=True,
|
| 19 |
+
):
|
| 20 |
+
model = FSDP(
|
| 21 |
+
module=model,
|
| 22 |
+
process_group=process_group,
|
| 23 |
+
sharding_strategy=sharding_strategy,
|
| 24 |
+
auto_wrap_policy=partial(
|
| 25 |
+
lambda_auto_wrap_policy, lambda_fn=lambda m: m in model.blocks),
|
| 26 |
+
mixed_precision=MixedPrecision(
|
| 27 |
+
param_dtype=param_dtype,
|
| 28 |
+
reduce_dtype=reduce_dtype,
|
| 29 |
+
buffer_dtype=buffer_dtype),
|
| 30 |
+
device_id=device_id,
|
| 31 |
+
sync_module_states=sync_module_states)
|
| 32 |
+
return model
|
wan/distributed/xdit_context_parallel.py
ADDED
|
@@ -0,0 +1,420 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
|
| 2 |
+
from time import time
|
| 3 |
+
import torch
|
| 4 |
+
import torch.cuda.amp as amp
|
| 5 |
+
from xfuser.core.distributed import (get_sequence_parallel_rank,
|
| 6 |
+
get_sequence_parallel_world_size,
|
| 7 |
+
get_sp_group)
|
| 8 |
+
from xfuser.core.long_ctx_attention import xFuserLongContextAttention
|
| 9 |
+
|
| 10 |
+
from ..modules.model import sinusoidal_embedding_1d
|
| 11 |
+
from typing import List, Union, Optional, Tuple
|
| 12 |
+
import torch.nn.functional as F
|
| 13 |
+
import torch
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
def pad_freqs(original_tensor, target_len):
|
| 17 |
+
seq_len, s1, s2 = original_tensor.shape
|
| 18 |
+
pad_size = target_len - seq_len
|
| 19 |
+
padding_tensor = torch.ones(
|
| 20 |
+
pad_size,
|
| 21 |
+
s1,
|
| 22 |
+
s2,
|
| 23 |
+
dtype=original_tensor.dtype,
|
| 24 |
+
device=original_tensor.device)
|
| 25 |
+
padded_tensor = torch.cat([original_tensor, padding_tensor], dim=0)
|
| 26 |
+
return padded_tensor
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
@amp.autocast(enabled=False)
|
| 30 |
+
def rope_apply(x, grid_sizes, freqs):
|
| 31 |
+
"""
|
| 32 |
+
x: [B, L, N, C].
|
| 33 |
+
grid_sizes: [B, 3].
|
| 34 |
+
freqs: [M, C // 2].
|
| 35 |
+
"""
|
| 36 |
+
s, n, c = x.size(1), x.size(2), x.size(3) // 2
|
| 37 |
+
# split freqs
|
| 38 |
+
freqs = freqs.split([c - 2 * (c // 3), c // 3, c // 3], dim=1)
|
| 39 |
+
|
| 40 |
+
# loop over samples
|
| 41 |
+
output = []
|
| 42 |
+
for i, (f, h, w) in enumerate(grid_sizes.tolist()):
|
| 43 |
+
seq_len = f * h * w
|
| 44 |
+
|
| 45 |
+
# precompute multipliers
|
| 46 |
+
x_i = torch.view_as_complex(x[i, :s].to(torch.float64).reshape(
|
| 47 |
+
s, n, -1, 2))
|
| 48 |
+
freqs_i = torch.cat([
|
| 49 |
+
freqs[0][:f].view(f, 1, 1, -1).expand(f, h, w, -1),
|
| 50 |
+
freqs[1][:h].view(1, h, 1, -1).expand(f, h, w, -1),
|
| 51 |
+
freqs[2][:w].view(1, 1, w, -1).expand(f, h, w, -1)
|
| 52 |
+
],
|
| 53 |
+
dim=-1).reshape(seq_len, 1, -1)
|
| 54 |
+
|
| 55 |
+
# apply rotary embedding
|
| 56 |
+
sp_size = get_sequence_parallel_world_size()
|
| 57 |
+
sp_rank = get_sequence_parallel_rank()
|
| 58 |
+
freqs_i = pad_freqs(freqs_i, s * sp_size)
|
| 59 |
+
s_per_rank = s
|
| 60 |
+
freqs_i_rank = freqs_i[(sp_rank * s_per_rank):((sp_rank + 1) *
|
| 61 |
+
s_per_rank), :, :]
|
| 62 |
+
x_i = torch.view_as_real(x_i * freqs_i_rank).flatten(2)
|
| 63 |
+
x_i = torch.cat([x_i, x[i, s:]])
|
| 64 |
+
|
| 65 |
+
# append to collection
|
| 66 |
+
output.append(x_i)
|
| 67 |
+
return torch.stack(output).float()
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
@torch.no_grad() # Usually don't need gradients for mask generation
|
| 71 |
+
def generate_attention_mask(
|
| 72 |
+
attention_map: torch.Tensor,
|
| 73 |
+
grid_sizes: torch.Tensor,
|
| 74 |
+
target_x_shape: Tuple[int, int, int, int], # Target shape: (C, T, H, W)
|
| 75 |
+
batch_index: int = 0,
|
| 76 |
+
target_word_indices: Union[List[int], slice] = None,
|
| 77 |
+
head_index: Optional[int] = None, # Process single head or average
|
| 78 |
+
word_aggregation_method: str = 'mean', # How to combine scores for multiple words
|
| 79 |
+
upsample_mode_spatial: str = 'nearest', # 'nearest', 'bilinear'
|
| 80 |
+
upsample_mode_temporal: str = 'nearest', # 'nearest', 'linear'
|
| 81 |
+
output_dtype: torch.dtype = torch.float32 # or torch.bool for soft mask before threshold
|
| 82 |
+
) -> torch.Tensor:
|
| 83 |
+
"""
|
| 84 |
+
Generates a binary mask from an attention map based on attention towards target words.
|
| 85 |
+
|
| 86 |
+
The mask identifies regions in the video (x) that attend strongly to the specified
|
| 87 |
+
context words, exceeding a given threshold. The mask has the same dimensions as x.
|
| 88 |
+
|
| 89 |
+
Args:
|
| 90 |
+
attention_map (torch.Tensor): Attention weights [B, Head_num, Lx, Lctx].
|
| 91 |
+
Lx = flattened video tokens (patches),
|
| 92 |
+
Lctx = context tokens (words).
|
| 93 |
+
target_word_indices (Union[List[int], slice]): Indices or slice for the target
|
| 94 |
+
word(s) in the Lctx dimension.
|
| 95 |
+
grid_sizes (torch.Tensor): Patch grid dimensions [B, 3] -> (F, H_patch, W_patch)
|
| 96 |
+
for each batch item, corresponding to Lx.
|
| 97 |
+
F, H_patch, W_patch should be integers.
|
| 98 |
+
target_x_shape (Tuple[int, int, int, int]): The desired output shape [C, T, H, W],
|
| 99 |
+
matching the original video tensor x.
|
| 100 |
+
threshold (float): Value between 0 and 1. Attention scores >= threshold become 1 (True),
|
| 101 |
+
otherwise 0 (False).
|
| 102 |
+
batch_index (int, optional): Batch item to process. Defaults to 0.
|
| 103 |
+
head_index (Optional[int], optional): Specific head to use. If None, average
|
| 104 |
+
attention across all heads. Defaults to None.
|
| 105 |
+
word_aggregation_method (str, optional): How to aggregate scores if multiple
|
| 106 |
+
target_word_indices are given ('mean',
|
| 107 |
+
'sum', 'max'). Defaults to 'mean'.
|
| 108 |
+
upsample_mode_spatial (str, optional): PyTorch interpolate mode for H, W dimensions.
|
| 109 |
+
Defaults to 'nearest'.
|
| 110 |
+
upsample_mode_temporal (str, optional): PyTorch interpolate mode for T dimension.
|
| 111 |
+
Defaults to 'nearest'.
|
| 112 |
+
output_dtype (torch.dtype, optional): Data type of the output mask.
|
| 113 |
+
Defaults to torch.bool.
|
| 114 |
+
|
| 115 |
+
Returns:
|
| 116 |
+
torch.Tensor: A binary mask tensor of shape target_x_shape [C, T, H, W].
|
| 117 |
+
|
| 118 |
+
Raises:
|
| 119 |
+
TypeError: If inputs are not torch.Tensors.
|
| 120 |
+
ValueError: If tensor dimensions or indices are invalid, or if
|
| 121 |
+
aggregation/upsample modes are unknown.
|
| 122 |
+
IndexError: If batch_index or head_index are out of bounds.
|
| 123 |
+
"""
|
| 124 |
+
# --- Input Validation ---
|
| 125 |
+
if not isinstance(attention_map, torch.Tensor):
|
| 126 |
+
raise TypeError("attention_map must be a torch.Tensor")
|
| 127 |
+
if not isinstance(grid_sizes, torch.Tensor):
|
| 128 |
+
raise TypeError("grid_sizes must be a torch.Tensor")
|
| 129 |
+
if attention_map.dim() != 4:
|
| 130 |
+
raise ValueError(f"attention_map must be [B, H, Lx, Lctx], got {attention_map.dim()} dims")
|
| 131 |
+
if grid_sizes.dim() != 2 or grid_sizes.shape[1] != 3:
|
| 132 |
+
raise ValueError(f"grid_sizes must be [B, 3], got {grid_sizes.shape}")
|
| 133 |
+
if len(target_x_shape) != 4:
|
| 134 |
+
raise ValueError(f"target_x_shape must be [C, T, H, W], got length {len(target_x_shape)}")
|
| 135 |
+
|
| 136 |
+
B, H, Lx, Lctx = attention_map.shape
|
| 137 |
+
C_out, T_out, H_out, W_out = target_x_shape
|
| 138 |
+
|
| 139 |
+
if not 0 <= batch_index < B:
|
| 140 |
+
raise IndexError(f"batch_index {batch_index} out of range for batch size {B}")
|
| 141 |
+
if head_index is not None and not 0 <= head_index < H:
|
| 142 |
+
raise IndexError(f"head_index {head_index} out of range for head count {H}")
|
| 143 |
+
if word_aggregation_method not in ['mean', 'sum', 'max']:
|
| 144 |
+
raise ValueError(f"Unknown word_aggregation_method: {word_aggregation_method}")
|
| 145 |
+
if upsample_mode_spatial not in ['nearest', 'bilinear']:
|
| 146 |
+
raise ValueError(f"Unknown upsample_mode_spatial: {upsample_mode_spatial}")
|
| 147 |
+
if upsample_mode_temporal not in ['nearest', 'linear']:
|
| 148 |
+
raise ValueError(f"Unknown upsample_mode_temporal: {upsample_mode_temporal}")
|
| 149 |
+
|
| 150 |
+
|
| 151 |
+
# --- Select Head(s) ---
|
| 152 |
+
if head_index is None:
|
| 153 |
+
# Average across heads. Shape -> [Lx, Lctx]
|
| 154 |
+
attn_map_processed = attention_map[batch_index].mean(dim=0)
|
| 155 |
+
else:
|
| 156 |
+
# Select specific head. Shape -> [Lx, Lctx]
|
| 157 |
+
attn_map_processed = attention_map[batch_index, head_index]
|
| 158 |
+
|
| 159 |
+
# --- Select and Aggregate Word Attention ---
|
| 160 |
+
# Ensure target_word_indices are valid before slicing
|
| 161 |
+
if isinstance(target_word_indices, slice):
|
| 162 |
+
_slice_indices = range(*target_word_indices.indices(Lctx))
|
| 163 |
+
if not _slice_indices: # Empty slice
|
| 164 |
+
num_words = 0
|
| 165 |
+
elif _slice_indices.start >= Lctx or _slice_indices.stop < -Lctx : # Basic out of bounds check
|
| 166 |
+
num_words = len(_slice_indices) # Proceed cautiously or add stricter check
|
| 167 |
+
else:
|
| 168 |
+
num_words = len(_slice_indices)
|
| 169 |
+
word_indices_str = f"slice({_slice_indices.start}:{_slice_indices.stop}:{_slice_indices.step})"
|
| 170 |
+
word_attn_scores = attn_map_processed[:, target_word_indices] # Shape -> [Lx, num_words]
|
| 171 |
+
elif isinstance(target_word_indices, list):
|
| 172 |
+
# Check indices are within bounds
|
| 173 |
+
valid_indices = [idx for idx in target_word_indices if -Lctx <= idx < Lctx]
|
| 174 |
+
if not valid_indices:
|
| 175 |
+
num_words = 0
|
| 176 |
+
word_attn_scores = torch.empty((Lx, 0), device=attention_map.device, dtype=attention_map.dtype) # Handle empty case
|
| 177 |
+
else:
|
| 178 |
+
word_attn_scores = attn_map_processed[:, valid_indices] # Shape -> [Lx, num_words]
|
| 179 |
+
num_words = len(valid_indices)
|
| 180 |
+
word_indices_str = str(valid_indices) # Report used indices
|
| 181 |
+
else:
|
| 182 |
+
raise TypeError(f"target_word_indices must be list or slice, got {type(target_word_indices)}")
|
| 183 |
+
|
| 184 |
+
if num_words > 1:
|
| 185 |
+
if word_aggregation_method == 'mean':
|
| 186 |
+
aggregated_scores = word_attn_scores.mean(dim=-1)
|
| 187 |
+
elif word_aggregation_method == 'sum':
|
| 188 |
+
aggregated_scores = word_attn_scores.sum(dim=-1)
|
| 189 |
+
elif word_aggregation_method == 'max':
|
| 190 |
+
aggregated_scores = word_attn_scores.max(dim=-1).values
|
| 191 |
+
# aggregated_scores shape -> [Lx]
|
| 192 |
+
elif num_words == 1:
|
| 193 |
+
aggregated_scores = word_attn_scores.squeeze(-1) # Shape -> [Lx]
|
| 194 |
+
else: # No valid words selected
|
| 195 |
+
return torch.zeros(target_x_shape, dtype=output_dtype, device=attention_map.device)
|
| 196 |
+
|
| 197 |
+
# --- Reshape to Video Patch Grid ---
|
| 198 |
+
# Ensure grid sizes are integers
|
| 199 |
+
f_patch, h_patch, w_patch = map(int, grid_sizes[batch_index].tolist())
|
| 200 |
+
actual_num_tokens = f_patch * h_patch * w_patch
|
| 201 |
+
|
| 202 |
+
if actual_num_tokens == 0:
|
| 203 |
+
return torch.zeros(target_x_shape, dtype=output_dtype, device=attention_map.device)
|
| 204 |
+
|
| 205 |
+
# Handle mismatch between expected tokens (from grid) and actual attention length (Lx)
|
| 206 |
+
if actual_num_tokens > Lx:
|
| 207 |
+
# Pad aggregated_scores to actual_num_tokens size
|
| 208 |
+
padding_size = actual_num_tokens - aggregated_scores.numel()
|
| 209 |
+
scores_padded = F.pad(aggregated_scores, (0, padding_size), "constant", 0)
|
| 210 |
+
scores_unpadded = scores_padded # Use the padded version for reshaping
|
| 211 |
+
# This scenario is less common than Lx > actual_num_tokens
|
| 212 |
+
elif actual_num_tokens < Lx:
|
| 213 |
+
scores_unpadded = aggregated_scores[:actual_num_tokens]
|
| 214 |
+
else:
|
| 215 |
+
scores_unpadded = aggregated_scores # Shape [actual_num_tokens]
|
| 216 |
+
|
| 217 |
+
try:
|
| 218 |
+
# Reshape to [F_patch, H_patch, W_patch]
|
| 219 |
+
attention_patch_grid = scores_unpadded.reshape(f_patch, h_patch, w_patch)
|
| 220 |
+
except RuntimeError as e:
|
| 221 |
+
raise e
|
| 222 |
+
|
| 223 |
+
# --- Upsample to Original Video Resolution ---
|
| 224 |
+
# Add batch and channel dims for interpolation: [1, 1, F_patch, H_patch, W_patch]
|
| 225 |
+
# Note: Assuming attention is channel-agnostic here.
|
| 226 |
+
grid_for_upsample = attention_patch_grid.unsqueeze(0).unsqueeze(0).float() # Interpolate needs float
|
| 227 |
+
|
| 228 |
+
|
| 229 |
+
# --- SIMPLIFIED LOGIC: Always use 3D interpolation ---
|
| 230 |
+
target_size_3d = (T_out, H_out, W_out)
|
| 231 |
+
|
| 232 |
+
# Determine the 3D interpolation mode.
|
| 233 |
+
# Default to 'nearest' unless temporal dimension changes AND 'linear' is requested.
|
| 234 |
+
if upsample_mode_temporal == 'linear' and f_patch != T_out:
|
| 235 |
+
upsample_mode_3d = 'trilinear'
|
| 236 |
+
align_corners_3d = False # align_corners usually False for non-nearest modes
|
| 237 |
+
else:
|
| 238 |
+
# Use 'nearest' if T isn't changing, or if temporal mode is 'nearest'.
|
| 239 |
+
# 'nearest' is generally safer and handles spatial modes implicitly.
|
| 240 |
+
upsample_mode_3d = 'nearest'
|
| 241 |
+
align_corners_3d = None # align_corners=None for nearest
|
| 242 |
+
|
| 243 |
+
upsampled_scores_grid = F.interpolate(grid_for_upsample,
|
| 244 |
+
size=target_size_3d,
|
| 245 |
+
mode=upsample_mode_3d,
|
| 246 |
+
align_corners=align_corners_3d)
|
| 247 |
+
# Expected shape: [1, 1, T_out, H_out, W_out] == [1, 1, 21, 60, 104]
|
| 248 |
+
|
| 249 |
+
# --- END SIMPLIFIED LOGIC ---
|
| 250 |
+
|
| 251 |
+
# Remove batch and channel dims: [T_out, H_out, W_out]
|
| 252 |
+
upsampled_scores = upsampled_scores_grid.squeeze(0).squeeze(0)
|
| 253 |
+
|
| 254 |
+
# --- Thresholding ---
|
| 255 |
+
binary_mask_thw = (upsampled_scores / torch.max(upsampled_scores)) # Shape [T_out, H_out, W_out]
|
| 256 |
+
|
| 257 |
+
# --- Expand Channel Dimension ---
|
| 258 |
+
# Repeat the mask across the channel dimension C_out
|
| 259 |
+
# Input shape: [T_out, H_out, W_out]
|
| 260 |
+
# After unsqueeze(0): [1, T_out, H_out, W_out]
|
| 261 |
+
# Target shape: [C_out, T_out, H_out, W_out]
|
| 262 |
+
# This expand operation is valid as explained above.
|
| 263 |
+
final_mask = binary_mask_thw.unsqueeze(0).expand(C_out, T_out, H_out, W_out)
|
| 264 |
+
|
| 265 |
+
return final_mask.to(dtype=output_dtype)
|
| 266 |
+
|
| 267 |
+
|
| 268 |
+
def usp_dit_forward(
|
| 269 |
+
self,
|
| 270 |
+
x,
|
| 271 |
+
t,
|
| 272 |
+
context,
|
| 273 |
+
seq_len,
|
| 274 |
+
clip_fea=None,
|
| 275 |
+
y=None,
|
| 276 |
+
words_indices=None,
|
| 277 |
+
block_id=-1,
|
| 278 |
+
type=None,
|
| 279 |
+
timestep=None
|
| 280 |
+
):
|
| 281 |
+
"""
|
| 282 |
+
x: A list of videos each with shape [C, T, H, W].
|
| 283 |
+
t: [B].
|
| 284 |
+
context: A list of text embeddings each with shape [L, C].
|
| 285 |
+
"""
|
| 286 |
+
if self.model_type == 'i2v':
|
| 287 |
+
assert clip_fea is not None and y is not None
|
| 288 |
+
# params
|
| 289 |
+
device = self.patch_embedding.weight.device
|
| 290 |
+
if self.freqs.device != device:
|
| 291 |
+
self.freqs = self.freqs.to(device)
|
| 292 |
+
|
| 293 |
+
if y is not None:
|
| 294 |
+
x = [torch.cat([u, v], dim=0) for u, v in zip(x, y)]
|
| 295 |
+
|
| 296 |
+
# embeddings
|
| 297 |
+
x = [self.patch_embedding(u.unsqueeze(0)) for u in x]
|
| 298 |
+
grid_sizes = torch.stack(
|
| 299 |
+
[torch.tensor(u.shape[2:], dtype=torch.long) for u in x])
|
| 300 |
+
|
| 301 |
+
x = [u.flatten(2).transpose(1, 2) for u in x]
|
| 302 |
+
seq_lens = torch.tensor([u.size(1) for u in x], dtype=torch.long)
|
| 303 |
+
assert seq_lens.max() <= seq_len
|
| 304 |
+
x = torch.cat([
|
| 305 |
+
torch.cat([u, u.new_zeros(1, seq_len - u.size(1), u.size(2))], dim=1)
|
| 306 |
+
for u in x
|
| 307 |
+
])
|
| 308 |
+
|
| 309 |
+
# time embeddings
|
| 310 |
+
with amp.autocast(dtype=torch.float32):
|
| 311 |
+
e = self.time_embedding(
|
| 312 |
+
sinusoidal_embedding_1d(self.freq_dim, t).float())
|
| 313 |
+
e0 = self.time_projection(e).unflatten(1, (6, self.dim))
|
| 314 |
+
assert e.dtype == torch.float32 and e0.dtype == torch.float32
|
| 315 |
+
|
| 316 |
+
# context
|
| 317 |
+
context_lens = None
|
| 318 |
+
context = self.text_embedding(
|
| 319 |
+
torch.stack([
|
| 320 |
+
torch.cat([u, u.new_zeros(self.text_len - u.size(0), u.size(1))])
|
| 321 |
+
for u in context
|
| 322 |
+
]))
|
| 323 |
+
|
| 324 |
+
if clip_fea is not None:
|
| 325 |
+
context_clip = self.img_emb(clip_fea) # bs x 257 x dim
|
| 326 |
+
context = torch.concat([context_clip, context], dim=1)
|
| 327 |
+
|
| 328 |
+
# arguments
|
| 329 |
+
kwargs = dict(
|
| 330 |
+
e=e0,
|
| 331 |
+
seq_lens=seq_lens,
|
| 332 |
+
grid_sizes=grid_sizes,
|
| 333 |
+
freqs=self.freqs,
|
| 334 |
+
context=context,
|
| 335 |
+
context_lens=context_lens,
|
| 336 |
+
collect_attn_map=False)
|
| 337 |
+
|
| 338 |
+
# Context Parallel
|
| 339 |
+
x = torch.chunk(
|
| 340 |
+
x, get_sequence_parallel_world_size(),
|
| 341 |
+
dim=1)[get_sequence_parallel_rank()]
|
| 342 |
+
|
| 343 |
+
save_block_id = block_id
|
| 344 |
+
attn_map = None
|
| 345 |
+
binary_mask = None
|
| 346 |
+
for i, block in enumerate(self.blocks):
|
| 347 |
+
kwargs["collect_attn_map"] = False
|
| 348 |
+
if i == save_block_id:
|
| 349 |
+
kwargs["collect_attn_map"] = True
|
| 350 |
+
x, attn_map = block(x, **kwargs)
|
| 351 |
+
else:
|
| 352 |
+
x = block(x, **kwargs)
|
| 353 |
+
|
| 354 |
+
# head
|
| 355 |
+
x = self.head(x, e)
|
| 356 |
+
# Context Parallel
|
| 357 |
+
x = get_sp_group().all_gather(x, dim=1)
|
| 358 |
+
|
| 359 |
+
# unpatchify
|
| 360 |
+
x = self.unpatchify(x, grid_sizes)
|
| 361 |
+
|
| 362 |
+
if save_block_id != -1 and words_indices is not None:
|
| 363 |
+
attention_map = get_sp_group().all_gather(attn_map, dim=2)
|
| 364 |
+
binary_mask = generate_attention_mask(
|
| 365 |
+
attention_map=attention_map, # [1, 12, 32760, 512] batchsize, head_num, l_x, l_context
|
| 366 |
+
target_word_indices=words_indices,
|
| 367 |
+
grid_sizes=grid_sizes, # Make sure grid_sizes covers the full batch
|
| 368 |
+
target_x_shape=x[0].shape, # channel, frames, h, W
|
| 369 |
+
batch_index=0, # Process the first item in the batch
|
| 370 |
+
head_index=None, # Average over heads
|
| 371 |
+
word_aggregation_method='mean'
|
| 372 |
+
)
|
| 373 |
+
|
| 374 |
+
return [u.float() for u in x], binary_mask
|
| 375 |
+
|
| 376 |
+
|
| 377 |
+
|
| 378 |
+
def usp_attn_forward(self,
|
| 379 |
+
x,
|
| 380 |
+
seq_lens,
|
| 381 |
+
grid_sizes,
|
| 382 |
+
freqs,
|
| 383 |
+
dtype=torch.bfloat16):
|
| 384 |
+
b, s, n, d = *x.shape[:2], self.num_heads, self.head_dim
|
| 385 |
+
half_dtypes = (torch.float16, torch.bfloat16)
|
| 386 |
+
|
| 387 |
+
def half(x):
|
| 388 |
+
return x if x.dtype in half_dtypes else x.to(dtype)
|
| 389 |
+
|
| 390 |
+
# query, key, value function
|
| 391 |
+
def qkv_fn(x):
|
| 392 |
+
q = self.norm_q(self.q(x)).view(b, s, n, d)
|
| 393 |
+
k = self.norm_k(self.k(x)).view(b, s, n, d)
|
| 394 |
+
v = self.v(x).view(b, s, n, d)
|
| 395 |
+
return q, k, v
|
| 396 |
+
q, k, v = qkv_fn(x)
|
| 397 |
+
q = rope_apply(q, grid_sizes, freqs)
|
| 398 |
+
k = rope_apply(k, grid_sizes, freqs)
|
| 399 |
+
|
| 400 |
+
# TODO: We should use unpaded q,k,v for attention.
|
| 401 |
+
# k_lens = seq_lens // get_sequence_parallel_world_size()
|
| 402 |
+
# if k_lens is not None:
|
| 403 |
+
# q = torch.cat([u[:l] for u, l in zip(q, k_lens)]).unsqueeze(0)
|
| 404 |
+
# k = torch.cat([u[:l] for u, l in zip(k, k_lens)]).unsqueeze(0)
|
| 405 |
+
# v = torch.cat([u[:l] for u, l in zip(v, k_lens)]).unsqueeze(0)
|
| 406 |
+
|
| 407 |
+
x = xFuserLongContextAttention()(
|
| 408 |
+
None,
|
| 409 |
+
query=half(q),
|
| 410 |
+
key=half(k),
|
| 411 |
+
value=half(v),
|
| 412 |
+
window_size=self.window_size)
|
| 413 |
+
|
| 414 |
+
# TODO: padding after attention.
|
| 415 |
+
# x = torch.cat([x, x.new_zeros(b, s - x.size(1), n, d)], dim=1)
|
| 416 |
+
|
| 417 |
+
# output
|
| 418 |
+
x = x.flatten(2)
|
| 419 |
+
x = self.o(x)
|
| 420 |
+
return x
|