Wikidepia commited on
Commit
fc1a577
·
1 Parent(s): d1335bf

Add demo for spoof detection

Browse files
.gitignore ADDED
@@ -0,0 +1,160 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Byte-compiled / optimized / DLL files
2
+ __pycache__/
3
+ *.py[cod]
4
+ *$py.class
5
+
6
+ # C extensions
7
+ *.so
8
+
9
+ # Distribution / packaging
10
+ .Python
11
+ build/
12
+ develop-eggs/
13
+ dist/
14
+ downloads/
15
+ eggs/
16
+ .eggs/
17
+ lib/
18
+ lib64/
19
+ parts/
20
+ sdist/
21
+ var/
22
+ wheels/
23
+ share/python-wheels/
24
+ *.egg-info/
25
+ .installed.cfg
26
+ *.egg
27
+ MANIFEST
28
+
29
+ # PyInstaller
30
+ # Usually these files are written by a python script from a template
31
+ # before PyInstaller builds the exe, so as to inject date/other infos into it.
32
+ *.manifest
33
+ *.spec
34
+
35
+ # Installer logs
36
+ pip-log.txt
37
+ pip-delete-this-directory.txt
38
+
39
+ # Unit test / coverage reports
40
+ htmlcov/
41
+ .tox/
42
+ .nox/
43
+ .coverage
44
+ .coverage.*
45
+ .cache
46
+ nosetests.xml
47
+ coverage.xml
48
+ *.cover
49
+ *.py,cover
50
+ .hypothesis/
51
+ .pytest_cache/
52
+ cover/
53
+
54
+ # Translations
55
+ *.mo
56
+ *.pot
57
+
58
+ # Django stuff:
59
+ *.log
60
+ local_settings.py
61
+ db.sqlite3
62
+ db.sqlite3-journal
63
+
64
+ # Flask stuff:
65
+ instance/
66
+ .webassets-cache
67
+
68
+ # Scrapy stuff:
69
+ .scrapy
70
+
71
+ # Sphinx documentation
72
+ docs/_build/
73
+
74
+ # PyBuilder
75
+ .pybuilder/
76
+ target/
77
+
78
+ # Jupyter Notebook
79
+ .ipynb_checkpoints
80
+
81
+ # IPython
82
+ profile_default/
83
+ ipython_config.py
84
+
85
+ # pyenv
86
+ # For a library or package, you might want to ignore these files since the code is
87
+ # intended to run in multiple environments; otherwise, check them in:
88
+ # .python-version
89
+
90
+ # pipenv
91
+ # According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
92
+ # However, in case of collaboration, if having platform-specific dependencies or dependencies
93
+ # having no cross-platform support, pipenv may install dependencies that don't work, or not
94
+ # install all needed dependencies.
95
+ #Pipfile.lock
96
+
97
+ # poetry
98
+ # Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
99
+ # This is especially recommended for binary packages to ensure reproducibility, and is more
100
+ # commonly ignored for libraries.
101
+ # https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
102
+ #poetry.lock
103
+
104
+ # pdm
105
+ # Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
106
+ #pdm.lock
107
+ # pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
108
+ # in version control.
109
+ # https://pdm.fming.dev/#use-with-ide
110
+ .pdm.toml
111
+
112
+ # PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
113
+ __pypackages__/
114
+
115
+ # Celery stuff
116
+ celerybeat-schedule
117
+ celerybeat.pid
118
+
119
+ # SageMath parsed files
120
+ *.sage.py
121
+
122
+ # Environments
123
+ .env
124
+ .venv
125
+ env/
126
+ venv/
127
+ ENV/
128
+ env.bak/
129
+ venv.bak/
130
+
131
+ # Spyder project settings
132
+ .spyderproject
133
+ .spyproject
134
+
135
+ # Rope project settings
136
+ .ropeproject
137
+
138
+ # mkdocs documentation
139
+ /site
140
+
141
+ # mypy
142
+ .mypy_cache/
143
+ .dmypy.json
144
+ dmypy.json
145
+
146
+ # Pyre type checker
147
+ .pyre/
148
+
149
+ # pytype static type analyzer
150
+ .pytype/
151
+
152
+ # Cython debug symbols
153
+ cython_debug/
154
+
155
+ # PyCharm
156
+ # JetBrains specific template is maintained in a separate JetBrains.gitignore that can
157
+ # be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
158
+ # and can be added to the global gitignore or merged into this file. For a more nuclear
159
+ # option (not recommended) you can uncomment the following to ignore the entire idea folder.
160
+ #.idea/
app.py ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import cv2
2
+ import gradio as gr
3
+
4
+ from spoofynet import SpoofyNet
5
+
6
+ spoofynet = SpoofyNet()
7
+
8
+
9
+ def find_spoofs(input_img):
10
+ spoofs = spoofynet.find_spoof(input_img)
11
+ for spoof in spoofs:
12
+ (startX, startY, endX, endY) = spoof["coords"]
13
+ label = "Real" if spoof["is_real"] else "Spoofed"
14
+ color = (0, 255, 0) if spoof["is_real"] else (0, 0, 255)
15
+ cv2.putText(
16
+ input_img,
17
+ f"{label}: {spoof['probs']:.2f}",
18
+ (startX, startY - 10),
19
+ cv2.FONT_HERSHEY_SIMPLEX,
20
+ 0.5,
21
+ color,
22
+ 2,
23
+ )
24
+
25
+ cv2.rectangle(input_img, (startX, startY), (endX, endY), color, 4)
26
+ return input_img
27
+
28
+
29
+ demo = gr.Interface(find_spoofs, gr.Image(), "image")
30
+ demo.launch()
auto_rotate.py ADDED
@@ -0,0 +1,75 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+
3
+ import cv2
4
+ import numpy as np
5
+ import onnxruntime
6
+ from PIL import Image
7
+
8
+ session = onnxruntime.InferenceSession("models/slim-facelandmark.onnx")
9
+
10
+
11
+ def EuclideanDistance(source_representation, test_representation):
12
+ euclidean_distance = source_representation - test_representation
13
+ euclidean_distance = np.sum(np.multiply(euclidean_distance, euclidean_distance))
14
+ euclidean_distance = np.sqrt(euclidean_distance)
15
+ return euclidean_distance
16
+
17
+
18
+ def alignment_procedure(img, left_eye, right_eye):
19
+ left_eye_x, left_eye_y = left_eye
20
+ right_eye_x, right_eye_y = right_eye
21
+
22
+ if left_eye_y > right_eye_y:
23
+ point_3rd = (right_eye_x, left_eye_y)
24
+ direction = -1 # rotate same direction to clock
25
+ else:
26
+ point_3rd = (left_eye_x, right_eye_y)
27
+ direction = 1 # rotate inverse direction of clock
28
+
29
+ a = EuclideanDistance(np.array(left_eye), np.array(point_3rd))
30
+ b = EuclideanDistance(np.array(right_eye), np.array(point_3rd))
31
+ c = EuclideanDistance(np.array(right_eye), np.array(left_eye))
32
+
33
+ if (
34
+ b != 0 and c != 0
35
+ ): # this multiplication causes division by zero in cos_a calculation
36
+
37
+ cos_a = (b * b + c * c - a * a) / (2 * b * c)
38
+ angle = np.arccos(cos_a) # angle in radian
39
+ angle = (angle * 180) / math.pi # radian to degree
40
+
41
+ # -----------------------
42
+ # rotate base image
43
+
44
+ if direction == -1:
45
+ angle = 90 - angle
46
+
47
+ img = Image.fromarray(img)
48
+ img = np.array(img.rotate(direction * angle))
49
+
50
+ # -----------------------
51
+
52
+ return img # return img anyway
53
+
54
+
55
+ def align_face(image):
56
+ inputs = cv2.resize(image, (112, 112))
57
+ inputs = cv2.cvtColor(inputs, cv2.COLOR_BGR2RGB)
58
+ inputs = inputs.transpose(2, 0, 1).astype(np.float32)
59
+ inputs = inputs / 255.0
60
+ inputs = np.expand_dims(inputs, axis=0)
61
+ landmarks = session.run(None, {"input": inputs})[0]
62
+ pre_landmark = landmarks[0]
63
+ pre_landmark = pre_landmark.reshape(-1, 2)
64
+ left_eyex, left_eyey = pre_landmark[96]
65
+ right_eyex, right_eyey = pre_landmark[97]
66
+
67
+ img = alignment_procedure(image, (left_eyex, left_eyey), (right_eyex, right_eyey))
68
+ return img
69
+
70
+
71
+ if __name__ == "__main__":
72
+ img = cv2.imread("obamaface.jpg")
73
+ img = align_face(img)
74
+ cv2.imshow("img", img)
75
+ cv2.waitKey(0)
box_utils_numpy.py ADDED
@@ -0,0 +1,74 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # MIT LICENSE Copyright (c) 2019 linzai
2
+ # Originally comes from https://github.com/Linzaer/Ultra-Light-Fast-Generic-Face-Detector-1MB
3
+
4
+ import numpy as np
5
+
6
+
7
+ def area_of(left_top, right_bottom):
8
+ """Compute the areas of rectangles given two corners.
9
+
10
+ Args:
11
+ left_top (N, 2): left top corner.
12
+ right_bottom (N, 2): right bottom corner.
13
+
14
+ Returns:
15
+ area (N): return the area.
16
+ """
17
+ hw = np.clip(right_bottom - left_top, 0.0, None)
18
+ return hw[..., 0] * hw[..., 1]
19
+
20
+
21
+ def iou_of(boxes0, boxes1, eps=1e-5):
22
+ """Return intersection-over-union (Jaccard index) of boxes.
23
+
24
+ Args:
25
+ boxes0 (N, 4): ground truth boxes.
26
+ boxes1 (N or 1, 4): predicted boxes.
27
+ eps: a small number to avoid 0 as denominator.
28
+ Returns:
29
+ iou (N): IoU values.
30
+ """
31
+ overlap_left_top = np.maximum(boxes0[..., :2], boxes1[..., :2])
32
+ overlap_right_bottom = np.minimum(boxes0[..., 2:], boxes1[..., 2:])
33
+
34
+ overlap_area = area_of(overlap_left_top, overlap_right_bottom)
35
+ area0 = area_of(boxes0[..., :2], boxes0[..., 2:])
36
+ area1 = area_of(boxes1[..., :2], boxes1[..., 2:])
37
+ return overlap_area / (area0 + area1 - overlap_area + eps)
38
+
39
+
40
+ def hard_nms(box_scores, iou_threshold, top_k=-1, candidate_size=200):
41
+ """
42
+
43
+ Args:
44
+ box_scores (N, 5): boxes in corner-form and probabilities.
45
+ iou_threshold: intersection over union threshold.
46
+ top_k: keep top_k results. If k <= 0, keep all the results.
47
+ candidate_size: only consider the candidates with the highest scores.
48
+ Returns:
49
+ picked: a list of indexes of the kept boxes
50
+ """
51
+ scores = box_scores[:, -1]
52
+ boxes = box_scores[:, :-1]
53
+ picked = []
54
+ # _, indexes = scores.sort(descending=True)
55
+ indexes = np.argsort(scores)
56
+ # indexes = indexes[:candidate_size]
57
+ indexes = indexes[-candidate_size:]
58
+ while len(indexes) > 0:
59
+ # current = indexes[0]
60
+ current = indexes[-1]
61
+ picked.append(current)
62
+ if 0 < top_k == len(picked) or len(indexes) == 1:
63
+ break
64
+ current_box = boxes[current, :]
65
+ # indexes = indexes[1:]
66
+ indexes = indexes[:-1]
67
+ rest_boxes = boxes[indexes, :]
68
+ iou = iou_of(
69
+ rest_boxes,
70
+ np.expand_dims(current_box, axis=0),
71
+ )
72
+ indexes = indexes[iou <= iou_threshold]
73
+
74
+ return box_scores[picked, :]
models/slim-facedetect.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dd7b4b72b9572f51df26812112ec1b38cb3ff0ef1caad9977ce5e2bf950efbd9
3
+ size 419735
models/slim-facelandmark.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:70a984e0fff8c8bc8acbbfa8671b6159e9fdb7e141aa47d3441a2f777459970e
3
+ size 427876
models/spoof.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ba5b74238233864eab57be35223076f03b6ea2f6231b50516c4531d2e900e1e6
3
+ size 16808373
requirements.txt ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ Pillow
2
+ numpy
3
+ opencv-python-headless
4
+ onnxruntime
spoofynet.py ADDED
@@ -0,0 +1,134 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import cv2
2
+ import numpy as np
3
+ from onnxruntime import InferenceSession
4
+
5
+ import box_utils_numpy
6
+ from auto_rotate import align_face
7
+
8
+
9
+ def softmax(x):
10
+ e_x = np.exp(x - np.max(x))
11
+ return e_x / e_x.sum(axis=0)
12
+
13
+
14
+ def crop_square(img, size, interpolation=cv2.INTER_AREA):
15
+ h, w = img.shape[:2]
16
+ min_size = np.amin([h, w])
17
+
18
+ # Centralize and crop
19
+ crop_img = img[
20
+ int(h / 2 - min_size / 2) : int(h / 2 + min_size / 2),
21
+ int(w / 2 - min_size / 2) : int(w / 2 + min_size / 2),
22
+ ]
23
+ resized = cv2.resize(crop_img, (size, size), interpolation=interpolation)
24
+
25
+ return resized
26
+
27
+
28
+ class SpoofyNet:
29
+ def __init__(self):
30
+ self.face_model = InferenceSession("models/slim-facedetect.onnx")
31
+ self.face_inputname = self.face_model.get_inputs()[0].name
32
+ self.classifier = InferenceSession("models/spoof.onnx")
33
+
34
+ def find_boxes(
35
+ self,
36
+ width,
37
+ height,
38
+ confidences,
39
+ boxes,
40
+ prob_threshold,
41
+ iou_threshold=0.3,
42
+ top_k=-1,
43
+ ):
44
+ boxes = boxes[0]
45
+ confidences = confidences[0]
46
+ picked_box_probs = []
47
+ picked_labels = []
48
+ for class_index in range(1, confidences.shape[1]):
49
+ probs = confidences[:, class_index]
50
+ mask = probs > prob_threshold
51
+ probs = probs[mask]
52
+ if probs.shape[0] == 0:
53
+ continue
54
+ subset_boxes = boxes[mask, :]
55
+ box_probs = np.concatenate([subset_boxes, probs.reshape(-1, 1)], axis=1)
56
+ box_probs = box_utils_numpy.hard_nms(
57
+ box_probs,
58
+ iou_threshold=iou_threshold,
59
+ top_k=top_k,
60
+ )
61
+ picked_box_probs.append(box_probs)
62
+ picked_labels.extend([class_index] * box_probs.shape[0])
63
+ if not picked_box_probs:
64
+ return np.array([]), np.array([]), np.array([])
65
+ picked_box_probs = np.concatenate(picked_box_probs)
66
+ picked_box_probs[:, 0] *= width
67
+ picked_box_probs[:, 1] *= height
68
+ picked_box_probs[:, 2] *= width
69
+ picked_box_probs[:, 3] *= height
70
+ return (
71
+ picked_box_probs[:, :4].astype(np.int32),
72
+ np.array(picked_labels),
73
+ picked_box_probs[:, 4],
74
+ )
75
+
76
+ def tta(self, src):
77
+ horizontal_rot = cv2.rotate(src, cv2.ROTATE_180)
78
+ grayscale = cv2.cvtColor(src, cv2.COLOR_RGB2GRAY)
79
+ grayscale = cv2.cvtColor(grayscale, cv2.COLOR_GRAY2RGB)
80
+ return [src, horizontal_rot, grayscale]
81
+
82
+ def find_spoof(self, img):
83
+ ret = []
84
+ threshold = 0.6
85
+ image_mean = np.array([127, 127, 127])
86
+
87
+ image = cv2.resize(img, (320, 240))
88
+ image = (image - image_mean) / 128
89
+ image = np.transpose(image, [2, 0, 1])
90
+ image = np.expand_dims(image, axis=0)
91
+ image = image.astype(np.float32)
92
+
93
+ confidences, boxes = self.face_model.run(None, {self.face_inputname: image})
94
+ boxes, _, _ = self.find_boxes(
95
+ img.shape[1], img.shape[0], confidences, boxes, threshold
96
+ )
97
+
98
+ classify_mean, classify_std = [0.485, 0.456, 0.406], [0.229, 0.224, 0.225]
99
+ for i in range(boxes.shape[0]):
100
+ (startX, startY, endX, endY) = boxes[i, :]
101
+
102
+ face = img[startY:endY, startX:endX]
103
+ if face.size == 0:
104
+ continue
105
+ face = cv2.cvtColor(face, cv2.COLOR_BGR2RGB)
106
+
107
+ # Preprocess
108
+ face = align_face(face)
109
+ face = crop_square(face, 256)
110
+
111
+ probs_all = []
112
+ for face in self.tta(face):
113
+ # Normalize
114
+ face = face / 255.0
115
+ face = (face - classify_mean) / classify_std
116
+ face = np.transpose(face, [2, 0, 1])
117
+ face = np.expand_dims(face, axis=0)
118
+ face = face.astype(np.float32)
119
+
120
+ predicted = self.classifier.run(None, {"input": face})
121
+ predicted_id = np.argmax(predicted)
122
+ probs = softmax(predicted[0][0])
123
+ probs_all.append(probs)
124
+
125
+ final_probs = np.mean(probs_all, axis=0)
126
+ predicted_id = np.argmax(final_probs)
127
+ ret.append(
128
+ {
129
+ "coords": (startX, startY, endX, endY),
130
+ "is_real": bool(predicted_id),
131
+ "probs": final_probs[predicted_id],
132
+ }
133
+ )
134
+ return ret