WillHeld's picture
Vibe Coding
aa14886 verified
raw
history blame
10.5 kB
import spaces
import os
import uuid
import time
import json
import torch
from datetime import datetime, timedelta
from threading import Thread
from pathlib import Path
# Gradio and HuggingFace imports
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
from datasets import Dataset
from huggingface_hub import HfApi, login
# Model configuration
checkpoint = "WillHeld/soft-raccoon"
# Set device based on availability
if torch.cuda.is_available():
device = "cuda"
else:
device = "cpu"
print("CUDA not available, using CPU instead. This will be much slower.")
# Dataset configuration
DATASET_NAME = "WillHeld/soft-raccoon-conversations" # Change to your username
SAVE_INTERVAL_MINUTES = 5 # Save data every 5 minutes
last_save_time = datetime.now()
# Initialize model and tokenizer
print(f"Loading model from {checkpoint}...")
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
model = AutoModelForCausalLM.from_pretrained(checkpoint).to(device)
# Data storage
conversations = []
# Hugging Face authentication
# Uncomment this line to login with your token
# login(token=os.environ.get("HF_TOKEN"))
def save_to_dataset():
"""Save the current conversations to a HuggingFace dataset"""
if not conversations:
return None, f"No conversations to save. Last attempt: {datetime.now().strftime('%H:%M:%S')}"
# Convert conversations to dataset format
dataset_dict = {
"conversation_id": [],
"timestamp": [],
"messages": [],
"metadata": []
}
for conv in conversations:
dataset_dict["conversation_id"].append(conv["conversation_id"])
dataset_dict["timestamp"].append(conv["timestamp"])
dataset_dict["messages"].append(json.dumps(conv["messages"]))
dataset_dict["metadata"].append(json.dumps(conv["metadata"]))
# Create dataset
dataset = Dataset.from_dict(dataset_dict)
try:
# Push to hub
dataset.push_to_hub(DATASET_NAME)
status_msg = f"Successfully saved {len(conversations)} conversations to {DATASET_NAME}"
print(status_msg)
except Exception as e:
# Save locally as fallback
local_path = f"local_dataset_{datetime.now().strftime('%Y%m%d_%H%M%S')}"
dataset.save_to_disk(local_path)
status_msg = f"Error pushing to hub: {str(e)}. Saved locally to '{local_path}'"
print(status_msg)
return dataset, status_msg
@spaces.GPU(duration=120)
def chat_model(message, history, temperature=0.7, top_p=0.9):
"""Chat function for use with ChatInterface"""
conversation_id = getattr(chat_model, "conversation_id", None)
if conversation_id is None:
conversation_id = str(uuid.uuid4())
chat_model.conversation_id = conversation_id
# Format chat history for the model
formatted_history = []
for human_msg, ai_msg in history:
formatted_history.append({"role": "user", "content": human_msg})
if ai_msg: # Skip None values that might occur during streaming
formatted_history.append({"role": "assistant", "content": ai_msg})
# Add the current message
formatted_history.append({"role": "user", "content": message})
# Prepare input for the model
input_text = tokenizer.apply_chat_template(
formatted_history,
tokenize=False,
add_generation_prompt=True
)
inputs = tokenizer.encode(input_text, return_tensors="pt").to(device)
# Set up streaming
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
# Generation parameters
generation_kwargs = {
"input_ids": inputs,
"max_new_tokens": 1024,
"temperature": float(temperature),
"top_p": float(top_p),
"do_sample": True,
"streamer": streamer,
}
# Generate in a separate thread
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
# Initialize response
partial_text = ""
# Yield partial text as it's generated
for new_text in streamer:
partial_text += new_text
yield partial_text
# Store conversation data in the global conversations list
formatted_history.append({"role": "assistant", "content": partial_text})
# Find existing conversation or create new one
existing_conv = next((c for c in conversations if c["conversation_id"] == conversation_id), None)
# Update or create conversation record
current_time = datetime.now().isoformat()
if existing_conv:
# Update existing conversation
existing_conv["messages"] = formatted_history
existing_conv["metadata"]["last_updated"] = current_time
existing_conv["metadata"]["temperature"] = temperature
existing_conv["metadata"]["top_p"] = top_p
else:
# Create new conversation record
conversations.append({
"conversation_id": conversation_id,
"timestamp": current_time,
"messages": formatted_history,
"metadata": {
"model": checkpoint,
"temperature": temperature,
"top_p": top_p,
"last_updated": current_time
}
})
# Check if it's time to save based on elapsed time
global last_save_time
current_time_dt = datetime.now()
if current_time_dt - last_save_time > timedelta(minutes=SAVE_INTERVAL_MINUTES):
save_to_dataset()
last_save_time = current_time_dt
def save_dataset_manually():
"""Manually trigger dataset save and return status"""
_, status = save_to_dataset()
return status
def get_stats():
"""Get current stats about conversations and saving"""
mins_until_save = SAVE_INTERVAL_MINUTES - (datetime.now() - last_save_time).seconds // 60
if mins_until_save < 0:
mins_until_save = 0
return {
"conversation_count": len(conversations),
"next_save": f"In {mins_until_save} minutes",
"last_save": last_save_time.strftime('%H:%M:%S'),
"dataset_name": DATASET_NAME
}
# Create a Stanford theme
theme = gr.themes.Default(
primary_hue=gr.themes.utils.colors.red,
secondary_hue=gr.themes.utils.colors.gray,
neutral_hue=gr.themes.utils.colors.gray,
font=[gr.themes.GoogleFont("Source Sans Pro"), "ui-sans-serif", "system-ui"]
).set(
button_primary_background_fill="#8C1515",
button_primary_background_fill_hover="#771212",
button_primary_text_color="white",
slider_color="#8C1515",
block_title_text_color="#8C1515",
block_label_text_color="#4D4F53",
input_border_color_focus="#8C1515",
checkbox_background_color_selected="#8C1515",
checkbox_border_color_selected="#8C1515",
button_secondary_border_color="#4D4F53",
block_title_background_fill="#f5f5f5",
block_label_background_fill="#f9f9f9"
)
# Custom CSS
css = """
.gradio-container {
font-family: 'Source Sans Pro', sans-serif !important;
}
.footer {
color: #4D4F53 !important;
font-size: 0.85em !important;
}
"""
# Set up the Gradio app with Blocks for more control
with gr.Blocks(theme=theme, title="Stanford Soft Raccoon Chat", css=css) as demo:
with gr.Row():
with gr.Column(scale=3):
# Use ChatInterface for the main chat functionality
chatbot = gr.ChatInterface(
fn=chat_model,
chatbot=gr.Chatbot(
label="Soft Raccoon Chat",
avatar_images=(None, "🌲"), # Stanford tree emoji
height=600,
placeholder="<strong>Soft Raccoon AI Assistant</strong><br>Ask me anything!"
),
additional_inputs=[
gr.Slider(
minimum=0.1,
maximum=2.0,
value=0.7,
step=0.1,
label="Temperature"
),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.9,
step=0.05,
label="Top-P"
)
],
title="Stanford Soft Raccoon Chat",
description="AI assistant powered by the Soft Raccoon language model",
examples=[
"Tell me about Stanford University",
"How can I learn about artificial intelligence?",
"What's your favorite book?"
],
cache_examples=True,
retry_btn="Regenerate",
undo_btn="Undo",
clear_btn="Clear",
)
with gr.Column(scale=1):
with gr.Group():
gr.Markdown("### Dataset Controls")
save_button = gr.Button("Save conversations now", variant="secondary")
status_output = gr.Textbox(label="Save Status", interactive=False)
with gr.Row():
convo_count = gr.Number(label="Total Conversations", interactive=False)
next_save = gr.Textbox(label="Next Auto-Save", interactive=False)
last_save_time_display = gr.Textbox(label="Last Save Time", interactive=False)
dataset_name_display = gr.Textbox(label="Dataset Name", interactive=False)
refresh_btn = gr.Button("Refresh Stats")
# Set up event handlers
save_button.click(
save_dataset_manually,
[],
[status_output]
)
def update_stats():
stats = get_stats()
return [
stats["conversation_count"],
stats["next_save"],
stats["last_save"],
stats["dataset_name"]
]
refresh_btn.click(
update_stats,
[],
[convo_count, next_save, last_save_time_display, dataset_name_display]
)
# Auto-update stats every 30 seconds
demo.load(
update_stats,
[],
[convo_count, next_save, last_save_time_display, dataset_name_display],
every=30 # Refresh every 30 seconds
)
# Ensure we save on shutdown
import atexit
atexit.register(save_to_dataset)
# Launch the app
if __name__ == "__main__":
demo.launch(share=True)