WillHeld's picture
Update app.py
d951e6a verified
raw
history blame
13.1 kB
import spaces
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
import gradio as gr
from threading import Thread
import os
import json
import uuid
from datasets import Dataset, load_dataset
from huggingface_hub import HfApi, login
import time
# Install required packages if not present
from gradio_modal import Modal
import huggingface_hub
import datasets
# Model setup
checkpoint = "WillHeld/soft-raccoon"
device = "cuda"
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
model = AutoModelForCausalLM.from_pretrained(checkpoint).to(device)
# Constants for dataset
DATASET_REPO = "WillHeld/model-feedback" # Replace with your username
DATASET_PATH = "./feedback_data" # Local path to store feedback
DATASET_FILENAME = "feedback.jsonl" # Filename for feedback data
# Ensure feedback directory exists
os.makedirs(DATASET_PATH, exist_ok=True)
# Sync existing dataset from Hub if available
def sync_dataset_from_hub():
"""Download existing dataset from Hub and merge with local data"""
try:
# Try to get token from environment variable
hf_token = os.environ.get("HF_TOKEN")
if hf_token:
login(token=hf_token)
# Check if the dataset exists on Hub
api = HfApi()
try:
dataset_info = api.dataset_info(DATASET_REPO)
# Dataset exists, download it
print(f"Syncing existing dataset from {DATASET_REPO}")
remote_dataset = load_dataset(DATASET_REPO)
# Convert to list of dictionaries
remote_data = [item for item in remote_dataset['train']]
# Check if local file exists
local_file = os.path.join(DATASET_PATH, DATASET_FILENAME)
local_data = []
if os.path.exists(local_file):
# Read local data
with open(local_file, 'r') as f:
for line in f:
try:
local_data.append(json.loads(line))
except json.JSONDecodeError:
continue
# Merge data (using IDs to avoid duplicates)
all_items = {}
for item in remote_data + local_data:
all_items[item['id']] = item
# Write back merged data
with open(local_file, 'w') as f:
for item in all_items.values():
f.write(json.dumps(item) + '\n')
print(f"Synced {len(all_items)} feedback items")
return True
except Exception as e:
print(f"Dataset {DATASET_REPO} does not exist yet or could not be accessed: {e}")
return False
except Exception as e:
print(f"Error syncing dataset: {e}")
return False
# Call sync on startup
sync_dataset_from_hub()
# Feedback storage functions
def save_feedback_locally(conversation, satisfaction, feedback_text):
"""Save feedback to a local JSONL file"""
# Create a unique ID for this feedback entry
feedback_id = str(uuid.uuid4())
# Create a timestamp
timestamp = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime())
# Prepare the feedback data
feedback_data = {
"id": feedback_id,
"timestamp": timestamp,
"conversation": conversation,
"satisfaction": satisfaction,
"feedback": feedback_text
}
# Save to local file
feedback_file = os.path.join(DATASET_PATH, DATASET_FILENAME)
with open(feedback_file, "a") as f:
f.write(json.dumps(feedback_data) + "\n")
return feedback_id
def push_feedback_to_hub(hf_token=None):
"""Push the local feedback data to HuggingFace as a dataset"""
# Check if we have a token
if hf_token is None:
# Try to get token from environment variable
hf_token = os.environ.get("HF_TOKEN")
if hf_token is None:
print("No HuggingFace token provided. Cannot push to Hub.")
return False
try:
# Login to HuggingFace
login(token=hf_token)
# Check if we have data to push
feedback_file = os.path.join(DATASET_PATH, DATASET_FILENAME)
if not os.path.exists(feedback_file):
print("No feedback data to push.")
return False
# Load data from the JSONL file
with open(feedback_file, "r") as f:
feedback_data = [json.loads(line) for line in f]
# Create a dataset from the feedback data
dataset = Dataset.from_list(feedback_data)
# Push to Hub
dataset.push_to_hub(
DATASET_REPO,
private=True # Set to False if you want the dataset to be public
)
print(f"Feedback data pushed to {DATASET_REPO} successfully.")
return True
except Exception as e:
print(f"Error pushing feedback data to Hub: {e}")
return False
# Function to handle the research feedback submission
def submit_research_feedback(conv_history, satisfaction, feedback_text):
"""Save user feedback both locally and to HuggingFace Hub"""
# Print debug information
print(f"Saving feedback with conversation history containing {len(conv_history)} messages")
if conv_history and len(conv_history) > 0:
print(f"First message: {conv_history[0]['role']}: {conv_history[0]['content'][:30]}...")
print(f"Last message: {conv_history[-1]['role']}: {conv_history[-1]['content'][:30]}...")
# Save locally first
feedback_id = save_feedback_locally(conv_history, satisfaction, feedback_text)
# Get token from environment variable
env_token = os.environ.get("HF_TOKEN")
# Use environment token
push_success = push_feedback_to_hub(env_token)
if push_success:
status_msg = "Thank you for your valuable feedback! Your insights have been saved to the dataset."
else:
status_msg = "Thank you for your feedback! It has been saved locally, but couldn't be pushed to the dataset. Please check server logs."
return status_msg
# Initial state - set up at app start
def initialize_state():
"""Initialize the conversation state - this could load previous sessions or start fresh"""
return [] # Start with empty conversation history
# Create the Gradio blocks interface
with gr.Blocks() as demo:
# Create state to store full conversation history with proper initialization
conv_state = gr.State(initialize_state)
with gr.Row():
with gr.Column(scale=3):
# Create a custom predict function that updates our state
def enhanced_predict(message, history, temperature, top_p, state):
# Initialize state if needed
if state is None:
state = []
print("Initializing empty state")
# Copy history to state if state is empty but history exists
if len(state) == 0 and len(history) > 0:
state = history.copy()
print(f"Copied {len(history)} messages from history to state")
# Add user message to state
state.append({"role": "user", "content": message})
# Process with the model (this doesn't modify the original history)
input_text = tokenizer.apply_chat_template(state, tokenize=False, add_generation_prompt=True)
inputs = tokenizer.encode(input_text, return_tensors="pt").to(device)
# Create a streamer
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
# Set up generation parameters
generation_kwargs = {
"input_ids": inputs,
"max_new_tokens": 1024,
"temperature": float(temperature),
"top_p": float(top_p),
"do_sample": True,
"streamer": streamer,
"eos_token_id": 128009,
}
# Run generation in a separate thread
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
# Yield from the streamer as tokens are generated
response = ""
for new_text in streamer:
response += new_text
# For each partial response, yield the text only
# We'll update the state after generation is complete
yield response
# After generation completes, update our state with the final response
state.append({"role": "assistant", "content": response})
# Return the updated state
return state
# Create a wrapper that connects to ChatInterface but also updates our state
def chat_with_state(message, history, temperature, top_p):
# This function is what interfaces with the ChatInterface
nonlocal conv_state
# Access the current state
current_state = conv_state.value if conv_state.value else []
# Call the main function that generates responses and updates state
# This is a generator function, so we need to iterate through its outputs
response_gen = enhanced_predict(message, history, temperature, top_p, current_state)
# For each response, yield it and also update our state at the end
last_response = None
for response in response_gen:
last_response = response
yield response
# After generation is complete, update our state
if last_response is not None:
# Create a full copy of the history plus the new exchange
updated_state = []
# Add all previous history
for msg in history:
updated_state.append(msg.copy())
# Add new exchange
updated_state.append({"role": "user", "content": message})
updated_state.append({"role": "assistant", "content": last_response})
# Store in our state
conv_state.value = updated_state
# Debug
print(f"Updated conversation state with {len(updated_state)} messages")
if updated_state:
last_msg = updated_state[-1]
print(f"Last message: {last_msg['role']}: {last_msg['content'][:30]}...")
# Create ChatInterface
chatbot = gr.ChatInterface(
chat_with_state,
additional_inputs=[
gr.Slider(0.1, 2.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(0.1, 1.0, value=0.9, step=0.05, label="Top-P")
],
type="messages"
)
with gr.Column(scale=1):
report_button = gr.Button("Share Feedback", variant="primary")
# Create the modal with feedback form components
with Modal(visible=False) as feedback_modal:
with gr.Column():
gr.Markdown("## Research Preview Feedback")
gr.Markdown("Thank you for testing our research model. Your feedback (positive or negative) helps us improve!")
satisfaction = gr.Radio(
["Very satisfied", "Satisfied", "Neutral", "Unsatisfied", "Very unsatisfied"],
label="How would you rate your experience with this research model?",
value="Neutral"
)
feedback_text = gr.Textbox(
lines=5,
label="Share your observations (strengths, weaknesses, suggestions):",
placeholder="We welcome both positive feedback and constructive criticism to help improve this research prototype..."
)
submit_button = gr.Button("Submit Research Feedback", variant="primary")
response_text = gr.Textbox(label="Status", interactive=False)
# Connect the "Share Feedback" button to show the modal
report_button.click(
lambda: Modal(visible=True),
None,
feedback_modal
)
# Connect the submit button to the submit_research_feedback function
submit_button.click(
submit_research_feedback,
inputs=[conv_state, satisfaction, feedback_text],
outputs=response_text
)
# Launch the demo
demo.launch()