Spaces:
Running
Running
initial commit
Browse files- .gitignore +22 -0
- Modules/diffusion/diffusion.py +94 -0
- Modules/diffusion/modules.py +693 -0
- Modules/diffusion/sampler.py +691 -0
- Modules/diffusion/utils.py +82 -0
- Modules/hifigan.py +477 -0
- Modules/utils.py +14 -0
- README.md +10 -1
- Utils/ASR/__init__.py +1 -0
- Utils/ASR/config.yml +29 -0
- Utils/ASR/epoch_00080.pth +3 -0
- Utils/ASR/layers.py +354 -0
- Utils/ASR/models.py +186 -0
- Utils/JDC/__init__.py +1 -0
- Utils/JDC/bst.pth +3 -0
- Utils/JDC/model.py +190 -0
- Utils/PLBERT/config.yml +30 -0
- Utils/PLBERT/step_1000000.pth +3 -0
- Utils/PLBERT/util.py +42 -0
- Utils/config.yml +21 -0
- annotated_features.npy +3 -0
- app.py +506 -0
- espeak_util.py +206 -0
- inference.py +315 -0
- models.py +611 -0
- packages.txt +1 -0
- pca/annotated_features.npy +3 -0
- pca/annotations.json +1991 -0
- pca/generate_pca.py +147 -0
- pca/pca_model.pkl +3 -0
- pca/voices.json +0 -0
- pca_model.pkl +3 -0
- pyproject.toml +32 -0
- requirements.txt +21 -0
- text2speech.py +598 -0
- uv.lock +0 -0
- voices.json +2840 -0
- voices_.json.example +2840 -0
.gitignore
ADDED
|
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
random_voices.json
|
| 2 |
+
mydata/
|
| 3 |
+
batch_output/
|
| 4 |
+
.env
|
| 5 |
+
# Ommit the DS_Store folder automatically created by macOS
|
| 6 |
+
.DS_Store/
|
| 7 |
+
|
| 8 |
+
# python virtual environment folder
|
| 9 |
+
.venv/
|
| 10 |
+
.vscode/
|
| 11 |
+
|
| 12 |
+
# process log file
|
| 13 |
+
process_log.txt*
|
| 14 |
+
process_log.txt
|
| 15 |
+
|
| 16 |
+
# Python cache
|
| 17 |
+
__pycache__/
|
| 18 |
+
/*/__pycache__/
|
| 19 |
+
/*/*/__pycache__/
|
| 20 |
+
|
| 21 |
+
github
|
| 22 |
+
github.pub
|
Modules/diffusion/diffusion.py
ADDED
|
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from math import pi
|
| 2 |
+
from random import randint
|
| 3 |
+
from typing import Any, Optional, Sequence, Tuple, Union
|
| 4 |
+
|
| 5 |
+
import torch
|
| 6 |
+
from einops import rearrange
|
| 7 |
+
from torch import Tensor, nn
|
| 8 |
+
from tqdm import tqdm
|
| 9 |
+
|
| 10 |
+
from .utils import *
|
| 11 |
+
from .sampler import *
|
| 12 |
+
|
| 13 |
+
"""
|
| 14 |
+
Diffusion Classes (generic for 1d data)
|
| 15 |
+
"""
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
class Model1d(nn.Module):
|
| 19 |
+
def __init__(self, unet_type: str = "base", **kwargs):
|
| 20 |
+
super().__init__()
|
| 21 |
+
diffusion_kwargs, kwargs = groupby("diffusion_", kwargs)
|
| 22 |
+
self.unet = None
|
| 23 |
+
self.diffusion = None
|
| 24 |
+
|
| 25 |
+
def forward(self, x: Tensor, **kwargs) -> Tensor:
|
| 26 |
+
return self.diffusion(x, **kwargs)
|
| 27 |
+
|
| 28 |
+
def sample(self, *args, **kwargs) -> Tensor:
|
| 29 |
+
return self.diffusion.sample(*args, **kwargs)
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
"""
|
| 33 |
+
Audio Diffusion Classes (specific for 1d audio data)
|
| 34 |
+
"""
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
def get_default_model_kwargs():
|
| 38 |
+
return dict(
|
| 39 |
+
channels=128,
|
| 40 |
+
patch_size=16,
|
| 41 |
+
multipliers=[1, 2, 4, 4, 4, 4, 4],
|
| 42 |
+
factors=[4, 4, 4, 2, 2, 2],
|
| 43 |
+
num_blocks=[2, 2, 2, 2, 2, 2],
|
| 44 |
+
attentions=[0, 0, 0, 1, 1, 1, 1],
|
| 45 |
+
attention_heads=8,
|
| 46 |
+
attention_features=64,
|
| 47 |
+
attention_multiplier=2,
|
| 48 |
+
attention_use_rel_pos=False,
|
| 49 |
+
diffusion_type="v",
|
| 50 |
+
diffusion_sigma_distribution=UniformDistribution(),
|
| 51 |
+
)
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
def get_default_sampling_kwargs():
|
| 55 |
+
return dict(sigma_schedule=LinearSchedule(), sampler=VSampler(), clamp=True)
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
class AudioDiffusionModel(Model1d):
|
| 59 |
+
def __init__(self, **kwargs):
|
| 60 |
+
super().__init__(**{**get_default_model_kwargs(), **kwargs})
|
| 61 |
+
|
| 62 |
+
def sample(self, *args, **kwargs):
|
| 63 |
+
return super().sample(*args, **{**get_default_sampling_kwargs(), **kwargs})
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
class AudioDiffusionConditional(Model1d):
|
| 67 |
+
def __init__(
|
| 68 |
+
self,
|
| 69 |
+
embedding_features: int,
|
| 70 |
+
embedding_max_length: int,
|
| 71 |
+
embedding_mask_proba: float = 0.1,
|
| 72 |
+
**kwargs,
|
| 73 |
+
):
|
| 74 |
+
self.embedding_mask_proba = embedding_mask_proba
|
| 75 |
+
default_kwargs = dict(
|
| 76 |
+
**get_default_model_kwargs(),
|
| 77 |
+
unet_type="cfg",
|
| 78 |
+
context_embedding_features=embedding_features,
|
| 79 |
+
context_embedding_max_length=embedding_max_length,
|
| 80 |
+
)
|
| 81 |
+
super().__init__(**{**default_kwargs, **kwargs})
|
| 82 |
+
|
| 83 |
+
def forward(self, *args, **kwargs):
|
| 84 |
+
default_kwargs = dict(embedding_mask_proba=self.embedding_mask_proba)
|
| 85 |
+
return super().forward(*args, **{**default_kwargs, **kwargs})
|
| 86 |
+
|
| 87 |
+
def sample(self, *args, **kwargs):
|
| 88 |
+
default_kwargs = dict(
|
| 89 |
+
**get_default_sampling_kwargs(),
|
| 90 |
+
embedding_scale=5.0,
|
| 91 |
+
)
|
| 92 |
+
return super().sample(*args, **{**default_kwargs, **kwargs})
|
| 93 |
+
|
| 94 |
+
|
Modules/diffusion/modules.py
ADDED
|
@@ -0,0 +1,693 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from math import floor, log, pi
|
| 2 |
+
from typing import Any, List, Optional, Sequence, Tuple, Union
|
| 3 |
+
|
| 4 |
+
from .utils import *
|
| 5 |
+
|
| 6 |
+
import torch
|
| 7 |
+
import torch.nn as nn
|
| 8 |
+
from einops import rearrange, reduce, repeat
|
| 9 |
+
from einops.layers.torch import Rearrange
|
| 10 |
+
from einops_exts import rearrange_many
|
| 11 |
+
from torch import Tensor, einsum
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
"""
|
| 15 |
+
Utils
|
| 16 |
+
"""
|
| 17 |
+
|
| 18 |
+
class AdaLayerNorm(nn.Module):
|
| 19 |
+
def __init__(self, style_dim, channels, eps=1e-5):
|
| 20 |
+
super().__init__()
|
| 21 |
+
self.channels = channels
|
| 22 |
+
self.eps = eps
|
| 23 |
+
|
| 24 |
+
self.fc = nn.Linear(style_dim, channels*2)
|
| 25 |
+
|
| 26 |
+
def forward(self, x, s):
|
| 27 |
+
x = x.transpose(-1, -2)
|
| 28 |
+
x = x.transpose(1, -1)
|
| 29 |
+
|
| 30 |
+
h = self.fc(s)
|
| 31 |
+
h = h.view(h.size(0), h.size(1), 1)
|
| 32 |
+
gamma, beta = torch.chunk(h, chunks=2, dim=1)
|
| 33 |
+
gamma, beta = gamma.transpose(1, -1), beta.transpose(1, -1)
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
x = F.layer_norm(x, (self.channels,), eps=self.eps)
|
| 37 |
+
x = (1 + gamma) * x + beta
|
| 38 |
+
return x.transpose(1, -1).transpose(-1, -2)
|
| 39 |
+
|
| 40 |
+
class StyleTransformer1d(nn.Module):
|
| 41 |
+
def __init__(
|
| 42 |
+
self,
|
| 43 |
+
num_layers: int,
|
| 44 |
+
channels: int,
|
| 45 |
+
num_heads: int,
|
| 46 |
+
head_features: int,
|
| 47 |
+
multiplier: int,
|
| 48 |
+
use_context_time: bool = True,
|
| 49 |
+
use_rel_pos: bool = False,
|
| 50 |
+
context_features_multiplier: int = 1,
|
| 51 |
+
rel_pos_num_buckets: Optional[int] = None,
|
| 52 |
+
rel_pos_max_distance: Optional[int] = None,
|
| 53 |
+
context_features: Optional[int] = None,
|
| 54 |
+
context_embedding_features: Optional[int] = None,
|
| 55 |
+
embedding_max_length: int = 512,
|
| 56 |
+
):
|
| 57 |
+
super().__init__()
|
| 58 |
+
|
| 59 |
+
self.blocks = nn.ModuleList(
|
| 60 |
+
[
|
| 61 |
+
StyleTransformerBlock(
|
| 62 |
+
features=channels + context_embedding_features,
|
| 63 |
+
head_features=head_features,
|
| 64 |
+
num_heads=num_heads,
|
| 65 |
+
multiplier=multiplier,
|
| 66 |
+
style_dim=context_features,
|
| 67 |
+
use_rel_pos=use_rel_pos,
|
| 68 |
+
rel_pos_num_buckets=rel_pos_num_buckets,
|
| 69 |
+
rel_pos_max_distance=rel_pos_max_distance,
|
| 70 |
+
)
|
| 71 |
+
for i in range(num_layers)
|
| 72 |
+
]
|
| 73 |
+
)
|
| 74 |
+
|
| 75 |
+
self.to_out = nn.Sequential(
|
| 76 |
+
Rearrange("b t c -> b c t"),
|
| 77 |
+
nn.Conv1d(
|
| 78 |
+
in_channels=channels + context_embedding_features,
|
| 79 |
+
out_channels=channels,
|
| 80 |
+
kernel_size=1,
|
| 81 |
+
),
|
| 82 |
+
)
|
| 83 |
+
|
| 84 |
+
use_context_features = exists(context_features)
|
| 85 |
+
self.use_context_features = use_context_features
|
| 86 |
+
self.use_context_time = use_context_time
|
| 87 |
+
|
| 88 |
+
if use_context_time or use_context_features:
|
| 89 |
+
context_mapping_features = channels + context_embedding_features
|
| 90 |
+
|
| 91 |
+
self.to_mapping = nn.Sequential(
|
| 92 |
+
nn.Linear(context_mapping_features, context_mapping_features),
|
| 93 |
+
nn.GELU(),
|
| 94 |
+
nn.Linear(context_mapping_features, context_mapping_features),
|
| 95 |
+
nn.GELU(),
|
| 96 |
+
)
|
| 97 |
+
|
| 98 |
+
if use_context_time:
|
| 99 |
+
assert exists(context_mapping_features)
|
| 100 |
+
self.to_time = nn.Sequential(
|
| 101 |
+
TimePositionalEmbedding(
|
| 102 |
+
dim=channels, out_features=context_mapping_features
|
| 103 |
+
),
|
| 104 |
+
nn.GELU(),
|
| 105 |
+
)
|
| 106 |
+
|
| 107 |
+
if use_context_features:
|
| 108 |
+
assert exists(context_features) and exists(context_mapping_features)
|
| 109 |
+
self.to_features = nn.Sequential(
|
| 110 |
+
nn.Linear(
|
| 111 |
+
in_features=context_features, out_features=context_mapping_features
|
| 112 |
+
),
|
| 113 |
+
nn.GELU(),
|
| 114 |
+
)
|
| 115 |
+
|
| 116 |
+
self.fixed_embedding = FixedEmbedding(
|
| 117 |
+
max_length=embedding_max_length, features=context_embedding_features
|
| 118 |
+
)
|
| 119 |
+
|
| 120 |
+
|
| 121 |
+
def get_mapping(
|
| 122 |
+
self, time: Optional[Tensor] = None, features: Optional[Tensor] = None
|
| 123 |
+
) -> Optional[Tensor]:
|
| 124 |
+
"""Combines context time features and features into mapping"""
|
| 125 |
+
items, mapping = [], None
|
| 126 |
+
# Compute time features
|
| 127 |
+
if self.use_context_time:
|
| 128 |
+
assert_message = "use_context_time=True but no time features provided"
|
| 129 |
+
assert exists(time), assert_message
|
| 130 |
+
items += [self.to_time(time)]
|
| 131 |
+
# Compute features
|
| 132 |
+
if self.use_context_features:
|
| 133 |
+
assert_message = "context_features exists but no features provided"
|
| 134 |
+
assert exists(features), assert_message
|
| 135 |
+
items += [self.to_features(features)]
|
| 136 |
+
|
| 137 |
+
# Compute joint mapping
|
| 138 |
+
if self.use_context_time or self.use_context_features:
|
| 139 |
+
mapping = reduce(torch.stack(items), "n b m -> b m", "sum")
|
| 140 |
+
mapping = self.to_mapping(mapping)
|
| 141 |
+
|
| 142 |
+
return mapping
|
| 143 |
+
|
| 144 |
+
def run(self, x, time, embedding, features):
|
| 145 |
+
|
| 146 |
+
mapping = self.get_mapping(time, features)
|
| 147 |
+
x = torch.cat([x.expand(-1, embedding.size(1), -1), embedding], axis=-1)
|
| 148 |
+
mapping = mapping.unsqueeze(1).expand(-1, embedding.size(1), -1)
|
| 149 |
+
|
| 150 |
+
for block in self.blocks:
|
| 151 |
+
x = x + mapping
|
| 152 |
+
x = block(x, features)
|
| 153 |
+
|
| 154 |
+
x = x.mean(axis=1).unsqueeze(1)
|
| 155 |
+
x = self.to_out(x)
|
| 156 |
+
x = x.transpose(-1, -2)
|
| 157 |
+
|
| 158 |
+
return x
|
| 159 |
+
|
| 160 |
+
def forward(self, x: Tensor,
|
| 161 |
+
time: Tensor,
|
| 162 |
+
embedding_mask_proba: float = 0.0,
|
| 163 |
+
embedding: Optional[Tensor] = None,
|
| 164 |
+
features: Optional[Tensor] = None,
|
| 165 |
+
embedding_scale: float = 1.0) -> Tensor:
|
| 166 |
+
|
| 167 |
+
b, device = embedding.shape[0], embedding.device
|
| 168 |
+
fixed_embedding = self.fixed_embedding(embedding)
|
| 169 |
+
if embedding_mask_proba > 0.0:
|
| 170 |
+
# Randomly mask embedding
|
| 171 |
+
batch_mask = rand_bool(
|
| 172 |
+
shape=(b, 1, 1), proba=embedding_mask_proba, device=device
|
| 173 |
+
)
|
| 174 |
+
embedding = torch.where(batch_mask, fixed_embedding, embedding)
|
| 175 |
+
|
| 176 |
+
if embedding_scale != 1.0:
|
| 177 |
+
# Compute both normal and fixed embedding outputs
|
| 178 |
+
out = self.run(x, time, embedding=embedding, features=features)
|
| 179 |
+
out_masked = self.run(x, time, embedding=fixed_embedding, features=features)
|
| 180 |
+
# Scale conditional output using classifier-free guidance
|
| 181 |
+
return out_masked + (out - out_masked) * embedding_scale
|
| 182 |
+
else:
|
| 183 |
+
return self.run(x, time, embedding=embedding, features=features)
|
| 184 |
+
|
| 185 |
+
return x
|
| 186 |
+
|
| 187 |
+
|
| 188 |
+
class StyleTransformerBlock(nn.Module):
|
| 189 |
+
def __init__(
|
| 190 |
+
self,
|
| 191 |
+
features: int,
|
| 192 |
+
num_heads: int,
|
| 193 |
+
head_features: int,
|
| 194 |
+
style_dim: int,
|
| 195 |
+
multiplier: int,
|
| 196 |
+
use_rel_pos: bool,
|
| 197 |
+
rel_pos_num_buckets: Optional[int] = None,
|
| 198 |
+
rel_pos_max_distance: Optional[int] = None,
|
| 199 |
+
context_features: Optional[int] = None,
|
| 200 |
+
):
|
| 201 |
+
super().__init__()
|
| 202 |
+
|
| 203 |
+
self.use_cross_attention = exists(context_features) and context_features > 0
|
| 204 |
+
|
| 205 |
+
self.attention = StyleAttention(
|
| 206 |
+
features=features,
|
| 207 |
+
style_dim=style_dim,
|
| 208 |
+
num_heads=num_heads,
|
| 209 |
+
head_features=head_features,
|
| 210 |
+
use_rel_pos=use_rel_pos,
|
| 211 |
+
rel_pos_num_buckets=rel_pos_num_buckets,
|
| 212 |
+
rel_pos_max_distance=rel_pos_max_distance,
|
| 213 |
+
)
|
| 214 |
+
|
| 215 |
+
if self.use_cross_attention:
|
| 216 |
+
self.cross_attention = StyleAttention(
|
| 217 |
+
features=features,
|
| 218 |
+
style_dim=style_dim,
|
| 219 |
+
num_heads=num_heads,
|
| 220 |
+
head_features=head_features,
|
| 221 |
+
context_features=context_features,
|
| 222 |
+
use_rel_pos=use_rel_pos,
|
| 223 |
+
rel_pos_num_buckets=rel_pos_num_buckets,
|
| 224 |
+
rel_pos_max_distance=rel_pos_max_distance,
|
| 225 |
+
)
|
| 226 |
+
|
| 227 |
+
self.feed_forward = FeedForward(features=features, multiplier=multiplier)
|
| 228 |
+
|
| 229 |
+
def forward(self, x: Tensor, s: Tensor, *, context: Optional[Tensor] = None) -> Tensor:
|
| 230 |
+
x = self.attention(x, s) + x
|
| 231 |
+
if self.use_cross_attention:
|
| 232 |
+
x = self.cross_attention(x, s, context=context) + x
|
| 233 |
+
x = self.feed_forward(x) + x
|
| 234 |
+
return x
|
| 235 |
+
|
| 236 |
+
class StyleAttention(nn.Module):
|
| 237 |
+
def __init__(
|
| 238 |
+
self,
|
| 239 |
+
features: int,
|
| 240 |
+
*,
|
| 241 |
+
style_dim: int,
|
| 242 |
+
head_features: int,
|
| 243 |
+
num_heads: int,
|
| 244 |
+
context_features: Optional[int] = None,
|
| 245 |
+
use_rel_pos: bool,
|
| 246 |
+
rel_pos_num_buckets: Optional[int] = None,
|
| 247 |
+
rel_pos_max_distance: Optional[int] = None,
|
| 248 |
+
):
|
| 249 |
+
super().__init__()
|
| 250 |
+
self.context_features = context_features
|
| 251 |
+
mid_features = head_features * num_heads
|
| 252 |
+
context_features = default(context_features, features)
|
| 253 |
+
|
| 254 |
+
self.norm = AdaLayerNorm(style_dim, features)
|
| 255 |
+
self.norm_context = AdaLayerNorm(style_dim, context_features)
|
| 256 |
+
self.to_q = nn.Linear(
|
| 257 |
+
in_features=features, out_features=mid_features, bias=False
|
| 258 |
+
)
|
| 259 |
+
self.to_kv = nn.Linear(
|
| 260 |
+
in_features=context_features, out_features=mid_features * 2, bias=False
|
| 261 |
+
)
|
| 262 |
+
self.attention = AttentionBase(
|
| 263 |
+
features,
|
| 264 |
+
num_heads=num_heads,
|
| 265 |
+
head_features=head_features,
|
| 266 |
+
use_rel_pos=use_rel_pos,
|
| 267 |
+
rel_pos_num_buckets=rel_pos_num_buckets,
|
| 268 |
+
rel_pos_max_distance=rel_pos_max_distance,
|
| 269 |
+
)
|
| 270 |
+
|
| 271 |
+
def forward(self, x: Tensor, s: Tensor, *, context: Optional[Tensor] = None) -> Tensor:
|
| 272 |
+
assert_message = "You must provide a context when using context_features"
|
| 273 |
+
assert not self.context_features or exists(context), assert_message
|
| 274 |
+
# Use context if provided
|
| 275 |
+
context = default(context, x)
|
| 276 |
+
# Normalize then compute q from input and k,v from context
|
| 277 |
+
x, context = self.norm(x, s), self.norm_context(context, s)
|
| 278 |
+
|
| 279 |
+
q, k, v = (self.to_q(x), *torch.chunk(self.to_kv(context), chunks=2, dim=-1))
|
| 280 |
+
# Compute and return attention
|
| 281 |
+
return self.attention(q, k, v)
|
| 282 |
+
|
| 283 |
+
class Transformer1d(nn.Module):
|
| 284 |
+
def __init__(
|
| 285 |
+
self,
|
| 286 |
+
num_layers: int,
|
| 287 |
+
channels: int,
|
| 288 |
+
num_heads: int,
|
| 289 |
+
head_features: int,
|
| 290 |
+
multiplier: int,
|
| 291 |
+
use_context_time: bool = True,
|
| 292 |
+
use_rel_pos: bool = False,
|
| 293 |
+
context_features_multiplier: int = 1,
|
| 294 |
+
rel_pos_num_buckets: Optional[int] = None,
|
| 295 |
+
rel_pos_max_distance: Optional[int] = None,
|
| 296 |
+
context_features: Optional[int] = None,
|
| 297 |
+
context_embedding_features: Optional[int] = None,
|
| 298 |
+
embedding_max_length: int = 512,
|
| 299 |
+
):
|
| 300 |
+
super().__init__()
|
| 301 |
+
|
| 302 |
+
self.blocks = nn.ModuleList(
|
| 303 |
+
[
|
| 304 |
+
TransformerBlock(
|
| 305 |
+
features=channels + context_embedding_features,
|
| 306 |
+
head_features=head_features,
|
| 307 |
+
num_heads=num_heads,
|
| 308 |
+
multiplier=multiplier,
|
| 309 |
+
use_rel_pos=use_rel_pos,
|
| 310 |
+
rel_pos_num_buckets=rel_pos_num_buckets,
|
| 311 |
+
rel_pos_max_distance=rel_pos_max_distance,
|
| 312 |
+
)
|
| 313 |
+
for i in range(num_layers)
|
| 314 |
+
]
|
| 315 |
+
)
|
| 316 |
+
|
| 317 |
+
self.to_out = nn.Sequential(
|
| 318 |
+
Rearrange("b t c -> b c t"),
|
| 319 |
+
nn.Conv1d(
|
| 320 |
+
in_channels=channels + context_embedding_features,
|
| 321 |
+
out_channels=channels,
|
| 322 |
+
kernel_size=1,
|
| 323 |
+
),
|
| 324 |
+
)
|
| 325 |
+
|
| 326 |
+
use_context_features = exists(context_features)
|
| 327 |
+
self.use_context_features = use_context_features
|
| 328 |
+
self.use_context_time = use_context_time
|
| 329 |
+
|
| 330 |
+
if use_context_time or use_context_features:
|
| 331 |
+
context_mapping_features = channels + context_embedding_features
|
| 332 |
+
|
| 333 |
+
self.to_mapping = nn.Sequential(
|
| 334 |
+
nn.Linear(context_mapping_features, context_mapping_features),
|
| 335 |
+
nn.GELU(),
|
| 336 |
+
nn.Linear(context_mapping_features, context_mapping_features),
|
| 337 |
+
nn.GELU(),
|
| 338 |
+
)
|
| 339 |
+
|
| 340 |
+
if use_context_time:
|
| 341 |
+
assert exists(context_mapping_features)
|
| 342 |
+
self.to_time = nn.Sequential(
|
| 343 |
+
TimePositionalEmbedding(
|
| 344 |
+
dim=channels, out_features=context_mapping_features
|
| 345 |
+
),
|
| 346 |
+
nn.GELU(),
|
| 347 |
+
)
|
| 348 |
+
|
| 349 |
+
if use_context_features:
|
| 350 |
+
assert exists(context_features) and exists(context_mapping_features)
|
| 351 |
+
self.to_features = nn.Sequential(
|
| 352 |
+
nn.Linear(
|
| 353 |
+
in_features=context_features, out_features=context_mapping_features
|
| 354 |
+
),
|
| 355 |
+
nn.GELU(),
|
| 356 |
+
)
|
| 357 |
+
|
| 358 |
+
self.fixed_embedding = FixedEmbedding(
|
| 359 |
+
max_length=embedding_max_length, features=context_embedding_features
|
| 360 |
+
)
|
| 361 |
+
|
| 362 |
+
|
| 363 |
+
def get_mapping(
|
| 364 |
+
self, time: Optional[Tensor] = None, features: Optional[Tensor] = None
|
| 365 |
+
) -> Optional[Tensor]:
|
| 366 |
+
"""Combines context time features and features into mapping"""
|
| 367 |
+
items, mapping = [], None
|
| 368 |
+
# Compute time features
|
| 369 |
+
if self.use_context_time:
|
| 370 |
+
assert_message = "use_context_time=True but no time features provided"
|
| 371 |
+
assert exists(time), assert_message
|
| 372 |
+
items += [self.to_time(time)]
|
| 373 |
+
# Compute features
|
| 374 |
+
if self.use_context_features:
|
| 375 |
+
assert_message = "context_features exists but no features provided"
|
| 376 |
+
assert exists(features), assert_message
|
| 377 |
+
items += [self.to_features(features)]
|
| 378 |
+
|
| 379 |
+
# Compute joint mapping
|
| 380 |
+
if self.use_context_time or self.use_context_features:
|
| 381 |
+
mapping = reduce(torch.stack(items), "n b m -> b m", "sum")
|
| 382 |
+
mapping = self.to_mapping(mapping)
|
| 383 |
+
|
| 384 |
+
return mapping
|
| 385 |
+
|
| 386 |
+
def run(self, x, time, embedding, features):
|
| 387 |
+
|
| 388 |
+
mapping = self.get_mapping(time, features)
|
| 389 |
+
x = torch.cat([x.expand(-1, embedding.size(1), -1), embedding], axis=-1)
|
| 390 |
+
mapping = mapping.unsqueeze(1).expand(-1, embedding.size(1), -1)
|
| 391 |
+
|
| 392 |
+
for block in self.blocks:
|
| 393 |
+
x = x + mapping
|
| 394 |
+
x = block(x)
|
| 395 |
+
|
| 396 |
+
x = x.mean(axis=1).unsqueeze(1)
|
| 397 |
+
x = self.to_out(x)
|
| 398 |
+
x = x.transpose(-1, -2)
|
| 399 |
+
|
| 400 |
+
return x
|
| 401 |
+
|
| 402 |
+
def forward(self, x: Tensor,
|
| 403 |
+
time: Tensor,
|
| 404 |
+
embedding_mask_proba: float = 0.0,
|
| 405 |
+
embedding: Optional[Tensor] = None,
|
| 406 |
+
features: Optional[Tensor] = None,
|
| 407 |
+
embedding_scale: float = 1.0) -> Tensor:
|
| 408 |
+
|
| 409 |
+
b, device = embedding.shape[0], embedding.device
|
| 410 |
+
fixed_embedding = self.fixed_embedding(embedding)
|
| 411 |
+
if embedding_mask_proba > 0.0:
|
| 412 |
+
# Randomly mask embedding
|
| 413 |
+
batch_mask = rand_bool(
|
| 414 |
+
shape=(b, 1, 1), proba=embedding_mask_proba, device=device
|
| 415 |
+
)
|
| 416 |
+
embedding = torch.where(batch_mask, fixed_embedding, embedding)
|
| 417 |
+
|
| 418 |
+
if embedding_scale != 1.0:
|
| 419 |
+
# Compute both normal and fixed embedding outputs
|
| 420 |
+
out = self.run(x, time, embedding=embedding, features=features)
|
| 421 |
+
out_masked = self.run(x, time, embedding=fixed_embedding, features=features)
|
| 422 |
+
# Scale conditional output using classifier-free guidance
|
| 423 |
+
return out_masked + (out - out_masked) * embedding_scale
|
| 424 |
+
else:
|
| 425 |
+
return self.run(x, time, embedding=embedding, features=features)
|
| 426 |
+
|
| 427 |
+
return x
|
| 428 |
+
|
| 429 |
+
|
| 430 |
+
"""
|
| 431 |
+
Attention Components
|
| 432 |
+
"""
|
| 433 |
+
|
| 434 |
+
|
| 435 |
+
class RelativePositionBias(nn.Module):
|
| 436 |
+
def __init__(self, num_buckets: int, max_distance: int, num_heads: int):
|
| 437 |
+
super().__init__()
|
| 438 |
+
self.num_buckets = num_buckets
|
| 439 |
+
self.max_distance = max_distance
|
| 440 |
+
self.num_heads = num_heads
|
| 441 |
+
self.relative_attention_bias = nn.Embedding(num_buckets, num_heads)
|
| 442 |
+
|
| 443 |
+
@staticmethod
|
| 444 |
+
def _relative_position_bucket(
|
| 445 |
+
relative_position: Tensor, num_buckets: int, max_distance: int
|
| 446 |
+
):
|
| 447 |
+
num_buckets //= 2
|
| 448 |
+
ret = (relative_position >= 0).to(torch.long) * num_buckets
|
| 449 |
+
n = torch.abs(relative_position)
|
| 450 |
+
|
| 451 |
+
max_exact = num_buckets // 2
|
| 452 |
+
is_small = n < max_exact
|
| 453 |
+
|
| 454 |
+
val_if_large = (
|
| 455 |
+
max_exact
|
| 456 |
+
+ (
|
| 457 |
+
torch.log(n.float() / max_exact)
|
| 458 |
+
/ log(max_distance / max_exact)
|
| 459 |
+
* (num_buckets - max_exact)
|
| 460 |
+
).long()
|
| 461 |
+
)
|
| 462 |
+
val_if_large = torch.min(
|
| 463 |
+
val_if_large, torch.full_like(val_if_large, num_buckets - 1)
|
| 464 |
+
)
|
| 465 |
+
|
| 466 |
+
ret += torch.where(is_small, n, val_if_large)
|
| 467 |
+
return ret
|
| 468 |
+
|
| 469 |
+
def forward(self, num_queries: int, num_keys: int) -> Tensor:
|
| 470 |
+
i, j, device = num_queries, num_keys, self.relative_attention_bias.weight.device
|
| 471 |
+
q_pos = torch.arange(j - i, j, dtype=torch.long, device=device)
|
| 472 |
+
k_pos = torch.arange(j, dtype=torch.long, device=device)
|
| 473 |
+
rel_pos = rearrange(k_pos, "j -> 1 j") - rearrange(q_pos, "i -> i 1")
|
| 474 |
+
|
| 475 |
+
relative_position_bucket = self._relative_position_bucket(
|
| 476 |
+
rel_pos, num_buckets=self.num_buckets, max_distance=self.max_distance
|
| 477 |
+
)
|
| 478 |
+
|
| 479 |
+
bias = self.relative_attention_bias(relative_position_bucket)
|
| 480 |
+
bias = rearrange(bias, "m n h -> 1 h m n")
|
| 481 |
+
return bias
|
| 482 |
+
|
| 483 |
+
|
| 484 |
+
def FeedForward(features: int, multiplier: int) -> nn.Module:
|
| 485 |
+
mid_features = features * multiplier
|
| 486 |
+
return nn.Sequential(
|
| 487 |
+
nn.Linear(in_features=features, out_features=mid_features),
|
| 488 |
+
nn.GELU(),
|
| 489 |
+
nn.Linear(in_features=mid_features, out_features=features),
|
| 490 |
+
)
|
| 491 |
+
|
| 492 |
+
|
| 493 |
+
class AttentionBase(nn.Module):
|
| 494 |
+
def __init__(
|
| 495 |
+
self,
|
| 496 |
+
features: int,
|
| 497 |
+
*,
|
| 498 |
+
head_features: int,
|
| 499 |
+
num_heads: int,
|
| 500 |
+
use_rel_pos: bool,
|
| 501 |
+
out_features: Optional[int] = None,
|
| 502 |
+
rel_pos_num_buckets: Optional[int] = None,
|
| 503 |
+
rel_pos_max_distance: Optional[int] = None,
|
| 504 |
+
):
|
| 505 |
+
super().__init__()
|
| 506 |
+
self.scale = head_features ** -0.5
|
| 507 |
+
self.num_heads = num_heads
|
| 508 |
+
self.use_rel_pos = use_rel_pos
|
| 509 |
+
mid_features = head_features * num_heads
|
| 510 |
+
|
| 511 |
+
if use_rel_pos:
|
| 512 |
+
assert exists(rel_pos_num_buckets) and exists(rel_pos_max_distance)
|
| 513 |
+
self.rel_pos = RelativePositionBias(
|
| 514 |
+
num_buckets=rel_pos_num_buckets,
|
| 515 |
+
max_distance=rel_pos_max_distance,
|
| 516 |
+
num_heads=num_heads,
|
| 517 |
+
)
|
| 518 |
+
if out_features is None:
|
| 519 |
+
out_features = features
|
| 520 |
+
|
| 521 |
+
self.to_out = nn.Linear(in_features=mid_features, out_features=out_features)
|
| 522 |
+
|
| 523 |
+
def forward(self, q: Tensor, k: Tensor, v: Tensor) -> Tensor:
|
| 524 |
+
# Split heads
|
| 525 |
+
q, k, v = rearrange_many((q, k, v), "b n (h d) -> b h n d", h=self.num_heads)
|
| 526 |
+
# Compute similarity matrix
|
| 527 |
+
sim = einsum("... n d, ... m d -> ... n m", q, k)
|
| 528 |
+
sim = (sim + self.rel_pos(*sim.shape[-2:])) if self.use_rel_pos else sim
|
| 529 |
+
sim = sim * self.scale
|
| 530 |
+
# Get attention matrix with softmax
|
| 531 |
+
attn = sim.softmax(dim=-1)
|
| 532 |
+
# Compute values
|
| 533 |
+
out = einsum("... n m, ... m d -> ... n d", attn, v)
|
| 534 |
+
out = rearrange(out, "b h n d -> b n (h d)")
|
| 535 |
+
return self.to_out(out)
|
| 536 |
+
|
| 537 |
+
|
| 538 |
+
class Attention(nn.Module):
|
| 539 |
+
def __init__(
|
| 540 |
+
self,
|
| 541 |
+
features: int,
|
| 542 |
+
*,
|
| 543 |
+
head_features: int,
|
| 544 |
+
num_heads: int,
|
| 545 |
+
out_features: Optional[int] = None,
|
| 546 |
+
context_features: Optional[int] = None,
|
| 547 |
+
use_rel_pos: bool,
|
| 548 |
+
rel_pos_num_buckets: Optional[int] = None,
|
| 549 |
+
rel_pos_max_distance: Optional[int] = None,
|
| 550 |
+
):
|
| 551 |
+
super().__init__()
|
| 552 |
+
self.context_features = context_features
|
| 553 |
+
mid_features = head_features * num_heads
|
| 554 |
+
context_features = default(context_features, features)
|
| 555 |
+
|
| 556 |
+
self.norm = nn.LayerNorm(features)
|
| 557 |
+
self.norm_context = nn.LayerNorm(context_features)
|
| 558 |
+
self.to_q = nn.Linear(
|
| 559 |
+
in_features=features, out_features=mid_features, bias=False
|
| 560 |
+
)
|
| 561 |
+
self.to_kv = nn.Linear(
|
| 562 |
+
in_features=context_features, out_features=mid_features * 2, bias=False
|
| 563 |
+
)
|
| 564 |
+
|
| 565 |
+
self.attention = AttentionBase(
|
| 566 |
+
features,
|
| 567 |
+
out_features=out_features,
|
| 568 |
+
num_heads=num_heads,
|
| 569 |
+
head_features=head_features,
|
| 570 |
+
use_rel_pos=use_rel_pos,
|
| 571 |
+
rel_pos_num_buckets=rel_pos_num_buckets,
|
| 572 |
+
rel_pos_max_distance=rel_pos_max_distance,
|
| 573 |
+
)
|
| 574 |
+
|
| 575 |
+
def forward(self, x: Tensor, *, context: Optional[Tensor] = None) -> Tensor:
|
| 576 |
+
assert_message = "You must provide a context when using context_features"
|
| 577 |
+
assert not self.context_features or exists(context), assert_message
|
| 578 |
+
# Use context if provided
|
| 579 |
+
context = default(context, x)
|
| 580 |
+
# Normalize then compute q from input and k,v from context
|
| 581 |
+
x, context = self.norm(x), self.norm_context(context)
|
| 582 |
+
q, k, v = (self.to_q(x), *torch.chunk(self.to_kv(context), chunks=2, dim=-1))
|
| 583 |
+
# Compute and return attention
|
| 584 |
+
return self.attention(q, k, v)
|
| 585 |
+
|
| 586 |
+
|
| 587 |
+
"""
|
| 588 |
+
Transformer Blocks
|
| 589 |
+
"""
|
| 590 |
+
|
| 591 |
+
|
| 592 |
+
class TransformerBlock(nn.Module):
|
| 593 |
+
def __init__(
|
| 594 |
+
self,
|
| 595 |
+
features: int,
|
| 596 |
+
num_heads: int,
|
| 597 |
+
head_features: int,
|
| 598 |
+
multiplier: int,
|
| 599 |
+
use_rel_pos: bool,
|
| 600 |
+
rel_pos_num_buckets: Optional[int] = None,
|
| 601 |
+
rel_pos_max_distance: Optional[int] = None,
|
| 602 |
+
context_features: Optional[int] = None,
|
| 603 |
+
):
|
| 604 |
+
super().__init__()
|
| 605 |
+
|
| 606 |
+
self.use_cross_attention = exists(context_features) and context_features > 0
|
| 607 |
+
|
| 608 |
+
self.attention = Attention(
|
| 609 |
+
features=features,
|
| 610 |
+
num_heads=num_heads,
|
| 611 |
+
head_features=head_features,
|
| 612 |
+
use_rel_pos=use_rel_pos,
|
| 613 |
+
rel_pos_num_buckets=rel_pos_num_buckets,
|
| 614 |
+
rel_pos_max_distance=rel_pos_max_distance,
|
| 615 |
+
)
|
| 616 |
+
|
| 617 |
+
if self.use_cross_attention:
|
| 618 |
+
self.cross_attention = Attention(
|
| 619 |
+
features=features,
|
| 620 |
+
num_heads=num_heads,
|
| 621 |
+
head_features=head_features,
|
| 622 |
+
context_features=context_features,
|
| 623 |
+
use_rel_pos=use_rel_pos,
|
| 624 |
+
rel_pos_num_buckets=rel_pos_num_buckets,
|
| 625 |
+
rel_pos_max_distance=rel_pos_max_distance,
|
| 626 |
+
)
|
| 627 |
+
|
| 628 |
+
self.feed_forward = FeedForward(features=features, multiplier=multiplier)
|
| 629 |
+
|
| 630 |
+
def forward(self, x: Tensor, *, context: Optional[Tensor] = None) -> Tensor:
|
| 631 |
+
x = self.attention(x) + x
|
| 632 |
+
if self.use_cross_attention:
|
| 633 |
+
x = self.cross_attention(x, context=context) + x
|
| 634 |
+
x = self.feed_forward(x) + x
|
| 635 |
+
return x
|
| 636 |
+
|
| 637 |
+
|
| 638 |
+
|
| 639 |
+
"""
|
| 640 |
+
Time Embeddings
|
| 641 |
+
"""
|
| 642 |
+
|
| 643 |
+
|
| 644 |
+
class SinusoidalEmbedding(nn.Module):
|
| 645 |
+
def __init__(self, dim: int):
|
| 646 |
+
super().__init__()
|
| 647 |
+
self.dim = dim
|
| 648 |
+
|
| 649 |
+
def forward(self, x: Tensor) -> Tensor:
|
| 650 |
+
device, half_dim = x.device, self.dim // 2
|
| 651 |
+
emb = torch.tensor(log(10000) / (half_dim - 1), device=device)
|
| 652 |
+
emb = torch.exp(torch.arange(half_dim, device=device) * -emb)
|
| 653 |
+
emb = rearrange(x, "i -> i 1") * rearrange(emb, "j -> 1 j")
|
| 654 |
+
return torch.cat((emb.sin(), emb.cos()), dim=-1)
|
| 655 |
+
|
| 656 |
+
|
| 657 |
+
class LearnedPositionalEmbedding(nn.Module):
|
| 658 |
+
"""Used for continuous time"""
|
| 659 |
+
|
| 660 |
+
def __init__(self, dim: int):
|
| 661 |
+
super().__init__()
|
| 662 |
+
assert (dim % 2) == 0
|
| 663 |
+
half_dim = dim // 2
|
| 664 |
+
self.weights = nn.Parameter(torch.randn(half_dim))
|
| 665 |
+
|
| 666 |
+
def forward(self, x: Tensor) -> Tensor:
|
| 667 |
+
x = rearrange(x, "b -> b 1")
|
| 668 |
+
freqs = x * rearrange(self.weights, "d -> 1 d") * 2 * pi
|
| 669 |
+
fouriered = torch.cat((freqs.sin(), freqs.cos()), dim=-1)
|
| 670 |
+
fouriered = torch.cat((x, fouriered), dim=-1)
|
| 671 |
+
return fouriered
|
| 672 |
+
|
| 673 |
+
|
| 674 |
+
def TimePositionalEmbedding(dim: int, out_features: int) -> nn.Module:
|
| 675 |
+
return nn.Sequential(
|
| 676 |
+
LearnedPositionalEmbedding(dim),
|
| 677 |
+
nn.Linear(in_features=dim + 1, out_features=out_features),
|
| 678 |
+
)
|
| 679 |
+
|
| 680 |
+
class FixedEmbedding(nn.Module):
|
| 681 |
+
def __init__(self, max_length: int, features: int):
|
| 682 |
+
super().__init__()
|
| 683 |
+
self.max_length = max_length
|
| 684 |
+
self.embedding = nn.Embedding(max_length, features)
|
| 685 |
+
|
| 686 |
+
def forward(self, x: Tensor) -> Tensor:
|
| 687 |
+
batch_size, length, device = *x.shape[0:2], x.device
|
| 688 |
+
assert_message = "Input sequence length must be <= max_length"
|
| 689 |
+
assert length <= self.max_length, assert_message
|
| 690 |
+
position = torch.arange(length, device=device)
|
| 691 |
+
fixed_embedding = self.embedding(position)
|
| 692 |
+
fixed_embedding = repeat(fixed_embedding, "n d -> b n d", b=batch_size)
|
| 693 |
+
return fixed_embedding
|
Modules/diffusion/sampler.py
ADDED
|
@@ -0,0 +1,691 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from math import atan, cos, pi, sin, sqrt
|
| 2 |
+
from typing import Any, Callable, List, Optional, Tuple, Type
|
| 3 |
+
|
| 4 |
+
import torch
|
| 5 |
+
import torch.nn as nn
|
| 6 |
+
import torch.nn.functional as F
|
| 7 |
+
from einops import rearrange, reduce
|
| 8 |
+
from torch import Tensor
|
| 9 |
+
|
| 10 |
+
from .utils import *
|
| 11 |
+
|
| 12 |
+
"""
|
| 13 |
+
Diffusion Training
|
| 14 |
+
"""
|
| 15 |
+
|
| 16 |
+
""" Distributions """
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
class Distribution:
|
| 20 |
+
def __call__(self, num_samples: int, device: torch.device):
|
| 21 |
+
raise NotImplementedError()
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
class LogNormalDistribution(Distribution):
|
| 25 |
+
def __init__(self, mean: float, std: float):
|
| 26 |
+
self.mean = mean
|
| 27 |
+
self.std = std
|
| 28 |
+
|
| 29 |
+
def __call__(
|
| 30 |
+
self, num_samples: int, device: torch.device = torch.device("cpu")
|
| 31 |
+
) -> Tensor:
|
| 32 |
+
normal = self.mean + self.std * torch.randn((num_samples,), device=device)
|
| 33 |
+
return normal.exp()
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
class UniformDistribution(Distribution):
|
| 37 |
+
def __call__(self, num_samples: int, device: torch.device = torch.device("cpu")):
|
| 38 |
+
return torch.rand(num_samples, device=device)
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
class VKDistribution(Distribution):
|
| 42 |
+
def __init__(
|
| 43 |
+
self,
|
| 44 |
+
min_value: float = 0.0,
|
| 45 |
+
max_value: float = float("inf"),
|
| 46 |
+
sigma_data: float = 1.0,
|
| 47 |
+
):
|
| 48 |
+
self.min_value = min_value
|
| 49 |
+
self.max_value = max_value
|
| 50 |
+
self.sigma_data = sigma_data
|
| 51 |
+
|
| 52 |
+
def __call__(
|
| 53 |
+
self, num_samples: int, device: torch.device = torch.device("cpu")
|
| 54 |
+
) -> Tensor:
|
| 55 |
+
sigma_data = self.sigma_data
|
| 56 |
+
min_cdf = atan(self.min_value / sigma_data) * 2 / pi
|
| 57 |
+
max_cdf = atan(self.max_value / sigma_data) * 2 / pi
|
| 58 |
+
u = (max_cdf - min_cdf) * torch.randn((num_samples,), device=device) + min_cdf
|
| 59 |
+
return torch.tan(u * pi / 2) * sigma_data
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
""" Diffusion Classes """
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
def pad_dims(x: Tensor, ndim: int) -> Tensor:
|
| 66 |
+
# Pads additional ndims to the right of the tensor
|
| 67 |
+
return x.view(*x.shape, *((1,) * ndim))
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
def clip(x: Tensor, dynamic_threshold: float = 0.0):
|
| 71 |
+
if dynamic_threshold == 0.0:
|
| 72 |
+
return x.clamp(-1.0, 1.0)
|
| 73 |
+
else:
|
| 74 |
+
# Dynamic thresholding
|
| 75 |
+
# Find dynamic threshold quantile for each batch
|
| 76 |
+
x_flat = rearrange(x, "b ... -> b (...)")
|
| 77 |
+
scale = torch.quantile(x_flat.abs(), dynamic_threshold, dim=-1)
|
| 78 |
+
# Clamp to a min of 1.0
|
| 79 |
+
scale.clamp_(min=1.0)
|
| 80 |
+
# Clamp all values and scale
|
| 81 |
+
scale = pad_dims(scale, ndim=x.ndim - scale.ndim)
|
| 82 |
+
x = x.clamp(-scale, scale) / scale
|
| 83 |
+
return x
|
| 84 |
+
|
| 85 |
+
|
| 86 |
+
def to_batch(
|
| 87 |
+
batch_size: int,
|
| 88 |
+
device: torch.device,
|
| 89 |
+
x: Optional[float] = None,
|
| 90 |
+
xs: Optional[Tensor] = None,
|
| 91 |
+
) -> Tensor:
|
| 92 |
+
assert exists(x) ^ exists(xs), "Either x or xs must be provided"
|
| 93 |
+
# If x provided use the same for all batch items
|
| 94 |
+
if exists(x):
|
| 95 |
+
xs = torch.full(size=(batch_size,), fill_value=x).to(device)
|
| 96 |
+
assert exists(xs)
|
| 97 |
+
return xs
|
| 98 |
+
|
| 99 |
+
|
| 100 |
+
class Diffusion(nn.Module):
|
| 101 |
+
|
| 102 |
+
alias: str = ""
|
| 103 |
+
|
| 104 |
+
"""Base diffusion class"""
|
| 105 |
+
|
| 106 |
+
def denoise_fn(
|
| 107 |
+
self,
|
| 108 |
+
x_noisy: Tensor,
|
| 109 |
+
sigmas: Optional[Tensor] = None,
|
| 110 |
+
sigma: Optional[float] = None,
|
| 111 |
+
**kwargs,
|
| 112 |
+
) -> Tensor:
|
| 113 |
+
raise NotImplementedError("Diffusion class missing denoise_fn")
|
| 114 |
+
|
| 115 |
+
def forward(self, x: Tensor, noise: Tensor = None, **kwargs) -> Tensor:
|
| 116 |
+
raise NotImplementedError("Diffusion class missing forward function")
|
| 117 |
+
|
| 118 |
+
|
| 119 |
+
class VDiffusion(Diffusion):
|
| 120 |
+
|
| 121 |
+
alias = "v"
|
| 122 |
+
|
| 123 |
+
def __init__(self, net: nn.Module, *, sigma_distribution: Distribution):
|
| 124 |
+
super().__init__()
|
| 125 |
+
self.net = net
|
| 126 |
+
self.sigma_distribution = sigma_distribution
|
| 127 |
+
|
| 128 |
+
def get_alpha_beta(self, sigmas: Tensor) -> Tuple[Tensor, Tensor]:
|
| 129 |
+
angle = sigmas * pi / 2
|
| 130 |
+
alpha = torch.cos(angle)
|
| 131 |
+
beta = torch.sin(angle)
|
| 132 |
+
return alpha, beta
|
| 133 |
+
|
| 134 |
+
def denoise_fn(
|
| 135 |
+
self,
|
| 136 |
+
x_noisy: Tensor,
|
| 137 |
+
sigmas: Optional[Tensor] = None,
|
| 138 |
+
sigma: Optional[float] = None,
|
| 139 |
+
**kwargs,
|
| 140 |
+
) -> Tensor:
|
| 141 |
+
batch_size, device = x_noisy.shape[0], x_noisy.device
|
| 142 |
+
sigmas = to_batch(x=sigma, xs=sigmas, batch_size=batch_size, device=device)
|
| 143 |
+
return self.net(x_noisy, sigmas, **kwargs)
|
| 144 |
+
|
| 145 |
+
def forward(self, x: Tensor, noise: Tensor = None, **kwargs) -> Tensor:
|
| 146 |
+
batch_size, device = x.shape[0], x.device
|
| 147 |
+
|
| 148 |
+
# Sample amount of noise to add for each batch element
|
| 149 |
+
sigmas = self.sigma_distribution(num_samples=batch_size, device=device)
|
| 150 |
+
sigmas_padded = rearrange(sigmas, "b -> b 1 1")
|
| 151 |
+
|
| 152 |
+
# Get noise
|
| 153 |
+
noise = default(noise, lambda: torch.randn_like(x))
|
| 154 |
+
|
| 155 |
+
# Combine input and noise weighted by half-circle
|
| 156 |
+
alpha, beta = self.get_alpha_beta(sigmas_padded)
|
| 157 |
+
x_noisy = x * alpha + noise * beta
|
| 158 |
+
x_target = noise * alpha - x * beta
|
| 159 |
+
|
| 160 |
+
# Denoise and return loss
|
| 161 |
+
x_denoised = self.denoise_fn(x_noisy, sigmas, **kwargs)
|
| 162 |
+
return F.mse_loss(x_denoised, x_target)
|
| 163 |
+
|
| 164 |
+
|
| 165 |
+
class KDiffusion(Diffusion):
|
| 166 |
+
"""Elucidated Diffusion (Karras et al. 2022): https://arxiv.org/abs/2206.00364"""
|
| 167 |
+
|
| 168 |
+
alias = "k"
|
| 169 |
+
|
| 170 |
+
def __init__(
|
| 171 |
+
self,
|
| 172 |
+
net: nn.Module,
|
| 173 |
+
*,
|
| 174 |
+
sigma_distribution: Distribution,
|
| 175 |
+
sigma_data: float, # data distribution standard deviation
|
| 176 |
+
dynamic_threshold: float = 0.0,
|
| 177 |
+
):
|
| 178 |
+
super().__init__()
|
| 179 |
+
self.net = net
|
| 180 |
+
self.sigma_data = sigma_data
|
| 181 |
+
self.sigma_distribution = sigma_distribution
|
| 182 |
+
self.dynamic_threshold = dynamic_threshold
|
| 183 |
+
|
| 184 |
+
def get_scale_weights(self, sigmas: Tensor) -> Tuple[Tensor, ...]:
|
| 185 |
+
sigma_data = self.sigma_data
|
| 186 |
+
c_noise = torch.log(sigmas) * 0.25
|
| 187 |
+
sigmas = rearrange(sigmas, "b -> b 1 1")
|
| 188 |
+
c_skip = (sigma_data ** 2) / (sigmas ** 2 + sigma_data ** 2)
|
| 189 |
+
c_out = sigmas * sigma_data * (sigma_data ** 2 + sigmas ** 2) ** -0.5
|
| 190 |
+
c_in = (sigmas ** 2 + sigma_data ** 2) ** -0.5
|
| 191 |
+
return c_skip, c_out, c_in, c_noise
|
| 192 |
+
|
| 193 |
+
def denoise_fn(
|
| 194 |
+
self,
|
| 195 |
+
x_noisy: Tensor,
|
| 196 |
+
sigmas: Optional[Tensor] = None,
|
| 197 |
+
sigma: Optional[float] = None,
|
| 198 |
+
**kwargs,
|
| 199 |
+
) -> Tensor:
|
| 200 |
+
batch_size, device = x_noisy.shape[0], x_noisy.device
|
| 201 |
+
sigmas = to_batch(x=sigma, xs=sigmas, batch_size=batch_size, device=device)
|
| 202 |
+
|
| 203 |
+
# Predict network output and add skip connection
|
| 204 |
+
c_skip, c_out, c_in, c_noise = self.get_scale_weights(sigmas)
|
| 205 |
+
x_pred = self.net(c_in * x_noisy, c_noise, **kwargs)
|
| 206 |
+
x_denoised = c_skip * x_noisy + c_out * x_pred
|
| 207 |
+
|
| 208 |
+
return x_denoised
|
| 209 |
+
|
| 210 |
+
def loss_weight(self, sigmas: Tensor) -> Tensor:
|
| 211 |
+
# Computes weight depending on data distribution
|
| 212 |
+
return (sigmas ** 2 + self.sigma_data ** 2) * (sigmas * self.sigma_data) ** -2
|
| 213 |
+
|
| 214 |
+
def forward(self, x: Tensor, noise: Tensor = None, **kwargs) -> Tensor:
|
| 215 |
+
batch_size, device = x.shape[0], x.device
|
| 216 |
+
from einops import rearrange, reduce
|
| 217 |
+
|
| 218 |
+
# Sample amount of noise to add for each batch element
|
| 219 |
+
sigmas = self.sigma_distribution(num_samples=batch_size, device=device)
|
| 220 |
+
sigmas_padded = rearrange(sigmas, "b -> b 1 1")
|
| 221 |
+
|
| 222 |
+
# Add noise to input
|
| 223 |
+
noise = default(noise, lambda: torch.randn_like(x))
|
| 224 |
+
x_noisy = x + sigmas_padded * noise
|
| 225 |
+
|
| 226 |
+
# Compute denoised values
|
| 227 |
+
x_denoised = self.denoise_fn(x_noisy, sigmas=sigmas, **kwargs)
|
| 228 |
+
|
| 229 |
+
# Compute weighted loss
|
| 230 |
+
losses = F.mse_loss(x_denoised, x, reduction="none")
|
| 231 |
+
losses = reduce(losses, "b ... -> b", "mean")
|
| 232 |
+
losses = losses * self.loss_weight(sigmas)
|
| 233 |
+
loss = losses.mean()
|
| 234 |
+
return loss
|
| 235 |
+
|
| 236 |
+
|
| 237 |
+
class VKDiffusion(Diffusion):
|
| 238 |
+
|
| 239 |
+
alias = "vk"
|
| 240 |
+
|
| 241 |
+
def __init__(self, net: nn.Module, *, sigma_distribution: Distribution):
|
| 242 |
+
super().__init__()
|
| 243 |
+
self.net = net
|
| 244 |
+
self.sigma_distribution = sigma_distribution
|
| 245 |
+
|
| 246 |
+
def get_scale_weights(self, sigmas: Tensor) -> Tuple[Tensor, ...]:
|
| 247 |
+
sigma_data = 1.0
|
| 248 |
+
sigmas = rearrange(sigmas, "b -> b 1 1")
|
| 249 |
+
c_skip = (sigma_data ** 2) / (sigmas ** 2 + sigma_data ** 2)
|
| 250 |
+
c_out = -sigmas * sigma_data * (sigma_data ** 2 + sigmas ** 2) ** -0.5
|
| 251 |
+
c_in = (sigmas ** 2 + sigma_data ** 2) ** -0.5
|
| 252 |
+
return c_skip, c_out, c_in
|
| 253 |
+
|
| 254 |
+
def sigma_to_t(self, sigmas: Tensor) -> Tensor:
|
| 255 |
+
return sigmas.atan() / pi * 2
|
| 256 |
+
|
| 257 |
+
def t_to_sigma(self, t: Tensor) -> Tensor:
|
| 258 |
+
return (t * pi / 2).tan()
|
| 259 |
+
|
| 260 |
+
def denoise_fn(
|
| 261 |
+
self,
|
| 262 |
+
x_noisy: Tensor,
|
| 263 |
+
sigmas: Optional[Tensor] = None,
|
| 264 |
+
sigma: Optional[float] = None,
|
| 265 |
+
**kwargs,
|
| 266 |
+
) -> Tensor:
|
| 267 |
+
batch_size, device = x_noisy.shape[0], x_noisy.device
|
| 268 |
+
sigmas = to_batch(x=sigma, xs=sigmas, batch_size=batch_size, device=device)
|
| 269 |
+
|
| 270 |
+
# Predict network output and add skip connection
|
| 271 |
+
c_skip, c_out, c_in = self.get_scale_weights(sigmas)
|
| 272 |
+
x_pred = self.net(c_in * x_noisy, self.sigma_to_t(sigmas), **kwargs)
|
| 273 |
+
x_denoised = c_skip * x_noisy + c_out * x_pred
|
| 274 |
+
return x_denoised
|
| 275 |
+
|
| 276 |
+
def forward(self, x: Tensor, noise: Tensor = None, **kwargs) -> Tensor:
|
| 277 |
+
batch_size, device = x.shape[0], x.device
|
| 278 |
+
|
| 279 |
+
# Sample amount of noise to add for each batch element
|
| 280 |
+
sigmas = self.sigma_distribution(num_samples=batch_size, device=device)
|
| 281 |
+
sigmas_padded = rearrange(sigmas, "b -> b 1 1")
|
| 282 |
+
|
| 283 |
+
# Add noise to input
|
| 284 |
+
noise = default(noise, lambda: torch.randn_like(x))
|
| 285 |
+
x_noisy = x + sigmas_padded * noise
|
| 286 |
+
|
| 287 |
+
# Compute model output
|
| 288 |
+
c_skip, c_out, c_in = self.get_scale_weights(sigmas)
|
| 289 |
+
x_pred = self.net(c_in * x_noisy, self.sigma_to_t(sigmas), **kwargs)
|
| 290 |
+
|
| 291 |
+
# Compute v-objective target
|
| 292 |
+
v_target = (x - c_skip * x_noisy) / (c_out + 1e-7)
|
| 293 |
+
|
| 294 |
+
# Compute loss
|
| 295 |
+
loss = F.mse_loss(x_pred, v_target)
|
| 296 |
+
return loss
|
| 297 |
+
|
| 298 |
+
|
| 299 |
+
"""
|
| 300 |
+
Diffusion Sampling
|
| 301 |
+
"""
|
| 302 |
+
|
| 303 |
+
""" Schedules """
|
| 304 |
+
|
| 305 |
+
|
| 306 |
+
class Schedule(nn.Module):
|
| 307 |
+
"""Interface used by different sampling schedules"""
|
| 308 |
+
|
| 309 |
+
def forward(self, num_steps: int, device: torch.device) -> Tensor:
|
| 310 |
+
raise NotImplementedError()
|
| 311 |
+
|
| 312 |
+
|
| 313 |
+
class LinearSchedule(Schedule):
|
| 314 |
+
def forward(self, num_steps: int, device: Any) -> Tensor:
|
| 315 |
+
sigmas = torch.linspace(1, 0, num_steps + 1)[:-1]
|
| 316 |
+
return sigmas
|
| 317 |
+
|
| 318 |
+
|
| 319 |
+
class KarrasSchedule(Schedule):
|
| 320 |
+
"""https://arxiv.org/abs/2206.00364 equation 5"""
|
| 321 |
+
|
| 322 |
+
def __init__(self, sigma_min: float, sigma_max: float, rho: float = 7.0):
|
| 323 |
+
super().__init__()
|
| 324 |
+
self.sigma_min = sigma_min
|
| 325 |
+
self.sigma_max = sigma_max
|
| 326 |
+
self.rho = rho
|
| 327 |
+
|
| 328 |
+
def forward(self, num_steps: int, device: Any) -> Tensor:
|
| 329 |
+
rho_inv = 1.0 / self.rho
|
| 330 |
+
steps = torch.arange(num_steps, device=device, dtype=torch.float32)
|
| 331 |
+
sigmas = (
|
| 332 |
+
self.sigma_max ** rho_inv
|
| 333 |
+
+ (steps / (num_steps - 1))
|
| 334 |
+
* (self.sigma_min ** rho_inv - self.sigma_max ** rho_inv)
|
| 335 |
+
) ** self.rho
|
| 336 |
+
sigmas = F.pad(sigmas, pad=(0, 1), value=0.0)
|
| 337 |
+
return sigmas
|
| 338 |
+
|
| 339 |
+
|
| 340 |
+
""" Samplers """
|
| 341 |
+
|
| 342 |
+
|
| 343 |
+
class Sampler(nn.Module):
|
| 344 |
+
|
| 345 |
+
diffusion_types: List[Type[Diffusion]] = []
|
| 346 |
+
|
| 347 |
+
def forward(
|
| 348 |
+
self, noise: Tensor, fn: Callable, sigmas: Tensor, num_steps: int
|
| 349 |
+
) -> Tensor:
|
| 350 |
+
raise NotImplementedError()
|
| 351 |
+
|
| 352 |
+
def inpaint(
|
| 353 |
+
self,
|
| 354 |
+
source: Tensor,
|
| 355 |
+
mask: Tensor,
|
| 356 |
+
fn: Callable,
|
| 357 |
+
sigmas: Tensor,
|
| 358 |
+
num_steps: int,
|
| 359 |
+
num_resamples: int,
|
| 360 |
+
) -> Tensor:
|
| 361 |
+
raise NotImplementedError("Inpainting not available with current sampler")
|
| 362 |
+
|
| 363 |
+
|
| 364 |
+
class VSampler(Sampler):
|
| 365 |
+
|
| 366 |
+
diffusion_types = [VDiffusion]
|
| 367 |
+
|
| 368 |
+
def get_alpha_beta(self, sigma: float) -> Tuple[float, float]:
|
| 369 |
+
angle = sigma * pi / 2
|
| 370 |
+
alpha = cos(angle)
|
| 371 |
+
beta = sin(angle)
|
| 372 |
+
return alpha, beta
|
| 373 |
+
|
| 374 |
+
def forward(
|
| 375 |
+
self, noise: Tensor, fn: Callable, sigmas: Tensor, num_steps: int
|
| 376 |
+
) -> Tensor:
|
| 377 |
+
x = sigmas[0] * noise
|
| 378 |
+
alpha, beta = self.get_alpha_beta(sigmas[0].item())
|
| 379 |
+
|
| 380 |
+
for i in range(num_steps - 1):
|
| 381 |
+
is_last = i == num_steps - 1
|
| 382 |
+
|
| 383 |
+
x_denoised = fn(x, sigma=sigmas[i])
|
| 384 |
+
x_pred = x * alpha - x_denoised * beta
|
| 385 |
+
x_eps = x * beta + x_denoised * alpha
|
| 386 |
+
|
| 387 |
+
if not is_last:
|
| 388 |
+
alpha, beta = self.get_alpha_beta(sigmas[i + 1].item())
|
| 389 |
+
x = x_pred * alpha + x_eps * beta
|
| 390 |
+
|
| 391 |
+
return x_pred
|
| 392 |
+
|
| 393 |
+
|
| 394 |
+
class KarrasSampler(Sampler):
|
| 395 |
+
"""https://arxiv.org/abs/2206.00364 algorithm 1"""
|
| 396 |
+
|
| 397 |
+
diffusion_types = [KDiffusion, VKDiffusion]
|
| 398 |
+
|
| 399 |
+
def __init__(
|
| 400 |
+
self,
|
| 401 |
+
s_tmin: float = 0,
|
| 402 |
+
s_tmax: float = float("inf"),
|
| 403 |
+
s_churn: float = 0.0,
|
| 404 |
+
s_noise: float = 1.0,
|
| 405 |
+
):
|
| 406 |
+
super().__init__()
|
| 407 |
+
self.s_tmin = s_tmin
|
| 408 |
+
self.s_tmax = s_tmax
|
| 409 |
+
self.s_noise = s_noise
|
| 410 |
+
self.s_churn = s_churn
|
| 411 |
+
|
| 412 |
+
def step(
|
| 413 |
+
self, x: Tensor, fn: Callable, sigma: float, sigma_next: float, gamma: float
|
| 414 |
+
) -> Tensor:
|
| 415 |
+
"""Algorithm 2 (step)"""
|
| 416 |
+
# Select temporarily increased noise level
|
| 417 |
+
sigma_hat = sigma + gamma * sigma
|
| 418 |
+
# Add noise to move from sigma to sigma_hat
|
| 419 |
+
epsilon = self.s_noise * torch.randn_like(x)
|
| 420 |
+
x_hat = x + sqrt(sigma_hat ** 2 - sigma ** 2) * epsilon
|
| 421 |
+
# Evaluate ∂x/∂sigma at sigma_hat
|
| 422 |
+
d = (x_hat - fn(x_hat, sigma=sigma_hat)) / sigma_hat
|
| 423 |
+
# Take euler step from sigma_hat to sigma_next
|
| 424 |
+
x_next = x_hat + (sigma_next - sigma_hat) * d
|
| 425 |
+
# Second order correction
|
| 426 |
+
if sigma_next != 0:
|
| 427 |
+
model_out_next = fn(x_next, sigma=sigma_next)
|
| 428 |
+
d_prime = (x_next - model_out_next) / sigma_next
|
| 429 |
+
x_next = x_hat + 0.5 * (sigma - sigma_hat) * (d + d_prime)
|
| 430 |
+
return x_next
|
| 431 |
+
|
| 432 |
+
def forward(
|
| 433 |
+
self, noise: Tensor, fn: Callable, sigmas: Tensor, num_steps: int
|
| 434 |
+
) -> Tensor:
|
| 435 |
+
x = sigmas[0] * noise
|
| 436 |
+
# Compute gammas
|
| 437 |
+
gammas = torch.where(
|
| 438 |
+
(sigmas >= self.s_tmin) & (sigmas <= self.s_tmax),
|
| 439 |
+
min(self.s_churn / num_steps, sqrt(2) - 1),
|
| 440 |
+
0.0,
|
| 441 |
+
)
|
| 442 |
+
# Denoise to sample
|
| 443 |
+
for i in range(num_steps - 1):
|
| 444 |
+
x = self.step(
|
| 445 |
+
x, fn=fn, sigma=sigmas[i], sigma_next=sigmas[i + 1], gamma=gammas[i] # type: ignore # noqa
|
| 446 |
+
)
|
| 447 |
+
|
| 448 |
+
return x
|
| 449 |
+
|
| 450 |
+
|
| 451 |
+
class AEulerSampler(Sampler):
|
| 452 |
+
|
| 453 |
+
diffusion_types = [KDiffusion, VKDiffusion]
|
| 454 |
+
|
| 455 |
+
def get_sigmas(self, sigma: float, sigma_next: float) -> Tuple[float, float]:
|
| 456 |
+
sigma_up = sqrt(sigma_next ** 2 * (sigma ** 2 - sigma_next ** 2) / sigma ** 2)
|
| 457 |
+
sigma_down = sqrt(sigma_next ** 2 - sigma_up ** 2)
|
| 458 |
+
return sigma_up, sigma_down
|
| 459 |
+
|
| 460 |
+
def step(self, x: Tensor, fn: Callable, sigma: float, sigma_next: float) -> Tensor:
|
| 461 |
+
# Sigma steps
|
| 462 |
+
sigma_up, sigma_down = self.get_sigmas(sigma, sigma_next)
|
| 463 |
+
# Derivative at sigma (∂x/∂sigma)
|
| 464 |
+
d = (x - fn(x, sigma=sigma)) / sigma
|
| 465 |
+
# Euler method
|
| 466 |
+
x_next = x + d * (sigma_down - sigma)
|
| 467 |
+
# Add randomness
|
| 468 |
+
x_next = x_next + torch.randn_like(x) * sigma_up
|
| 469 |
+
return x_next
|
| 470 |
+
|
| 471 |
+
def forward(
|
| 472 |
+
self, noise: Tensor, fn: Callable, sigmas: Tensor, num_steps: int
|
| 473 |
+
) -> Tensor:
|
| 474 |
+
x = sigmas[0] * noise
|
| 475 |
+
# Denoise to sample
|
| 476 |
+
for i in range(num_steps - 1):
|
| 477 |
+
x = self.step(x, fn=fn, sigma=sigmas[i], sigma_next=sigmas[i + 1]) # type: ignore # noqa
|
| 478 |
+
return x
|
| 479 |
+
|
| 480 |
+
|
| 481 |
+
class ADPM2Sampler(Sampler):
|
| 482 |
+
"""https://www.desmos.com/calculator/jbxjlqd9mb"""
|
| 483 |
+
|
| 484 |
+
diffusion_types = [KDiffusion, VKDiffusion]
|
| 485 |
+
|
| 486 |
+
def __init__(self, rho: float = 1.0):
|
| 487 |
+
super().__init__()
|
| 488 |
+
self.rho = rho
|
| 489 |
+
|
| 490 |
+
def get_sigmas(self, sigma: float, sigma_next: float) -> Tuple[float, float, float]:
|
| 491 |
+
r = self.rho
|
| 492 |
+
sigma_up = sqrt(sigma_next ** 2 * (sigma ** 2 - sigma_next ** 2) / sigma ** 2)
|
| 493 |
+
sigma_down = sqrt(sigma_next ** 2 - sigma_up ** 2)
|
| 494 |
+
sigma_mid = ((sigma ** (1 / r) + sigma_down ** (1 / r)) / 2) ** r
|
| 495 |
+
return sigma_up, sigma_down, sigma_mid
|
| 496 |
+
|
| 497 |
+
def step(self, x: Tensor, fn: Callable, sigma: float, sigma_next: float) -> Tensor:
|
| 498 |
+
# Sigma steps
|
| 499 |
+
sigma_up, sigma_down, sigma_mid = self.get_sigmas(sigma, sigma_next)
|
| 500 |
+
# Derivative at sigma (∂x/∂sigma)
|
| 501 |
+
d = (x - fn(x, sigma=sigma)) / sigma
|
| 502 |
+
# Denoise to midpoint
|
| 503 |
+
x_mid = x + d * (sigma_mid - sigma)
|
| 504 |
+
# Derivative at sigma_mid (∂x_mid/∂sigma_mid)
|
| 505 |
+
d_mid = (x_mid - fn(x_mid, sigma=sigma_mid)) / sigma_mid
|
| 506 |
+
# Denoise to next
|
| 507 |
+
x = x + d_mid * (sigma_down - sigma)
|
| 508 |
+
# Add randomness
|
| 509 |
+
x_next = x + torch.randn_like(x) * sigma_up
|
| 510 |
+
return x_next
|
| 511 |
+
|
| 512 |
+
def forward(
|
| 513 |
+
self, noise: Tensor, fn: Callable, sigmas: Tensor, num_steps: int
|
| 514 |
+
) -> Tensor:
|
| 515 |
+
x = sigmas[0] * noise
|
| 516 |
+
# Denoise to sample
|
| 517 |
+
for i in range(num_steps - 1):
|
| 518 |
+
x = self.step(x, fn=fn, sigma=sigmas[i], sigma_next=sigmas[i + 1]) # type: ignore # noqa
|
| 519 |
+
return x
|
| 520 |
+
|
| 521 |
+
def inpaint(
|
| 522 |
+
self,
|
| 523 |
+
source: Tensor,
|
| 524 |
+
mask: Tensor,
|
| 525 |
+
fn: Callable,
|
| 526 |
+
sigmas: Tensor,
|
| 527 |
+
num_steps: int,
|
| 528 |
+
num_resamples: int,
|
| 529 |
+
) -> Tensor:
|
| 530 |
+
x = sigmas[0] * torch.randn_like(source)
|
| 531 |
+
|
| 532 |
+
for i in range(num_steps - 1):
|
| 533 |
+
# Noise source to current noise level
|
| 534 |
+
source_noisy = source + sigmas[i] * torch.randn_like(source)
|
| 535 |
+
for r in range(num_resamples):
|
| 536 |
+
# Merge noisy source and current then denoise
|
| 537 |
+
x = source_noisy * mask + x * ~mask
|
| 538 |
+
x = self.step(x, fn=fn, sigma=sigmas[i], sigma_next=sigmas[i + 1]) # type: ignore # noqa
|
| 539 |
+
# Renoise if not last resample step
|
| 540 |
+
if r < num_resamples - 1:
|
| 541 |
+
sigma = sqrt(sigmas[i] ** 2 - sigmas[i + 1] ** 2)
|
| 542 |
+
x = x + sigma * torch.randn_like(x)
|
| 543 |
+
|
| 544 |
+
return source * mask + x * ~mask
|
| 545 |
+
|
| 546 |
+
|
| 547 |
+
""" Main Classes """
|
| 548 |
+
|
| 549 |
+
|
| 550 |
+
class DiffusionSampler(nn.Module):
|
| 551 |
+
def __init__(
|
| 552 |
+
self,
|
| 553 |
+
diffusion: Diffusion,
|
| 554 |
+
*,
|
| 555 |
+
sampler: Sampler,
|
| 556 |
+
sigma_schedule: Schedule,
|
| 557 |
+
num_steps: Optional[int] = None,
|
| 558 |
+
clamp: bool = True,
|
| 559 |
+
):
|
| 560 |
+
super().__init__()
|
| 561 |
+
self.denoise_fn = diffusion.denoise_fn
|
| 562 |
+
self.sampler = sampler
|
| 563 |
+
self.sigma_schedule = sigma_schedule
|
| 564 |
+
self.num_steps = num_steps
|
| 565 |
+
self.clamp = clamp
|
| 566 |
+
|
| 567 |
+
# Check sampler is compatible with diffusion type
|
| 568 |
+
sampler_class = sampler.__class__.__name__
|
| 569 |
+
diffusion_class = diffusion.__class__.__name__
|
| 570 |
+
message = f"{sampler_class} incompatible with {diffusion_class}"
|
| 571 |
+
assert diffusion.alias in [t.alias for t in sampler.diffusion_types], message
|
| 572 |
+
|
| 573 |
+
def forward(
|
| 574 |
+
self, noise: Tensor, num_steps: Optional[int] = None, **kwargs
|
| 575 |
+
) -> Tensor:
|
| 576 |
+
device = noise.device
|
| 577 |
+
num_steps = default(num_steps, self.num_steps) # type: ignore
|
| 578 |
+
assert exists(num_steps), "Parameter `num_steps` must be provided"
|
| 579 |
+
# Compute sigmas using schedule
|
| 580 |
+
sigmas = self.sigma_schedule(num_steps, device)
|
| 581 |
+
# Append additional kwargs to denoise function (used e.g. for conditional unet)
|
| 582 |
+
fn = lambda *a, **ka: self.denoise_fn(*a, **{**ka, **kwargs}) # noqa
|
| 583 |
+
# Sample using sampler
|
| 584 |
+
x = self.sampler(noise, fn=fn, sigmas=sigmas, num_steps=num_steps)
|
| 585 |
+
x = x.clamp(-1.0, 1.0) if self.clamp else x
|
| 586 |
+
return x
|
| 587 |
+
|
| 588 |
+
|
| 589 |
+
class DiffusionInpainter(nn.Module):
|
| 590 |
+
def __init__(
|
| 591 |
+
self,
|
| 592 |
+
diffusion: Diffusion,
|
| 593 |
+
*,
|
| 594 |
+
num_steps: int,
|
| 595 |
+
num_resamples: int,
|
| 596 |
+
sampler: Sampler,
|
| 597 |
+
sigma_schedule: Schedule,
|
| 598 |
+
):
|
| 599 |
+
super().__init__()
|
| 600 |
+
self.denoise_fn = diffusion.denoise_fn
|
| 601 |
+
self.num_steps = num_steps
|
| 602 |
+
self.num_resamples = num_resamples
|
| 603 |
+
self.inpaint_fn = sampler.inpaint
|
| 604 |
+
self.sigma_schedule = sigma_schedule
|
| 605 |
+
|
| 606 |
+
@torch.no_grad()
|
| 607 |
+
def forward(self, inpaint: Tensor, inpaint_mask: Tensor) -> Tensor:
|
| 608 |
+
x = self.inpaint_fn(
|
| 609 |
+
source=inpaint,
|
| 610 |
+
mask=inpaint_mask,
|
| 611 |
+
fn=self.denoise_fn,
|
| 612 |
+
sigmas=self.sigma_schedule(self.num_steps, inpaint.device),
|
| 613 |
+
num_steps=self.num_steps,
|
| 614 |
+
num_resamples=self.num_resamples,
|
| 615 |
+
)
|
| 616 |
+
return x
|
| 617 |
+
|
| 618 |
+
|
| 619 |
+
def sequential_mask(like: Tensor, start: int) -> Tensor:
|
| 620 |
+
length, device = like.shape[2], like.device
|
| 621 |
+
mask = torch.ones_like(like, dtype=torch.bool)
|
| 622 |
+
mask[:, :, start:] = torch.zeros((length - start,), device=device)
|
| 623 |
+
return mask
|
| 624 |
+
|
| 625 |
+
|
| 626 |
+
class SpanBySpanComposer(nn.Module):
|
| 627 |
+
def __init__(
|
| 628 |
+
self,
|
| 629 |
+
inpainter: DiffusionInpainter,
|
| 630 |
+
*,
|
| 631 |
+
num_spans: int,
|
| 632 |
+
):
|
| 633 |
+
super().__init__()
|
| 634 |
+
self.inpainter = inpainter
|
| 635 |
+
self.num_spans = num_spans
|
| 636 |
+
|
| 637 |
+
def forward(self, start: Tensor, keep_start: bool = False) -> Tensor:
|
| 638 |
+
half_length = start.shape[2] // 2
|
| 639 |
+
|
| 640 |
+
spans = list(start.chunk(chunks=2, dim=-1)) if keep_start else []
|
| 641 |
+
# Inpaint second half from first half
|
| 642 |
+
inpaint = torch.zeros_like(start)
|
| 643 |
+
inpaint[:, :, :half_length] = start[:, :, half_length:]
|
| 644 |
+
inpaint_mask = sequential_mask(like=start, start=half_length)
|
| 645 |
+
|
| 646 |
+
for i in range(self.num_spans):
|
| 647 |
+
# Inpaint second half
|
| 648 |
+
span = self.inpainter(inpaint=inpaint, inpaint_mask=inpaint_mask)
|
| 649 |
+
# Replace first half with generated second half
|
| 650 |
+
second_half = span[:, :, half_length:]
|
| 651 |
+
inpaint[:, :, :half_length] = second_half
|
| 652 |
+
# Save generated span
|
| 653 |
+
spans.append(second_half)
|
| 654 |
+
|
| 655 |
+
return torch.cat(spans, dim=2)
|
| 656 |
+
|
| 657 |
+
|
| 658 |
+
class XDiffusion(nn.Module):
|
| 659 |
+
def __init__(self, type: str, net: nn.Module, **kwargs):
|
| 660 |
+
super().__init__()
|
| 661 |
+
|
| 662 |
+
diffusion_classes = [VDiffusion, KDiffusion, VKDiffusion]
|
| 663 |
+
aliases = [t.alias for t in diffusion_classes] # type: ignore
|
| 664 |
+
message = f"type='{type}' must be one of {*aliases,}"
|
| 665 |
+
assert type in aliases, message
|
| 666 |
+
self.net = net
|
| 667 |
+
|
| 668 |
+
for XDiffusion in diffusion_classes:
|
| 669 |
+
if XDiffusion.alias == type: # type: ignore
|
| 670 |
+
self.diffusion = XDiffusion(net=net, **kwargs)
|
| 671 |
+
|
| 672 |
+
def forward(self, *args, **kwargs) -> Tensor:
|
| 673 |
+
return self.diffusion(*args, **kwargs)
|
| 674 |
+
|
| 675 |
+
def sample(
|
| 676 |
+
self,
|
| 677 |
+
noise: Tensor,
|
| 678 |
+
num_steps: int,
|
| 679 |
+
sigma_schedule: Schedule,
|
| 680 |
+
sampler: Sampler,
|
| 681 |
+
clamp: bool,
|
| 682 |
+
**kwargs,
|
| 683 |
+
) -> Tensor:
|
| 684 |
+
diffusion_sampler = DiffusionSampler(
|
| 685 |
+
diffusion=self.diffusion,
|
| 686 |
+
sampler=sampler,
|
| 687 |
+
sigma_schedule=sigma_schedule,
|
| 688 |
+
num_steps=num_steps,
|
| 689 |
+
clamp=clamp,
|
| 690 |
+
)
|
| 691 |
+
return diffusion_sampler(noise, **kwargs)
|
Modules/diffusion/utils.py
ADDED
|
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from functools import reduce
|
| 2 |
+
from inspect import isfunction
|
| 3 |
+
from math import ceil, floor, log2, pi
|
| 4 |
+
from typing import Callable, Dict, List, Optional, Sequence, Tuple, TypeVar, Union
|
| 5 |
+
|
| 6 |
+
import torch
|
| 7 |
+
import torch.nn.functional as F
|
| 8 |
+
from einops import rearrange
|
| 9 |
+
from torch import Generator, Tensor
|
| 10 |
+
from typing_extensions import TypeGuard
|
| 11 |
+
|
| 12 |
+
T = TypeVar("T")
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
def exists(val: Optional[T]) -> TypeGuard[T]:
|
| 16 |
+
return val is not None
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
def iff(condition: bool, value: T) -> Optional[T]:
|
| 20 |
+
return value if condition else None
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
def is_sequence(obj: T) -> TypeGuard[Union[list, tuple]]:
|
| 24 |
+
return isinstance(obj, list) or isinstance(obj, tuple)
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
def default(val: Optional[T], d: Union[Callable[..., T], T]) -> T:
|
| 28 |
+
if exists(val):
|
| 29 |
+
return val
|
| 30 |
+
return d() if isfunction(d) else d
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
def to_list(val: Union[T, Sequence[T]]) -> List[T]:
|
| 34 |
+
if isinstance(val, tuple):
|
| 35 |
+
return list(val)
|
| 36 |
+
if isinstance(val, list):
|
| 37 |
+
return val
|
| 38 |
+
return [val] # type: ignore
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
def prod(vals: Sequence[int]) -> int:
|
| 42 |
+
return reduce(lambda x, y: x * y, vals)
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
def closest_power_2(x: float) -> int:
|
| 46 |
+
exponent = log2(x)
|
| 47 |
+
distance_fn = lambda z: abs(x - 2 ** z) # noqa
|
| 48 |
+
exponent_closest = min((floor(exponent), ceil(exponent)), key=distance_fn)
|
| 49 |
+
return 2 ** int(exponent_closest)
|
| 50 |
+
|
| 51 |
+
def rand_bool(shape, proba, device = None):
|
| 52 |
+
if proba == 1:
|
| 53 |
+
return torch.ones(shape, device=device, dtype=torch.bool)
|
| 54 |
+
elif proba == 0:
|
| 55 |
+
return torch.zeros(shape, device=device, dtype=torch.bool)
|
| 56 |
+
else:
|
| 57 |
+
return torch.bernoulli(torch.full(shape, proba, device=device)).to(torch.bool)
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
"""
|
| 61 |
+
Kwargs Utils
|
| 62 |
+
"""
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
def group_dict_by_prefix(prefix: str, d: Dict) -> Tuple[Dict, Dict]:
|
| 66 |
+
return_dicts: Tuple[Dict, Dict] = ({}, {})
|
| 67 |
+
for key in d.keys():
|
| 68 |
+
no_prefix = int(not key.startswith(prefix))
|
| 69 |
+
return_dicts[no_prefix][key] = d[key]
|
| 70 |
+
return return_dicts
|
| 71 |
+
|
| 72 |
+
|
| 73 |
+
def groupby(prefix: str, d: Dict, keep_prefix: bool = False) -> Tuple[Dict, Dict]:
|
| 74 |
+
kwargs_with_prefix, kwargs = group_dict_by_prefix(prefix, d)
|
| 75 |
+
if keep_prefix:
|
| 76 |
+
return kwargs_with_prefix, kwargs
|
| 77 |
+
kwargs_no_prefix = {k[len(prefix) :]: v for k, v in kwargs_with_prefix.items()}
|
| 78 |
+
return kwargs_no_prefix, kwargs
|
| 79 |
+
|
| 80 |
+
|
| 81 |
+
def prefix_dict(prefix: str, d: Dict) -> Dict:
|
| 82 |
+
return {prefix + str(k): v for k, v in d.items()}
|
Modules/hifigan.py
ADDED
|
@@ -0,0 +1,477 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn.functional as F
|
| 3 |
+
import torch.nn as nn
|
| 4 |
+
from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
|
| 5 |
+
from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
|
| 6 |
+
from .utils import init_weights, get_padding
|
| 7 |
+
|
| 8 |
+
import math
|
| 9 |
+
import random
|
| 10 |
+
import numpy as np
|
| 11 |
+
|
| 12 |
+
LRELU_SLOPE = 0.1
|
| 13 |
+
|
| 14 |
+
class AdaIN1d(nn.Module):
|
| 15 |
+
def __init__(self, style_dim, num_features):
|
| 16 |
+
super().__init__()
|
| 17 |
+
self.norm = nn.InstanceNorm1d(num_features, affine=False)
|
| 18 |
+
self.fc = nn.Linear(style_dim, num_features*2)
|
| 19 |
+
|
| 20 |
+
def forward(self, x, s):
|
| 21 |
+
h = self.fc(s)
|
| 22 |
+
h = h.view(h.size(0), h.size(1), 1)
|
| 23 |
+
gamma, beta = torch.chunk(h, chunks=2, dim=1)
|
| 24 |
+
return (1 + gamma) * self.norm(x) + beta
|
| 25 |
+
|
| 26 |
+
class AdaINResBlock1(torch.nn.Module):
|
| 27 |
+
def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5), style_dim=64):
|
| 28 |
+
super(AdaINResBlock1, self).__init__()
|
| 29 |
+
self.convs1 = nn.ModuleList([
|
| 30 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
|
| 31 |
+
padding=get_padding(kernel_size, dilation[0]))),
|
| 32 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
|
| 33 |
+
padding=get_padding(kernel_size, dilation[1]))),
|
| 34 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[2],
|
| 35 |
+
padding=get_padding(kernel_size, dilation[2])))
|
| 36 |
+
])
|
| 37 |
+
self.convs1.apply(init_weights)
|
| 38 |
+
|
| 39 |
+
self.convs2 = nn.ModuleList([
|
| 40 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
|
| 41 |
+
padding=get_padding(kernel_size, 1))),
|
| 42 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
|
| 43 |
+
padding=get_padding(kernel_size, 1))),
|
| 44 |
+
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
|
| 45 |
+
padding=get_padding(kernel_size, 1)))
|
| 46 |
+
])
|
| 47 |
+
self.convs2.apply(init_weights)
|
| 48 |
+
|
| 49 |
+
self.adain1 = nn.ModuleList([
|
| 50 |
+
AdaIN1d(style_dim, channels),
|
| 51 |
+
AdaIN1d(style_dim, channels),
|
| 52 |
+
AdaIN1d(style_dim, channels),
|
| 53 |
+
])
|
| 54 |
+
|
| 55 |
+
self.adain2 = nn.ModuleList([
|
| 56 |
+
AdaIN1d(style_dim, channels),
|
| 57 |
+
AdaIN1d(style_dim, channels),
|
| 58 |
+
AdaIN1d(style_dim, channels),
|
| 59 |
+
])
|
| 60 |
+
|
| 61 |
+
self.alpha1 = nn.ParameterList([nn.Parameter(torch.ones(1, channels, 1)) for i in range(len(self.convs1))])
|
| 62 |
+
self.alpha2 = nn.ParameterList([nn.Parameter(torch.ones(1, channels, 1)) for i in range(len(self.convs2))])
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
def forward(self, x, s):
|
| 66 |
+
for c1, c2, n1, n2, a1, a2 in zip(self.convs1, self.convs2, self.adain1, self.adain2, self.alpha1, self.alpha2):
|
| 67 |
+
xt = n1(x, s)
|
| 68 |
+
xt = xt + (1 / a1) * (torch.sin(a1 * xt) ** 2) # Snake1D
|
| 69 |
+
xt = c1(xt)
|
| 70 |
+
xt = n2(xt, s)
|
| 71 |
+
xt = xt + (1 / a2) * (torch.sin(a2 * xt) ** 2) # Snake1D
|
| 72 |
+
xt = c2(xt)
|
| 73 |
+
x = xt + x
|
| 74 |
+
return x
|
| 75 |
+
|
| 76 |
+
def remove_weight_norm(self):
|
| 77 |
+
for l in self.convs1:
|
| 78 |
+
remove_weight_norm(l)
|
| 79 |
+
for l in self.convs2:
|
| 80 |
+
remove_weight_norm(l)
|
| 81 |
+
|
| 82 |
+
class SineGen(torch.nn.Module):
|
| 83 |
+
""" Definition of sine generator
|
| 84 |
+
SineGen(samp_rate, harmonic_num = 0,
|
| 85 |
+
sine_amp = 0.1, noise_std = 0.003,
|
| 86 |
+
voiced_threshold = 0,
|
| 87 |
+
flag_for_pulse=False)
|
| 88 |
+
samp_rate: sampling rate in Hz
|
| 89 |
+
harmonic_num: number of harmonic overtones (default 0)
|
| 90 |
+
sine_amp: amplitude of sine-wavefrom (default 0.1)
|
| 91 |
+
noise_std: std of Gaussian noise (default 0.003)
|
| 92 |
+
voiced_thoreshold: F0 threshold for U/V classification (default 0)
|
| 93 |
+
flag_for_pulse: this SinGen is used inside PulseGen (default False)
|
| 94 |
+
Note: when flag_for_pulse is True, the first time step of a voiced
|
| 95 |
+
segment is always sin(np.pi) or cos(0)
|
| 96 |
+
"""
|
| 97 |
+
|
| 98 |
+
def __init__(self, samp_rate, upsample_scale, harmonic_num=0,
|
| 99 |
+
sine_amp=0.1, noise_std=0.003,
|
| 100 |
+
voiced_threshold=0,
|
| 101 |
+
flag_for_pulse=False):
|
| 102 |
+
super(SineGen, self).__init__()
|
| 103 |
+
self.sine_amp = sine_amp
|
| 104 |
+
self.noise_std = noise_std
|
| 105 |
+
self.harmonic_num = harmonic_num
|
| 106 |
+
self.dim = self.harmonic_num + 1
|
| 107 |
+
self.sampling_rate = samp_rate
|
| 108 |
+
self.voiced_threshold = voiced_threshold
|
| 109 |
+
self.flag_for_pulse = flag_for_pulse
|
| 110 |
+
self.upsample_scale = upsample_scale
|
| 111 |
+
|
| 112 |
+
def _f02uv(self, f0):
|
| 113 |
+
# generate uv signal
|
| 114 |
+
uv = (f0 > self.voiced_threshold).type(torch.float32)
|
| 115 |
+
return uv
|
| 116 |
+
|
| 117 |
+
def _f02sine(self, f0_values):
|
| 118 |
+
""" f0_values: (batchsize, length, dim)
|
| 119 |
+
where dim indicates fundamental tone and overtones
|
| 120 |
+
"""
|
| 121 |
+
# convert to F0 in rad. The interger part n can be ignored
|
| 122 |
+
# because 2 * np.pi * n doesn't affect phase
|
| 123 |
+
rad_values = (f0_values / self.sampling_rate) % 1
|
| 124 |
+
|
| 125 |
+
# initial phase noise (no noise for fundamental component)
|
| 126 |
+
rand_ini = torch.rand(f0_values.shape[0], f0_values.shape[2], \
|
| 127 |
+
device=f0_values.device)
|
| 128 |
+
rand_ini[:, 0] = 0
|
| 129 |
+
rad_values[:, 0, :] = rad_values[:, 0, :] + rand_ini
|
| 130 |
+
|
| 131 |
+
# instantanouse phase sine[t] = sin(2*pi \sum_i=1 ^{t} rad)
|
| 132 |
+
if not self.flag_for_pulse:
|
| 133 |
+
# # for normal case
|
| 134 |
+
|
| 135 |
+
# # To prevent torch.cumsum numerical overflow,
|
| 136 |
+
# # it is necessary to add -1 whenever \sum_k=1^n rad_value_k > 1.
|
| 137 |
+
# # Buffer tmp_over_one_idx indicates the time step to add -1.
|
| 138 |
+
# # This will not change F0 of sine because (x-1) * 2*pi = x * 2*pi
|
| 139 |
+
# tmp_over_one = torch.cumsum(rad_values, 1) % 1
|
| 140 |
+
# tmp_over_one_idx = (padDiff(tmp_over_one)) < 0
|
| 141 |
+
# cumsum_shift = torch.zeros_like(rad_values)
|
| 142 |
+
# cumsum_shift[:, 1:, :] = tmp_over_one_idx * -1.0
|
| 143 |
+
|
| 144 |
+
# phase = torch.cumsum(rad_values, dim=1) * 2 * np.pi
|
| 145 |
+
rad_values = torch.nn.functional.interpolate(rad_values.transpose(1, 2),
|
| 146 |
+
scale_factor=1/self.upsample_scale,
|
| 147 |
+
mode="linear").transpose(1, 2)
|
| 148 |
+
|
| 149 |
+
# tmp_over_one = torch.cumsum(rad_values, 1) % 1
|
| 150 |
+
# tmp_over_one_idx = (padDiff(tmp_over_one)) < 0
|
| 151 |
+
# cumsum_shift = torch.zeros_like(rad_values)
|
| 152 |
+
# cumsum_shift[:, 1:, :] = tmp_over_one_idx * -1.0
|
| 153 |
+
|
| 154 |
+
phase = torch.cumsum(rad_values, dim=1) * 2 * np.pi
|
| 155 |
+
phase = torch.nn.functional.interpolate(phase.transpose(1, 2) * self.upsample_scale,
|
| 156 |
+
scale_factor=self.upsample_scale, mode="linear").transpose(1, 2)
|
| 157 |
+
sines = torch.sin(phase)
|
| 158 |
+
|
| 159 |
+
else:
|
| 160 |
+
# If necessary, make sure that the first time step of every
|
| 161 |
+
# voiced segments is sin(pi) or cos(0)
|
| 162 |
+
# This is used for pulse-train generation
|
| 163 |
+
|
| 164 |
+
# identify the last time step in unvoiced segments
|
| 165 |
+
uv = self._f02uv(f0_values)
|
| 166 |
+
uv_1 = torch.roll(uv, shifts=-1, dims=1)
|
| 167 |
+
uv_1[:, -1, :] = 1
|
| 168 |
+
u_loc = (uv < 1) * (uv_1 > 0)
|
| 169 |
+
|
| 170 |
+
# get the instantanouse phase
|
| 171 |
+
tmp_cumsum = torch.cumsum(rad_values, dim=1)
|
| 172 |
+
# different batch needs to be processed differently
|
| 173 |
+
for idx in range(f0_values.shape[0]):
|
| 174 |
+
temp_sum = tmp_cumsum[idx, u_loc[idx, :, 0], :]
|
| 175 |
+
temp_sum[1:, :] = temp_sum[1:, :] - temp_sum[0:-1, :]
|
| 176 |
+
# stores the accumulation of i.phase within
|
| 177 |
+
# each voiced segments
|
| 178 |
+
tmp_cumsum[idx, :, :] = 0
|
| 179 |
+
tmp_cumsum[idx, u_loc[idx, :, 0], :] = temp_sum
|
| 180 |
+
|
| 181 |
+
# rad_values - tmp_cumsum: remove the accumulation of i.phase
|
| 182 |
+
# within the previous voiced segment.
|
| 183 |
+
i_phase = torch.cumsum(rad_values - tmp_cumsum, dim=1)
|
| 184 |
+
|
| 185 |
+
# get the sines
|
| 186 |
+
sines = torch.cos(i_phase * 2 * np.pi)
|
| 187 |
+
return sines
|
| 188 |
+
|
| 189 |
+
def forward(self, f0):
|
| 190 |
+
""" sine_tensor, uv = forward(f0)
|
| 191 |
+
input F0: tensor(batchsize=1, length, dim=1)
|
| 192 |
+
f0 for unvoiced steps should be 0
|
| 193 |
+
output sine_tensor: tensor(batchsize=1, length, dim)
|
| 194 |
+
output uv: tensor(batchsize=1, length, 1)
|
| 195 |
+
"""
|
| 196 |
+
f0_buf = torch.zeros(f0.shape[0], f0.shape[1], self.dim,
|
| 197 |
+
device=f0.device)
|
| 198 |
+
# fundamental component
|
| 199 |
+
fn = torch.multiply(f0, torch.FloatTensor([[range(1, self.harmonic_num + 2)]]).to(f0.device))
|
| 200 |
+
|
| 201 |
+
# generate sine waveforms
|
| 202 |
+
sine_waves = self._f02sine(fn) * self.sine_amp
|
| 203 |
+
|
| 204 |
+
# generate uv signal
|
| 205 |
+
# uv = torch.ones(f0.shape)
|
| 206 |
+
# uv = uv * (f0 > self.voiced_threshold)
|
| 207 |
+
uv = self._f02uv(f0)
|
| 208 |
+
|
| 209 |
+
# noise: for unvoiced should be similar to sine_amp
|
| 210 |
+
# std = self.sine_amp/3 -> max value ~ self.sine_amp
|
| 211 |
+
# . for voiced regions is self.noise_std
|
| 212 |
+
noise_amp = uv * self.noise_std + (1 - uv) * self.sine_amp / 3
|
| 213 |
+
noise = noise_amp * torch.randn_like(sine_waves)
|
| 214 |
+
|
| 215 |
+
# first: set the unvoiced part to 0 by uv
|
| 216 |
+
# then: additive noise
|
| 217 |
+
sine_waves = sine_waves * uv + noise
|
| 218 |
+
return sine_waves, uv, noise
|
| 219 |
+
|
| 220 |
+
|
| 221 |
+
class SourceModuleHnNSF(torch.nn.Module):
|
| 222 |
+
""" SourceModule for hn-nsf
|
| 223 |
+
SourceModule(sampling_rate, harmonic_num=0, sine_amp=0.1,
|
| 224 |
+
add_noise_std=0.003, voiced_threshod=0)
|
| 225 |
+
sampling_rate: sampling_rate in Hz
|
| 226 |
+
harmonic_num: number of harmonic above F0 (default: 0)
|
| 227 |
+
sine_amp: amplitude of sine source signal (default: 0.1)
|
| 228 |
+
add_noise_std: std of additive Gaussian noise (default: 0.003)
|
| 229 |
+
note that amplitude of noise in unvoiced is decided
|
| 230 |
+
by sine_amp
|
| 231 |
+
voiced_threshold: threhold to set U/V given F0 (default: 0)
|
| 232 |
+
Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
|
| 233 |
+
F0_sampled (batchsize, length, 1)
|
| 234 |
+
Sine_source (batchsize, length, 1)
|
| 235 |
+
noise_source (batchsize, length 1)
|
| 236 |
+
uv (batchsize, length, 1)
|
| 237 |
+
"""
|
| 238 |
+
|
| 239 |
+
def __init__(self, sampling_rate, upsample_scale, harmonic_num=0, sine_amp=0.1,
|
| 240 |
+
add_noise_std=0.003, voiced_threshod=0):
|
| 241 |
+
super(SourceModuleHnNSF, self).__init__()
|
| 242 |
+
|
| 243 |
+
self.sine_amp = sine_amp
|
| 244 |
+
self.noise_std = add_noise_std
|
| 245 |
+
|
| 246 |
+
# to produce sine waveforms
|
| 247 |
+
self.l_sin_gen = SineGen(sampling_rate, upsample_scale, harmonic_num,
|
| 248 |
+
sine_amp, add_noise_std, voiced_threshod)
|
| 249 |
+
|
| 250 |
+
# to merge source harmonics into a single excitation
|
| 251 |
+
self.l_linear = torch.nn.Linear(harmonic_num + 1, 1)
|
| 252 |
+
self.l_tanh = torch.nn.Tanh()
|
| 253 |
+
|
| 254 |
+
def forward(self, x):
|
| 255 |
+
"""
|
| 256 |
+
Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
|
| 257 |
+
F0_sampled (batchsize, length, 1)
|
| 258 |
+
Sine_source (batchsize, length, 1)
|
| 259 |
+
noise_source (batchsize, length 1)
|
| 260 |
+
"""
|
| 261 |
+
# source for harmonic branch
|
| 262 |
+
with torch.no_grad():
|
| 263 |
+
sine_wavs, uv, _ = self.l_sin_gen(x)
|
| 264 |
+
sine_merge = self.l_tanh(self.l_linear(sine_wavs))
|
| 265 |
+
|
| 266 |
+
# source for noise branch, in the same shape as uv
|
| 267 |
+
noise = torch.randn_like(uv) * self.sine_amp / 3
|
| 268 |
+
return sine_merge, noise, uv
|
| 269 |
+
def padDiff(x):
|
| 270 |
+
return F.pad(F.pad(x, (0,0,-1,1), 'constant', 0) - x, (0,0,0,-1), 'constant', 0)
|
| 271 |
+
|
| 272 |
+
class Generator(torch.nn.Module):
|
| 273 |
+
def __init__(self, style_dim, resblock_kernel_sizes, upsample_rates, upsample_initial_channel, resblock_dilation_sizes, upsample_kernel_sizes):
|
| 274 |
+
super(Generator, self).__init__()
|
| 275 |
+
self.num_kernels = len(resblock_kernel_sizes)
|
| 276 |
+
self.num_upsamples = len(upsample_rates)
|
| 277 |
+
resblock = AdaINResBlock1
|
| 278 |
+
|
| 279 |
+
self.m_source = SourceModuleHnNSF(
|
| 280 |
+
sampling_rate=24000,
|
| 281 |
+
upsample_scale=np.prod(upsample_rates),
|
| 282 |
+
harmonic_num=8, voiced_threshod=10)
|
| 283 |
+
|
| 284 |
+
self.f0_upsamp = torch.nn.Upsample(scale_factor=np.prod(upsample_rates))
|
| 285 |
+
self.noise_convs = nn.ModuleList()
|
| 286 |
+
self.ups = nn.ModuleList()
|
| 287 |
+
self.noise_res = nn.ModuleList()
|
| 288 |
+
|
| 289 |
+
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
|
| 290 |
+
c_cur = upsample_initial_channel // (2 ** (i + 1))
|
| 291 |
+
|
| 292 |
+
self.ups.append(weight_norm(ConvTranspose1d(upsample_initial_channel//(2**i),
|
| 293 |
+
upsample_initial_channel//(2**(i+1)),
|
| 294 |
+
k, u, padding=(u//2 + u%2), output_padding=u%2)))
|
| 295 |
+
|
| 296 |
+
if i + 1 < len(upsample_rates): #
|
| 297 |
+
stride_f0 = np.prod(upsample_rates[i + 1:])
|
| 298 |
+
self.noise_convs.append(Conv1d(
|
| 299 |
+
1, c_cur, kernel_size=stride_f0 * 2, stride=stride_f0, padding=(stride_f0+1) // 2))
|
| 300 |
+
self.noise_res.append(resblock(c_cur, 7, [1,3,5], style_dim))
|
| 301 |
+
else:
|
| 302 |
+
self.noise_convs.append(Conv1d(1, c_cur, kernel_size=1))
|
| 303 |
+
self.noise_res.append(resblock(c_cur, 11, [1,3,5], style_dim))
|
| 304 |
+
|
| 305 |
+
self.resblocks = nn.ModuleList()
|
| 306 |
+
|
| 307 |
+
self.alphas = nn.ParameterList()
|
| 308 |
+
self.alphas.append(nn.Parameter(torch.ones(1, upsample_initial_channel, 1)))
|
| 309 |
+
|
| 310 |
+
for i in range(len(self.ups)):
|
| 311 |
+
ch = upsample_initial_channel//(2**(i+1))
|
| 312 |
+
self.alphas.append(nn.Parameter(torch.ones(1, ch, 1)))
|
| 313 |
+
|
| 314 |
+
for j, (k, d) in enumerate(zip(resblock_kernel_sizes, resblock_dilation_sizes)):
|
| 315 |
+
self.resblocks.append(resblock(ch, k, d, style_dim))
|
| 316 |
+
|
| 317 |
+
self.conv_post = weight_norm(Conv1d(ch, 1, 7, 1, padding=3))
|
| 318 |
+
self.ups.apply(init_weights)
|
| 319 |
+
self.conv_post.apply(init_weights)
|
| 320 |
+
|
| 321 |
+
def forward(self, x, s, f0):
|
| 322 |
+
|
| 323 |
+
f0 = self.f0_upsamp(f0[:, None]).transpose(1, 2) # bs,n,t
|
| 324 |
+
|
| 325 |
+
har_source, noi_source, uv = self.m_source(f0)
|
| 326 |
+
har_source = har_source.transpose(1, 2)
|
| 327 |
+
|
| 328 |
+
for i in range(self.num_upsamples):
|
| 329 |
+
x = x + (1 / self.alphas[i]) * (torch.sin(self.alphas[i] * x) ** 2)
|
| 330 |
+
x_source = self.noise_convs[i](har_source)
|
| 331 |
+
x_source = self.noise_res[i](x_source, s)
|
| 332 |
+
|
| 333 |
+
x = self.ups[i](x)
|
| 334 |
+
x = x + x_source
|
| 335 |
+
|
| 336 |
+
xs = None
|
| 337 |
+
for j in range(self.num_kernels):
|
| 338 |
+
if xs is None:
|
| 339 |
+
xs = self.resblocks[i*self.num_kernels+j](x, s)
|
| 340 |
+
else:
|
| 341 |
+
xs += self.resblocks[i*self.num_kernels+j](x, s)
|
| 342 |
+
x = xs / self.num_kernels
|
| 343 |
+
x = x + (1 / self.alphas[i+1]) * (torch.sin(self.alphas[i+1] * x) ** 2)
|
| 344 |
+
x = self.conv_post(x)
|
| 345 |
+
x = torch.tanh(x)
|
| 346 |
+
|
| 347 |
+
return x
|
| 348 |
+
|
| 349 |
+
def remove_weight_norm(self):
|
| 350 |
+
print('Removing weight norm...')
|
| 351 |
+
for l in self.ups:
|
| 352 |
+
remove_weight_norm(l)
|
| 353 |
+
for l in self.resblocks:
|
| 354 |
+
l.remove_weight_norm()
|
| 355 |
+
remove_weight_norm(self.conv_pre)
|
| 356 |
+
remove_weight_norm(self.conv_post)
|
| 357 |
+
|
| 358 |
+
|
| 359 |
+
class AdainResBlk1d(nn.Module):
|
| 360 |
+
def __init__(self, dim_in, dim_out, style_dim=64, actv=nn.LeakyReLU(0.2),
|
| 361 |
+
upsample='none', dropout_p=0.0):
|
| 362 |
+
super().__init__()
|
| 363 |
+
self.actv = actv
|
| 364 |
+
self.upsample_type = upsample
|
| 365 |
+
self.upsample = UpSample1d(upsample)
|
| 366 |
+
self.learned_sc = dim_in != dim_out
|
| 367 |
+
self._build_weights(dim_in, dim_out, style_dim)
|
| 368 |
+
self.dropout = nn.Dropout(dropout_p)
|
| 369 |
+
|
| 370 |
+
if upsample == 'none':
|
| 371 |
+
self.pool = nn.Identity()
|
| 372 |
+
else:
|
| 373 |
+
self.pool = weight_norm(nn.ConvTranspose1d(dim_in, dim_in, kernel_size=3, stride=2, groups=dim_in, padding=1, output_padding=1))
|
| 374 |
+
|
| 375 |
+
|
| 376 |
+
def _build_weights(self, dim_in, dim_out, style_dim):
|
| 377 |
+
self.conv1 = weight_norm(nn.Conv1d(dim_in, dim_out, 3, 1, 1))
|
| 378 |
+
self.conv2 = weight_norm(nn.Conv1d(dim_out, dim_out, 3, 1, 1))
|
| 379 |
+
self.norm1 = AdaIN1d(style_dim, dim_in)
|
| 380 |
+
self.norm2 = AdaIN1d(style_dim, dim_out)
|
| 381 |
+
if self.learned_sc:
|
| 382 |
+
self.conv1x1 = weight_norm(nn.Conv1d(dim_in, dim_out, 1, 1, 0, bias=False))
|
| 383 |
+
|
| 384 |
+
def _shortcut(self, x):
|
| 385 |
+
x = self.upsample(x)
|
| 386 |
+
if self.learned_sc:
|
| 387 |
+
x = self.conv1x1(x)
|
| 388 |
+
return x
|
| 389 |
+
|
| 390 |
+
def _residual(self, x, s):
|
| 391 |
+
x = self.norm1(x, s)
|
| 392 |
+
x = self.actv(x)
|
| 393 |
+
x = self.pool(x)
|
| 394 |
+
x = self.conv1(self.dropout(x))
|
| 395 |
+
x = self.norm2(x, s)
|
| 396 |
+
x = self.actv(x)
|
| 397 |
+
x = self.conv2(self.dropout(x))
|
| 398 |
+
return x
|
| 399 |
+
|
| 400 |
+
def forward(self, x, s):
|
| 401 |
+
out = self._residual(x, s)
|
| 402 |
+
out = (out + self._shortcut(x)) / math.sqrt(2)
|
| 403 |
+
return out
|
| 404 |
+
|
| 405 |
+
class UpSample1d(nn.Module):
|
| 406 |
+
def __init__(self, layer_type):
|
| 407 |
+
super().__init__()
|
| 408 |
+
self.layer_type = layer_type
|
| 409 |
+
|
| 410 |
+
def forward(self, x):
|
| 411 |
+
if self.layer_type == 'none':
|
| 412 |
+
return x
|
| 413 |
+
else:
|
| 414 |
+
return F.interpolate(x, scale_factor=2, mode='nearest')
|
| 415 |
+
|
| 416 |
+
class Decoder(nn.Module):
|
| 417 |
+
def __init__(self, dim_in=512, F0_channel=512, style_dim=64, dim_out=80,
|
| 418 |
+
resblock_kernel_sizes = [3,7,11],
|
| 419 |
+
upsample_rates = [10,5,3,2],
|
| 420 |
+
upsample_initial_channel=512,
|
| 421 |
+
resblock_dilation_sizes=[[1,3,5], [1,3,5], [1,3,5]],
|
| 422 |
+
upsample_kernel_sizes=[20,10,6,4]):
|
| 423 |
+
super().__init__()
|
| 424 |
+
|
| 425 |
+
self.decode = nn.ModuleList()
|
| 426 |
+
|
| 427 |
+
self.encode = AdainResBlk1d(dim_in + 2, 1024, style_dim)
|
| 428 |
+
|
| 429 |
+
self.decode.append(AdainResBlk1d(1024 + 2 + 64, 1024, style_dim))
|
| 430 |
+
self.decode.append(AdainResBlk1d(1024 + 2 + 64, 1024, style_dim))
|
| 431 |
+
self.decode.append(AdainResBlk1d(1024 + 2 + 64, 1024, style_dim))
|
| 432 |
+
self.decode.append(AdainResBlk1d(1024 + 2 + 64, 512, style_dim, upsample=True))
|
| 433 |
+
|
| 434 |
+
self.F0_conv = weight_norm(nn.Conv1d(1, 1, kernel_size=3, stride=2, groups=1, padding=1))
|
| 435 |
+
|
| 436 |
+
self.N_conv = weight_norm(nn.Conv1d(1, 1, kernel_size=3, stride=2, groups=1, padding=1))
|
| 437 |
+
|
| 438 |
+
self.asr_res = nn.Sequential(
|
| 439 |
+
weight_norm(nn.Conv1d(512, 64, kernel_size=1)),
|
| 440 |
+
)
|
| 441 |
+
|
| 442 |
+
|
| 443 |
+
self.generator = Generator(style_dim, resblock_kernel_sizes, upsample_rates, upsample_initial_channel, resblock_dilation_sizes, upsample_kernel_sizes)
|
| 444 |
+
|
| 445 |
+
|
| 446 |
+
def forward(self, asr, F0_curve, N, s):
|
| 447 |
+
if self.training:
|
| 448 |
+
downlist = [0, 3, 7]
|
| 449 |
+
F0_down = downlist[random.randint(0, 2)]
|
| 450 |
+
downlist = [0, 3, 7, 15]
|
| 451 |
+
N_down = downlist[random.randint(0, 3)]
|
| 452 |
+
if F0_down:
|
| 453 |
+
F0_curve = nn.functional.conv1d(F0_curve.unsqueeze(1), torch.ones(1, 1, F0_down).to('cuda'), padding=F0_down//2).squeeze(1) / F0_down
|
| 454 |
+
if N_down:
|
| 455 |
+
N = nn.functional.conv1d(N.unsqueeze(1), torch.ones(1, 1, N_down).to('cuda'), padding=N_down//2).squeeze(1) / N_down
|
| 456 |
+
|
| 457 |
+
|
| 458 |
+
F0 = self.F0_conv(F0_curve.unsqueeze(1))
|
| 459 |
+
N = self.N_conv(N.unsqueeze(1))
|
| 460 |
+
|
| 461 |
+
x = torch.cat([asr, F0, N], axis=1)
|
| 462 |
+
x = self.encode(x, s)
|
| 463 |
+
|
| 464 |
+
asr_res = self.asr_res(asr)
|
| 465 |
+
|
| 466 |
+
res = True
|
| 467 |
+
for block in self.decode:
|
| 468 |
+
if res:
|
| 469 |
+
x = torch.cat([x, asr_res, F0, N], axis=1)
|
| 470 |
+
x = block(x, s)
|
| 471 |
+
if block.upsample_type != "none":
|
| 472 |
+
res = False
|
| 473 |
+
|
| 474 |
+
x = self.generator(x, s, F0_curve)
|
| 475 |
+
return x
|
| 476 |
+
|
| 477 |
+
|
Modules/utils.py
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
def init_weights(m, mean=0.0, std=0.01):
|
| 2 |
+
classname = m.__class__.__name__
|
| 3 |
+
if classname.find("Conv") != -1:
|
| 4 |
+
m.weight.data.normal_(mean, std)
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
def apply_weight_norm(m):
|
| 8 |
+
classname = m.__class__.__name__
|
| 9 |
+
if classname.find("Conv") != -1:
|
| 10 |
+
weight_norm(m)
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
def get_padding(kernel_size, dilation=1):
|
| 14 |
+
return int((kernel_size*dilation - dilation)/2)
|
README.md
CHANGED
|
@@ -11,4 +11,13 @@ license: mit
|
|
| 11 |
short_description: Build custom voices in StyleTTS 2
|
| 12 |
---
|
| 13 |
|
| 14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
short_description: Build custom voices in StyleTTS 2
|
| 12 |
---
|
| 13 |
|
| 14 |
+
# StyleTTS2 Studio
|
| 15 |
+
|
| 16 |
+
Customizable Voices for the StyleTTS2 text-to-speech model based on [StyleTTS2](https://github.com/yl4579/StyleTTS2) and [artificial StyleTTS2](https://huggingface.co/dkounadis/artificial-styletts2/tree/main).
|
| 17 |
+
|
| 18 |
+
I used Label Studio to label 50 randomly generated voices with the following 6 features: Gender, Tone, Quality, Pace, Enunciation and Style.
|
| 19 |
+
These 6 features were used for a Principal Component Analysis (PCA) to reduce the 256-dimensional style vector into manageable dimensions. The results can likely be further enhanced by selecting better features and labeling more samples, but these first results show that it's generally possible to dial in specific voice features.
|
| 20 |
+
|
| 21 |
+
**Disclaimer from the original StyleTTS2 repo:**
|
| 22 |
+
|
| 23 |
+
Pre-Trained Models: Before using these pre-trained models, you agree to inform the listeners that the speech samples are synthesized by the pre-trained models, unless you have the permission to use the voice you synthesize. That is, you agree to only use voices whose speakers grant the permission to have their voice cloned, either directly or by license before making synthesized voices public, or you have to publicly announce that these voices are synthesized if you do not have the permission to use these voices.
|
Utils/ASR/__init__.py
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
|
Utils/ASR/config.yml
ADDED
|
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
log_dir: "logs/20201006"
|
| 2 |
+
save_freq: 5
|
| 3 |
+
device: "cuda"
|
| 4 |
+
epochs: 180
|
| 5 |
+
batch_size: 64
|
| 6 |
+
pretrained_model: ""
|
| 7 |
+
train_data: "ASRDataset/train_list.txt"
|
| 8 |
+
val_data: "ASRDataset/val_list.txt"
|
| 9 |
+
|
| 10 |
+
dataset_params:
|
| 11 |
+
data_augmentation: false
|
| 12 |
+
|
| 13 |
+
preprocess_parasm:
|
| 14 |
+
sr: 24000
|
| 15 |
+
spect_params:
|
| 16 |
+
n_fft: 2048
|
| 17 |
+
win_length: 1200
|
| 18 |
+
hop_length: 300
|
| 19 |
+
mel_params:
|
| 20 |
+
n_mels: 80
|
| 21 |
+
|
| 22 |
+
model_params:
|
| 23 |
+
input_dim: 80
|
| 24 |
+
hidden_dim: 256
|
| 25 |
+
n_token: 178
|
| 26 |
+
token_embedding_dim: 512
|
| 27 |
+
|
| 28 |
+
optimizer_params:
|
| 29 |
+
lr: 0.0005
|
Utils/ASR/epoch_00080.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:fedd55a1234b0c56e1e8b509c74edf3a5e2f27106a66038a4a946047a775bd6c
|
| 3 |
+
size 94552811
|
Utils/ASR/layers.py
ADDED
|
@@ -0,0 +1,354 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import math
|
| 2 |
+
import torch
|
| 3 |
+
from torch import nn
|
| 4 |
+
from typing import Optional, Any
|
| 5 |
+
from torch import Tensor
|
| 6 |
+
import torch.nn.functional as F
|
| 7 |
+
import torchaudio
|
| 8 |
+
import torchaudio.functional as audio_F
|
| 9 |
+
|
| 10 |
+
import random
|
| 11 |
+
random.seed(0)
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
def _get_activation_fn(activ):
|
| 15 |
+
if activ == 'relu':
|
| 16 |
+
return nn.ReLU()
|
| 17 |
+
elif activ == 'lrelu':
|
| 18 |
+
return nn.LeakyReLU(0.2)
|
| 19 |
+
elif activ == 'swish':
|
| 20 |
+
return lambda x: x*torch.sigmoid(x)
|
| 21 |
+
else:
|
| 22 |
+
raise RuntimeError('Unexpected activ type %s, expected [relu, lrelu, swish]' % activ)
|
| 23 |
+
|
| 24 |
+
class LinearNorm(torch.nn.Module):
|
| 25 |
+
def __init__(self, in_dim, out_dim, bias=True, w_init_gain='linear'):
|
| 26 |
+
super(LinearNorm, self).__init__()
|
| 27 |
+
self.linear_layer = torch.nn.Linear(in_dim, out_dim, bias=bias)
|
| 28 |
+
|
| 29 |
+
torch.nn.init.xavier_uniform_(
|
| 30 |
+
self.linear_layer.weight,
|
| 31 |
+
gain=torch.nn.init.calculate_gain(w_init_gain))
|
| 32 |
+
|
| 33 |
+
def forward(self, x):
|
| 34 |
+
return self.linear_layer(x)
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
class ConvNorm(torch.nn.Module):
|
| 38 |
+
def __init__(self, in_channels, out_channels, kernel_size=1, stride=1,
|
| 39 |
+
padding=None, dilation=1, bias=True, w_init_gain='linear', param=None):
|
| 40 |
+
super(ConvNorm, self).__init__()
|
| 41 |
+
if padding is None:
|
| 42 |
+
assert(kernel_size % 2 == 1)
|
| 43 |
+
padding = int(dilation * (kernel_size - 1) / 2)
|
| 44 |
+
|
| 45 |
+
self.conv = torch.nn.Conv1d(in_channels, out_channels,
|
| 46 |
+
kernel_size=kernel_size, stride=stride,
|
| 47 |
+
padding=padding, dilation=dilation,
|
| 48 |
+
bias=bias)
|
| 49 |
+
|
| 50 |
+
torch.nn.init.xavier_uniform_(
|
| 51 |
+
self.conv.weight, gain=torch.nn.init.calculate_gain(w_init_gain, param=param))
|
| 52 |
+
|
| 53 |
+
def forward(self, signal):
|
| 54 |
+
conv_signal = self.conv(signal)
|
| 55 |
+
return conv_signal
|
| 56 |
+
|
| 57 |
+
class CausualConv(nn.Module):
|
| 58 |
+
def __init__(self, in_channels, out_channels, kernel_size=1, stride=1, padding=1, dilation=1, bias=True, w_init_gain='linear', param=None):
|
| 59 |
+
super(CausualConv, self).__init__()
|
| 60 |
+
if padding is None:
|
| 61 |
+
assert(kernel_size % 2 == 1)
|
| 62 |
+
padding = int(dilation * (kernel_size - 1) / 2) * 2
|
| 63 |
+
else:
|
| 64 |
+
self.padding = padding * 2
|
| 65 |
+
self.conv = nn.Conv1d(in_channels, out_channels,
|
| 66 |
+
kernel_size=kernel_size, stride=stride,
|
| 67 |
+
padding=self.padding,
|
| 68 |
+
dilation=dilation,
|
| 69 |
+
bias=bias)
|
| 70 |
+
|
| 71 |
+
torch.nn.init.xavier_uniform_(
|
| 72 |
+
self.conv.weight, gain=torch.nn.init.calculate_gain(w_init_gain, param=param))
|
| 73 |
+
|
| 74 |
+
def forward(self, x):
|
| 75 |
+
x = self.conv(x)
|
| 76 |
+
x = x[:, :, :-self.padding]
|
| 77 |
+
return x
|
| 78 |
+
|
| 79 |
+
class CausualBlock(nn.Module):
|
| 80 |
+
def __init__(self, hidden_dim, n_conv=3, dropout_p=0.2, activ='lrelu'):
|
| 81 |
+
super(CausualBlock, self).__init__()
|
| 82 |
+
self.blocks = nn.ModuleList([
|
| 83 |
+
self._get_conv(hidden_dim, dilation=3**i, activ=activ, dropout_p=dropout_p)
|
| 84 |
+
for i in range(n_conv)])
|
| 85 |
+
|
| 86 |
+
def forward(self, x):
|
| 87 |
+
for block in self.blocks:
|
| 88 |
+
res = x
|
| 89 |
+
x = block(x)
|
| 90 |
+
x += res
|
| 91 |
+
return x
|
| 92 |
+
|
| 93 |
+
def _get_conv(self, hidden_dim, dilation, activ='lrelu', dropout_p=0.2):
|
| 94 |
+
layers = [
|
| 95 |
+
CausualConv(hidden_dim, hidden_dim, kernel_size=3, padding=dilation, dilation=dilation),
|
| 96 |
+
_get_activation_fn(activ),
|
| 97 |
+
nn.BatchNorm1d(hidden_dim),
|
| 98 |
+
nn.Dropout(p=dropout_p),
|
| 99 |
+
CausualConv(hidden_dim, hidden_dim, kernel_size=3, padding=1, dilation=1),
|
| 100 |
+
_get_activation_fn(activ),
|
| 101 |
+
nn.Dropout(p=dropout_p)
|
| 102 |
+
]
|
| 103 |
+
return nn.Sequential(*layers)
|
| 104 |
+
|
| 105 |
+
class ConvBlock(nn.Module):
|
| 106 |
+
def __init__(self, hidden_dim, n_conv=3, dropout_p=0.2, activ='relu'):
|
| 107 |
+
super().__init__()
|
| 108 |
+
self._n_groups = 8
|
| 109 |
+
self.blocks = nn.ModuleList([
|
| 110 |
+
self._get_conv(hidden_dim, dilation=3**i, activ=activ, dropout_p=dropout_p)
|
| 111 |
+
for i in range(n_conv)])
|
| 112 |
+
|
| 113 |
+
|
| 114 |
+
def forward(self, x):
|
| 115 |
+
for block in self.blocks:
|
| 116 |
+
res = x
|
| 117 |
+
x = block(x)
|
| 118 |
+
x += res
|
| 119 |
+
return x
|
| 120 |
+
|
| 121 |
+
def _get_conv(self, hidden_dim, dilation, activ='relu', dropout_p=0.2):
|
| 122 |
+
layers = [
|
| 123 |
+
ConvNorm(hidden_dim, hidden_dim, kernel_size=3, padding=dilation, dilation=dilation),
|
| 124 |
+
_get_activation_fn(activ),
|
| 125 |
+
nn.GroupNorm(num_groups=self._n_groups, num_channels=hidden_dim),
|
| 126 |
+
nn.Dropout(p=dropout_p),
|
| 127 |
+
ConvNorm(hidden_dim, hidden_dim, kernel_size=3, padding=1, dilation=1),
|
| 128 |
+
_get_activation_fn(activ),
|
| 129 |
+
nn.Dropout(p=dropout_p)
|
| 130 |
+
]
|
| 131 |
+
return nn.Sequential(*layers)
|
| 132 |
+
|
| 133 |
+
class LocationLayer(nn.Module):
|
| 134 |
+
def __init__(self, attention_n_filters, attention_kernel_size,
|
| 135 |
+
attention_dim):
|
| 136 |
+
super(LocationLayer, self).__init__()
|
| 137 |
+
padding = int((attention_kernel_size - 1) / 2)
|
| 138 |
+
self.location_conv = ConvNorm(2, attention_n_filters,
|
| 139 |
+
kernel_size=attention_kernel_size,
|
| 140 |
+
padding=padding, bias=False, stride=1,
|
| 141 |
+
dilation=1)
|
| 142 |
+
self.location_dense = LinearNorm(attention_n_filters, attention_dim,
|
| 143 |
+
bias=False, w_init_gain='tanh')
|
| 144 |
+
|
| 145 |
+
def forward(self, attention_weights_cat):
|
| 146 |
+
processed_attention = self.location_conv(attention_weights_cat)
|
| 147 |
+
processed_attention = processed_attention.transpose(1, 2)
|
| 148 |
+
processed_attention = self.location_dense(processed_attention)
|
| 149 |
+
return processed_attention
|
| 150 |
+
|
| 151 |
+
|
| 152 |
+
class Attention(nn.Module):
|
| 153 |
+
def __init__(self, attention_rnn_dim, embedding_dim, attention_dim,
|
| 154 |
+
attention_location_n_filters, attention_location_kernel_size):
|
| 155 |
+
super(Attention, self).__init__()
|
| 156 |
+
self.query_layer = LinearNorm(attention_rnn_dim, attention_dim,
|
| 157 |
+
bias=False, w_init_gain='tanh')
|
| 158 |
+
self.memory_layer = LinearNorm(embedding_dim, attention_dim, bias=False,
|
| 159 |
+
w_init_gain='tanh')
|
| 160 |
+
self.v = LinearNorm(attention_dim, 1, bias=False)
|
| 161 |
+
self.location_layer = LocationLayer(attention_location_n_filters,
|
| 162 |
+
attention_location_kernel_size,
|
| 163 |
+
attention_dim)
|
| 164 |
+
self.score_mask_value = -float("inf")
|
| 165 |
+
|
| 166 |
+
def get_alignment_energies(self, query, processed_memory,
|
| 167 |
+
attention_weights_cat):
|
| 168 |
+
"""
|
| 169 |
+
PARAMS
|
| 170 |
+
------
|
| 171 |
+
query: decoder output (batch, n_mel_channels * n_frames_per_step)
|
| 172 |
+
processed_memory: processed encoder outputs (B, T_in, attention_dim)
|
| 173 |
+
attention_weights_cat: cumulative and prev. att weights (B, 2, max_time)
|
| 174 |
+
RETURNS
|
| 175 |
+
-------
|
| 176 |
+
alignment (batch, max_time)
|
| 177 |
+
"""
|
| 178 |
+
|
| 179 |
+
processed_query = self.query_layer(query.unsqueeze(1))
|
| 180 |
+
processed_attention_weights = self.location_layer(attention_weights_cat)
|
| 181 |
+
energies = self.v(torch.tanh(
|
| 182 |
+
processed_query + processed_attention_weights + processed_memory))
|
| 183 |
+
|
| 184 |
+
energies = energies.squeeze(-1)
|
| 185 |
+
return energies
|
| 186 |
+
|
| 187 |
+
def forward(self, attention_hidden_state, memory, processed_memory,
|
| 188 |
+
attention_weights_cat, mask):
|
| 189 |
+
"""
|
| 190 |
+
PARAMS
|
| 191 |
+
------
|
| 192 |
+
attention_hidden_state: attention rnn last output
|
| 193 |
+
memory: encoder outputs
|
| 194 |
+
processed_memory: processed encoder outputs
|
| 195 |
+
attention_weights_cat: previous and cummulative attention weights
|
| 196 |
+
mask: binary mask for padded data
|
| 197 |
+
"""
|
| 198 |
+
alignment = self.get_alignment_energies(
|
| 199 |
+
attention_hidden_state, processed_memory, attention_weights_cat)
|
| 200 |
+
|
| 201 |
+
if mask is not None:
|
| 202 |
+
alignment.data.masked_fill_(mask, self.score_mask_value)
|
| 203 |
+
|
| 204 |
+
attention_weights = F.softmax(alignment, dim=1)
|
| 205 |
+
attention_context = torch.bmm(attention_weights.unsqueeze(1), memory)
|
| 206 |
+
attention_context = attention_context.squeeze(1)
|
| 207 |
+
|
| 208 |
+
return attention_context, attention_weights
|
| 209 |
+
|
| 210 |
+
|
| 211 |
+
class ForwardAttentionV2(nn.Module):
|
| 212 |
+
def __init__(self, attention_rnn_dim, embedding_dim, attention_dim,
|
| 213 |
+
attention_location_n_filters, attention_location_kernel_size):
|
| 214 |
+
super(ForwardAttentionV2, self).__init__()
|
| 215 |
+
self.query_layer = LinearNorm(attention_rnn_dim, attention_dim,
|
| 216 |
+
bias=False, w_init_gain='tanh')
|
| 217 |
+
self.memory_layer = LinearNorm(embedding_dim, attention_dim, bias=False,
|
| 218 |
+
w_init_gain='tanh')
|
| 219 |
+
self.v = LinearNorm(attention_dim, 1, bias=False)
|
| 220 |
+
self.location_layer = LocationLayer(attention_location_n_filters,
|
| 221 |
+
attention_location_kernel_size,
|
| 222 |
+
attention_dim)
|
| 223 |
+
self.score_mask_value = -float(1e20)
|
| 224 |
+
|
| 225 |
+
def get_alignment_energies(self, query, processed_memory,
|
| 226 |
+
attention_weights_cat):
|
| 227 |
+
"""
|
| 228 |
+
PARAMS
|
| 229 |
+
------
|
| 230 |
+
query: decoder output (batch, n_mel_channels * n_frames_per_step)
|
| 231 |
+
processed_memory: processed encoder outputs (B, T_in, attention_dim)
|
| 232 |
+
attention_weights_cat: prev. and cumulative att weights (B, 2, max_time)
|
| 233 |
+
RETURNS
|
| 234 |
+
-------
|
| 235 |
+
alignment (batch, max_time)
|
| 236 |
+
"""
|
| 237 |
+
|
| 238 |
+
processed_query = self.query_layer(query.unsqueeze(1))
|
| 239 |
+
processed_attention_weights = self.location_layer(attention_weights_cat)
|
| 240 |
+
energies = self.v(torch.tanh(
|
| 241 |
+
processed_query + processed_attention_weights + processed_memory))
|
| 242 |
+
|
| 243 |
+
energies = energies.squeeze(-1)
|
| 244 |
+
return energies
|
| 245 |
+
|
| 246 |
+
def forward(self, attention_hidden_state, memory, processed_memory,
|
| 247 |
+
attention_weights_cat, mask, log_alpha):
|
| 248 |
+
"""
|
| 249 |
+
PARAMS
|
| 250 |
+
------
|
| 251 |
+
attention_hidden_state: attention rnn last output
|
| 252 |
+
memory: encoder outputs
|
| 253 |
+
processed_memory: processed encoder outputs
|
| 254 |
+
attention_weights_cat: previous and cummulative attention weights
|
| 255 |
+
mask: binary mask for padded data
|
| 256 |
+
"""
|
| 257 |
+
log_energy = self.get_alignment_energies(
|
| 258 |
+
attention_hidden_state, processed_memory, attention_weights_cat)
|
| 259 |
+
|
| 260 |
+
#log_energy =
|
| 261 |
+
|
| 262 |
+
if mask is not None:
|
| 263 |
+
log_energy.data.masked_fill_(mask, self.score_mask_value)
|
| 264 |
+
|
| 265 |
+
#attention_weights = F.softmax(alignment, dim=1)
|
| 266 |
+
|
| 267 |
+
#content_score = log_energy.unsqueeze(1) #[B, MAX_TIME] -> [B, 1, MAX_TIME]
|
| 268 |
+
#log_alpha = log_alpha.unsqueeze(2) #[B, MAX_TIME] -> [B, MAX_TIME, 1]
|
| 269 |
+
|
| 270 |
+
#log_total_score = log_alpha + content_score
|
| 271 |
+
|
| 272 |
+
#previous_attention_weights = attention_weights_cat[:,0,:]
|
| 273 |
+
|
| 274 |
+
log_alpha_shift_padded = []
|
| 275 |
+
max_time = log_energy.size(1)
|
| 276 |
+
for sft in range(2):
|
| 277 |
+
shifted = log_alpha[:,:max_time-sft]
|
| 278 |
+
shift_padded = F.pad(shifted, (sft,0), 'constant', self.score_mask_value)
|
| 279 |
+
log_alpha_shift_padded.append(shift_padded.unsqueeze(2))
|
| 280 |
+
|
| 281 |
+
biased = torch.logsumexp(torch.cat(log_alpha_shift_padded,2), 2)
|
| 282 |
+
|
| 283 |
+
log_alpha_new = biased + log_energy
|
| 284 |
+
|
| 285 |
+
attention_weights = F.softmax(log_alpha_new, dim=1)
|
| 286 |
+
|
| 287 |
+
attention_context = torch.bmm(attention_weights.unsqueeze(1), memory)
|
| 288 |
+
attention_context = attention_context.squeeze(1)
|
| 289 |
+
|
| 290 |
+
return attention_context, attention_weights, log_alpha_new
|
| 291 |
+
|
| 292 |
+
|
| 293 |
+
class PhaseShuffle2d(nn.Module):
|
| 294 |
+
def __init__(self, n=2):
|
| 295 |
+
super(PhaseShuffle2d, self).__init__()
|
| 296 |
+
self.n = n
|
| 297 |
+
self.random = random.Random(1)
|
| 298 |
+
|
| 299 |
+
def forward(self, x, move=None):
|
| 300 |
+
# x.size = (B, C, M, L)
|
| 301 |
+
if move is None:
|
| 302 |
+
move = self.random.randint(-self.n, self.n)
|
| 303 |
+
|
| 304 |
+
if move == 0:
|
| 305 |
+
return x
|
| 306 |
+
else:
|
| 307 |
+
left = x[:, :, :, :move]
|
| 308 |
+
right = x[:, :, :, move:]
|
| 309 |
+
shuffled = torch.cat([right, left], dim=3)
|
| 310 |
+
return shuffled
|
| 311 |
+
|
| 312 |
+
class PhaseShuffle1d(nn.Module):
|
| 313 |
+
def __init__(self, n=2):
|
| 314 |
+
super(PhaseShuffle1d, self).__init__()
|
| 315 |
+
self.n = n
|
| 316 |
+
self.random = random.Random(1)
|
| 317 |
+
|
| 318 |
+
def forward(self, x, move=None):
|
| 319 |
+
# x.size = (B, C, M, L)
|
| 320 |
+
if move is None:
|
| 321 |
+
move = self.random.randint(-self.n, self.n)
|
| 322 |
+
|
| 323 |
+
if move == 0:
|
| 324 |
+
return x
|
| 325 |
+
else:
|
| 326 |
+
left = x[:, :, :move]
|
| 327 |
+
right = x[:, :, move:]
|
| 328 |
+
shuffled = torch.cat([right, left], dim=2)
|
| 329 |
+
|
| 330 |
+
return shuffled
|
| 331 |
+
|
| 332 |
+
class MFCC(nn.Module):
|
| 333 |
+
def __init__(self, n_mfcc=40, n_mels=80):
|
| 334 |
+
super(MFCC, self).__init__()
|
| 335 |
+
self.n_mfcc = n_mfcc
|
| 336 |
+
self.n_mels = n_mels
|
| 337 |
+
self.norm = 'ortho'
|
| 338 |
+
dct_mat = audio_F.create_dct(self.n_mfcc, self.n_mels, self.norm)
|
| 339 |
+
self.register_buffer('dct_mat', dct_mat)
|
| 340 |
+
|
| 341 |
+
def forward(self, mel_specgram):
|
| 342 |
+
if len(mel_specgram.shape) == 2:
|
| 343 |
+
mel_specgram = mel_specgram.unsqueeze(0)
|
| 344 |
+
unsqueezed = True
|
| 345 |
+
else:
|
| 346 |
+
unsqueezed = False
|
| 347 |
+
# (channel, n_mels, time).tranpose(...) dot (n_mels, n_mfcc)
|
| 348 |
+
# -> (channel, time, n_mfcc).tranpose(...)
|
| 349 |
+
mfcc = torch.matmul(mel_specgram.transpose(1, 2), self.dct_mat).transpose(1, 2)
|
| 350 |
+
|
| 351 |
+
# unpack batch
|
| 352 |
+
if unsqueezed:
|
| 353 |
+
mfcc = mfcc.squeeze(0)
|
| 354 |
+
return mfcc
|
Utils/ASR/models.py
ADDED
|
@@ -0,0 +1,186 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import math
|
| 2 |
+
import torch
|
| 3 |
+
from torch import nn
|
| 4 |
+
from torch.nn import TransformerEncoder
|
| 5 |
+
import torch.nn.functional as F
|
| 6 |
+
from .layers import MFCC, Attention, LinearNorm, ConvNorm, ConvBlock
|
| 7 |
+
|
| 8 |
+
class ASRCNN(nn.Module):
|
| 9 |
+
def __init__(self,
|
| 10 |
+
input_dim=80,
|
| 11 |
+
hidden_dim=256,
|
| 12 |
+
n_token=35,
|
| 13 |
+
n_layers=6,
|
| 14 |
+
token_embedding_dim=256,
|
| 15 |
+
|
| 16 |
+
):
|
| 17 |
+
super().__init__()
|
| 18 |
+
self.n_token = n_token
|
| 19 |
+
self.n_down = 1
|
| 20 |
+
self.to_mfcc = MFCC()
|
| 21 |
+
self.init_cnn = ConvNorm(input_dim//2, hidden_dim, kernel_size=7, padding=3, stride=2)
|
| 22 |
+
self.cnns = nn.Sequential(
|
| 23 |
+
*[nn.Sequential(
|
| 24 |
+
ConvBlock(hidden_dim),
|
| 25 |
+
nn.GroupNorm(num_groups=1, num_channels=hidden_dim)
|
| 26 |
+
) for n in range(n_layers)])
|
| 27 |
+
self.projection = ConvNorm(hidden_dim, hidden_dim // 2)
|
| 28 |
+
self.ctc_linear = nn.Sequential(
|
| 29 |
+
LinearNorm(hidden_dim//2, hidden_dim),
|
| 30 |
+
nn.ReLU(),
|
| 31 |
+
LinearNorm(hidden_dim, n_token))
|
| 32 |
+
self.asr_s2s = ASRS2S(
|
| 33 |
+
embedding_dim=token_embedding_dim,
|
| 34 |
+
hidden_dim=hidden_dim//2,
|
| 35 |
+
n_token=n_token)
|
| 36 |
+
|
| 37 |
+
def forward(self, x, src_key_padding_mask=None, text_input=None):
|
| 38 |
+
x = self.to_mfcc(x)
|
| 39 |
+
x = self.init_cnn(x)
|
| 40 |
+
x = self.cnns(x)
|
| 41 |
+
x = self.projection(x)
|
| 42 |
+
x = x.transpose(1, 2)
|
| 43 |
+
ctc_logit = self.ctc_linear(x)
|
| 44 |
+
if text_input is not None:
|
| 45 |
+
_, s2s_logit, s2s_attn = self.asr_s2s(x, src_key_padding_mask, text_input)
|
| 46 |
+
return ctc_logit, s2s_logit, s2s_attn
|
| 47 |
+
else:
|
| 48 |
+
return ctc_logit
|
| 49 |
+
|
| 50 |
+
def get_feature(self, x):
|
| 51 |
+
x = self.to_mfcc(x.squeeze(1))
|
| 52 |
+
x = self.init_cnn(x)
|
| 53 |
+
x = self.cnns(x)
|
| 54 |
+
x = self.projection(x)
|
| 55 |
+
return x
|
| 56 |
+
|
| 57 |
+
def length_to_mask(self, lengths):
|
| 58 |
+
mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths)
|
| 59 |
+
mask = torch.gt(mask+1, lengths.unsqueeze(1)).to(lengths.device)
|
| 60 |
+
return mask
|
| 61 |
+
|
| 62 |
+
def get_future_mask(self, out_length, unmask_future_steps=0):
|
| 63 |
+
"""
|
| 64 |
+
Args:
|
| 65 |
+
out_length (int): returned mask shape is (out_length, out_length).
|
| 66 |
+
unmask_futre_steps (int): unmasking future step size.
|
| 67 |
+
Return:
|
| 68 |
+
mask (torch.BoolTensor): mask future timesteps mask[i, j] = True if i > j + unmask_future_steps else False
|
| 69 |
+
"""
|
| 70 |
+
index_tensor = torch.arange(out_length).unsqueeze(0).expand(out_length, -1)
|
| 71 |
+
mask = torch.gt(index_tensor, index_tensor.T + unmask_future_steps)
|
| 72 |
+
return mask
|
| 73 |
+
|
| 74 |
+
class ASRS2S(nn.Module):
|
| 75 |
+
def __init__(self,
|
| 76 |
+
embedding_dim=256,
|
| 77 |
+
hidden_dim=512,
|
| 78 |
+
n_location_filters=32,
|
| 79 |
+
location_kernel_size=63,
|
| 80 |
+
n_token=40):
|
| 81 |
+
super(ASRS2S, self).__init__()
|
| 82 |
+
self.embedding = nn.Embedding(n_token, embedding_dim)
|
| 83 |
+
val_range = math.sqrt(6 / hidden_dim)
|
| 84 |
+
self.embedding.weight.data.uniform_(-val_range, val_range)
|
| 85 |
+
|
| 86 |
+
self.decoder_rnn_dim = hidden_dim
|
| 87 |
+
self.project_to_n_symbols = nn.Linear(self.decoder_rnn_dim, n_token)
|
| 88 |
+
self.attention_layer = Attention(
|
| 89 |
+
self.decoder_rnn_dim,
|
| 90 |
+
hidden_dim,
|
| 91 |
+
hidden_dim,
|
| 92 |
+
n_location_filters,
|
| 93 |
+
location_kernel_size
|
| 94 |
+
)
|
| 95 |
+
self.decoder_rnn = nn.LSTMCell(self.decoder_rnn_dim + embedding_dim, self.decoder_rnn_dim)
|
| 96 |
+
self.project_to_hidden = nn.Sequential(
|
| 97 |
+
LinearNorm(self.decoder_rnn_dim * 2, hidden_dim),
|
| 98 |
+
nn.Tanh())
|
| 99 |
+
self.sos = 1
|
| 100 |
+
self.eos = 2
|
| 101 |
+
|
| 102 |
+
def initialize_decoder_states(self, memory, mask):
|
| 103 |
+
"""
|
| 104 |
+
moemory.shape = (B, L, H) = (Batchsize, Maxtimestep, Hiddendim)
|
| 105 |
+
"""
|
| 106 |
+
B, L, H = memory.shape
|
| 107 |
+
self.decoder_hidden = torch.zeros((B, self.decoder_rnn_dim)).type_as(memory)
|
| 108 |
+
self.decoder_cell = torch.zeros((B, self.decoder_rnn_dim)).type_as(memory)
|
| 109 |
+
self.attention_weights = torch.zeros((B, L)).type_as(memory)
|
| 110 |
+
self.attention_weights_cum = torch.zeros((B, L)).type_as(memory)
|
| 111 |
+
self.attention_context = torch.zeros((B, H)).type_as(memory)
|
| 112 |
+
self.memory = memory
|
| 113 |
+
self.processed_memory = self.attention_layer.memory_layer(memory)
|
| 114 |
+
self.mask = mask
|
| 115 |
+
self.unk_index = 3
|
| 116 |
+
self.random_mask = 0.1
|
| 117 |
+
|
| 118 |
+
def forward(self, memory, memory_mask, text_input):
|
| 119 |
+
"""
|
| 120 |
+
moemory.shape = (B, L, H) = (Batchsize, Maxtimestep, Hiddendim)
|
| 121 |
+
moemory_mask.shape = (B, L, )
|
| 122 |
+
texts_input.shape = (B, T)
|
| 123 |
+
"""
|
| 124 |
+
self.initialize_decoder_states(memory, memory_mask)
|
| 125 |
+
# text random mask
|
| 126 |
+
random_mask = (torch.rand(text_input.shape) < self.random_mask).to(text_input.device)
|
| 127 |
+
_text_input = text_input.clone()
|
| 128 |
+
_text_input.masked_fill_(random_mask, self.unk_index)
|
| 129 |
+
decoder_inputs = self.embedding(_text_input).transpose(0, 1) # -> [T, B, channel]
|
| 130 |
+
start_embedding = self.embedding(
|
| 131 |
+
torch.LongTensor([self.sos]*decoder_inputs.size(1)).to(decoder_inputs.device))
|
| 132 |
+
decoder_inputs = torch.cat((start_embedding.unsqueeze(0), decoder_inputs), dim=0)
|
| 133 |
+
|
| 134 |
+
hidden_outputs, logit_outputs, alignments = [], [], []
|
| 135 |
+
while len(hidden_outputs) < decoder_inputs.size(0):
|
| 136 |
+
|
| 137 |
+
decoder_input = decoder_inputs[len(hidden_outputs)]
|
| 138 |
+
hidden, logit, attention_weights = self.decode(decoder_input)
|
| 139 |
+
hidden_outputs += [hidden]
|
| 140 |
+
logit_outputs += [logit]
|
| 141 |
+
alignments += [attention_weights]
|
| 142 |
+
|
| 143 |
+
hidden_outputs, logit_outputs, alignments = \
|
| 144 |
+
self.parse_decoder_outputs(
|
| 145 |
+
hidden_outputs, logit_outputs, alignments)
|
| 146 |
+
|
| 147 |
+
return hidden_outputs, logit_outputs, alignments
|
| 148 |
+
|
| 149 |
+
|
| 150 |
+
def decode(self, decoder_input):
|
| 151 |
+
|
| 152 |
+
cell_input = torch.cat((decoder_input, self.attention_context), -1)
|
| 153 |
+
self.decoder_hidden, self.decoder_cell = self.decoder_rnn(
|
| 154 |
+
cell_input,
|
| 155 |
+
(self.decoder_hidden, self.decoder_cell))
|
| 156 |
+
|
| 157 |
+
attention_weights_cat = torch.cat(
|
| 158 |
+
(self.attention_weights.unsqueeze(1),
|
| 159 |
+
self.attention_weights_cum.unsqueeze(1)),dim=1)
|
| 160 |
+
|
| 161 |
+
self.attention_context, self.attention_weights = self.attention_layer(
|
| 162 |
+
self.decoder_hidden,
|
| 163 |
+
self.memory,
|
| 164 |
+
self.processed_memory,
|
| 165 |
+
attention_weights_cat,
|
| 166 |
+
self.mask)
|
| 167 |
+
|
| 168 |
+
self.attention_weights_cum += self.attention_weights
|
| 169 |
+
|
| 170 |
+
hidden_and_context = torch.cat((self.decoder_hidden, self.attention_context), -1)
|
| 171 |
+
hidden = self.project_to_hidden(hidden_and_context)
|
| 172 |
+
|
| 173 |
+
# dropout to increasing g
|
| 174 |
+
logit = self.project_to_n_symbols(F.dropout(hidden, 0.5, self.training))
|
| 175 |
+
|
| 176 |
+
return hidden, logit, self.attention_weights
|
| 177 |
+
|
| 178 |
+
def parse_decoder_outputs(self, hidden, logit, alignments):
|
| 179 |
+
|
| 180 |
+
# -> [B, T_out + 1, max_time]
|
| 181 |
+
alignments = torch.stack(alignments).transpose(0,1)
|
| 182 |
+
# [T_out + 1, B, n_symbols] -> [B, T_out + 1, n_symbols]
|
| 183 |
+
logit = torch.stack(logit).transpose(0, 1).contiguous()
|
| 184 |
+
hidden = torch.stack(hidden).transpose(0, 1).contiguous()
|
| 185 |
+
|
| 186 |
+
return hidden, logit, alignments
|
Utils/JDC/__init__.py
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
|
Utils/JDC/bst.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:54dc94364b97e18ac1dfa6287714ed121248cfaac4cfd39d061c6e0a089ef169
|
| 3 |
+
size 21029926
|
Utils/JDC/model.py
ADDED
|
@@ -0,0 +1,190 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Implementation of model from:
|
| 3 |
+
Kum et al. - "Joint Detection and Classification of Singing Voice Melody Using
|
| 4 |
+
Convolutional Recurrent Neural Networks" (2019)
|
| 5 |
+
Link: https://www.semanticscholar.org/paper/Joint-Detection-and-Classification-of-Singing-Voice-Kum-Nam/60a2ad4c7db43bace75805054603747fcd062c0d
|
| 6 |
+
"""
|
| 7 |
+
import torch
|
| 8 |
+
from torch import nn
|
| 9 |
+
|
| 10 |
+
class JDCNet(nn.Module):
|
| 11 |
+
"""
|
| 12 |
+
Joint Detection and Classification Network model for singing voice melody.
|
| 13 |
+
"""
|
| 14 |
+
def __init__(self, num_class=722, seq_len=31, leaky_relu_slope=0.01):
|
| 15 |
+
super().__init__()
|
| 16 |
+
self.num_class = num_class
|
| 17 |
+
|
| 18 |
+
# input = (b, 1, 31, 513), b = batch size
|
| 19 |
+
self.conv_block = nn.Sequential(
|
| 20 |
+
nn.Conv2d(in_channels=1, out_channels=64, kernel_size=3, padding=1, bias=False), # out: (b, 64, 31, 513)
|
| 21 |
+
nn.BatchNorm2d(num_features=64),
|
| 22 |
+
nn.LeakyReLU(leaky_relu_slope, inplace=True),
|
| 23 |
+
nn.Conv2d(64, 64, 3, padding=1, bias=False), # (b, 64, 31, 513)
|
| 24 |
+
)
|
| 25 |
+
|
| 26 |
+
# res blocks
|
| 27 |
+
self.res_block1 = ResBlock(in_channels=64, out_channels=128) # (b, 128, 31, 128)
|
| 28 |
+
self.res_block2 = ResBlock(in_channels=128, out_channels=192) # (b, 192, 31, 32)
|
| 29 |
+
self.res_block3 = ResBlock(in_channels=192, out_channels=256) # (b, 256, 31, 8)
|
| 30 |
+
|
| 31 |
+
# pool block
|
| 32 |
+
self.pool_block = nn.Sequential(
|
| 33 |
+
nn.BatchNorm2d(num_features=256),
|
| 34 |
+
nn.LeakyReLU(leaky_relu_slope, inplace=True),
|
| 35 |
+
nn.MaxPool2d(kernel_size=(1, 4)), # (b, 256, 31, 2)
|
| 36 |
+
nn.Dropout(p=0.2),
|
| 37 |
+
)
|
| 38 |
+
|
| 39 |
+
# maxpool layers (for auxiliary network inputs)
|
| 40 |
+
# in = (b, 128, 31, 513) from conv_block, out = (b, 128, 31, 2)
|
| 41 |
+
self.maxpool1 = nn.MaxPool2d(kernel_size=(1, 40))
|
| 42 |
+
# in = (b, 128, 31, 128) from res_block1, out = (b, 128, 31, 2)
|
| 43 |
+
self.maxpool2 = nn.MaxPool2d(kernel_size=(1, 20))
|
| 44 |
+
# in = (b, 128, 31, 32) from res_block2, out = (b, 128, 31, 2)
|
| 45 |
+
self.maxpool3 = nn.MaxPool2d(kernel_size=(1, 10))
|
| 46 |
+
|
| 47 |
+
# in = (b, 640, 31, 2), out = (b, 256, 31, 2)
|
| 48 |
+
self.detector_conv = nn.Sequential(
|
| 49 |
+
nn.Conv2d(640, 256, 1, bias=False),
|
| 50 |
+
nn.BatchNorm2d(256),
|
| 51 |
+
nn.LeakyReLU(leaky_relu_slope, inplace=True),
|
| 52 |
+
nn.Dropout(p=0.2),
|
| 53 |
+
)
|
| 54 |
+
|
| 55 |
+
# input: (b, 31, 512) - resized from (b, 256, 31, 2)
|
| 56 |
+
self.bilstm_classifier = nn.LSTM(
|
| 57 |
+
input_size=512, hidden_size=256,
|
| 58 |
+
batch_first=True, bidirectional=True) # (b, 31, 512)
|
| 59 |
+
|
| 60 |
+
# input: (b, 31, 512) - resized from (b, 256, 31, 2)
|
| 61 |
+
self.bilstm_detector = nn.LSTM(
|
| 62 |
+
input_size=512, hidden_size=256,
|
| 63 |
+
batch_first=True, bidirectional=True) # (b, 31, 512)
|
| 64 |
+
|
| 65 |
+
# input: (b * 31, 512)
|
| 66 |
+
self.classifier = nn.Linear(in_features=512, out_features=self.num_class) # (b * 31, num_class)
|
| 67 |
+
|
| 68 |
+
# input: (b * 31, 512)
|
| 69 |
+
self.detector = nn.Linear(in_features=512, out_features=2) # (b * 31, 2) - binary classifier
|
| 70 |
+
|
| 71 |
+
# initialize weights
|
| 72 |
+
self.apply(self.init_weights)
|
| 73 |
+
|
| 74 |
+
def get_feature_GAN(self, x):
|
| 75 |
+
seq_len = x.shape[-2]
|
| 76 |
+
x = x.float().transpose(-1, -2)
|
| 77 |
+
|
| 78 |
+
convblock_out = self.conv_block(x)
|
| 79 |
+
|
| 80 |
+
resblock1_out = self.res_block1(convblock_out)
|
| 81 |
+
resblock2_out = self.res_block2(resblock1_out)
|
| 82 |
+
resblock3_out = self.res_block3(resblock2_out)
|
| 83 |
+
poolblock_out = self.pool_block[0](resblock3_out)
|
| 84 |
+
poolblock_out = self.pool_block[1](poolblock_out)
|
| 85 |
+
|
| 86 |
+
return poolblock_out.transpose(-1, -2)
|
| 87 |
+
|
| 88 |
+
def get_feature(self, x):
|
| 89 |
+
seq_len = x.shape[-2]
|
| 90 |
+
x = x.float().transpose(-1, -2)
|
| 91 |
+
|
| 92 |
+
convblock_out = self.conv_block(x)
|
| 93 |
+
|
| 94 |
+
resblock1_out = self.res_block1(convblock_out)
|
| 95 |
+
resblock2_out = self.res_block2(resblock1_out)
|
| 96 |
+
resblock3_out = self.res_block3(resblock2_out)
|
| 97 |
+
poolblock_out = self.pool_block[0](resblock3_out)
|
| 98 |
+
poolblock_out = self.pool_block[1](poolblock_out)
|
| 99 |
+
|
| 100 |
+
return self.pool_block[2](poolblock_out)
|
| 101 |
+
|
| 102 |
+
def forward(self, x):
|
| 103 |
+
"""
|
| 104 |
+
Returns:
|
| 105 |
+
classification_prediction, detection_prediction
|
| 106 |
+
sizes: (b, 31, 722), (b, 31, 2)
|
| 107 |
+
"""
|
| 108 |
+
###############################
|
| 109 |
+
# forward pass for classifier #
|
| 110 |
+
###############################
|
| 111 |
+
seq_len = x.shape[-1]
|
| 112 |
+
x = x.float().transpose(-1, -2)
|
| 113 |
+
|
| 114 |
+
convblock_out = self.conv_block(x)
|
| 115 |
+
|
| 116 |
+
resblock1_out = self.res_block1(convblock_out)
|
| 117 |
+
resblock2_out = self.res_block2(resblock1_out)
|
| 118 |
+
resblock3_out = self.res_block3(resblock2_out)
|
| 119 |
+
|
| 120 |
+
|
| 121 |
+
poolblock_out = self.pool_block[0](resblock3_out)
|
| 122 |
+
poolblock_out = self.pool_block[1](poolblock_out)
|
| 123 |
+
GAN_feature = poolblock_out.transpose(-1, -2)
|
| 124 |
+
poolblock_out = self.pool_block[2](poolblock_out)
|
| 125 |
+
|
| 126 |
+
# (b, 256, 31, 2) => (b, 31, 256, 2) => (b, 31, 512)
|
| 127 |
+
classifier_out = poolblock_out.permute(0, 2, 1, 3).contiguous().view((-1, seq_len, 512))
|
| 128 |
+
classifier_out, _ = self.bilstm_classifier(classifier_out) # ignore the hidden states
|
| 129 |
+
|
| 130 |
+
classifier_out = classifier_out.contiguous().view((-1, 512)) # (b * 31, 512)
|
| 131 |
+
classifier_out = self.classifier(classifier_out)
|
| 132 |
+
classifier_out = classifier_out.view((-1, seq_len, self.num_class)) # (b, 31, num_class)
|
| 133 |
+
|
| 134 |
+
# sizes: (b, 31, 722), (b, 31, 2)
|
| 135 |
+
# classifier output consists of predicted pitch classes per frame
|
| 136 |
+
# detector output consists of: (isvoice, notvoice) estimates per frame
|
| 137 |
+
return torch.abs(classifier_out.squeeze()), GAN_feature, poolblock_out
|
| 138 |
+
|
| 139 |
+
@staticmethod
|
| 140 |
+
def init_weights(m):
|
| 141 |
+
if isinstance(m, nn.Linear):
|
| 142 |
+
nn.init.kaiming_uniform_(m.weight)
|
| 143 |
+
if m.bias is not None:
|
| 144 |
+
nn.init.constant_(m.bias, 0)
|
| 145 |
+
elif isinstance(m, nn.Conv2d):
|
| 146 |
+
nn.init.xavier_normal_(m.weight)
|
| 147 |
+
elif isinstance(m, nn.LSTM) or isinstance(m, nn.LSTMCell):
|
| 148 |
+
for p in m.parameters():
|
| 149 |
+
if p.data is None:
|
| 150 |
+
continue
|
| 151 |
+
|
| 152 |
+
if len(p.shape) >= 2:
|
| 153 |
+
nn.init.orthogonal_(p.data)
|
| 154 |
+
else:
|
| 155 |
+
nn.init.normal_(p.data)
|
| 156 |
+
|
| 157 |
+
|
| 158 |
+
class ResBlock(nn.Module):
|
| 159 |
+
def __init__(self, in_channels: int, out_channels: int, leaky_relu_slope=0.01):
|
| 160 |
+
super().__init__()
|
| 161 |
+
self.downsample = in_channels != out_channels
|
| 162 |
+
|
| 163 |
+
# BN / LReLU / MaxPool layer before the conv layer - see Figure 1b in the paper
|
| 164 |
+
self.pre_conv = nn.Sequential(
|
| 165 |
+
nn.BatchNorm2d(num_features=in_channels),
|
| 166 |
+
nn.LeakyReLU(leaky_relu_slope, inplace=True),
|
| 167 |
+
nn.MaxPool2d(kernel_size=(1, 2)), # apply downsampling on the y axis only
|
| 168 |
+
)
|
| 169 |
+
|
| 170 |
+
# conv layers
|
| 171 |
+
self.conv = nn.Sequential(
|
| 172 |
+
nn.Conv2d(in_channels=in_channels, out_channels=out_channels,
|
| 173 |
+
kernel_size=3, padding=1, bias=False),
|
| 174 |
+
nn.BatchNorm2d(out_channels),
|
| 175 |
+
nn.LeakyReLU(leaky_relu_slope, inplace=True),
|
| 176 |
+
nn.Conv2d(out_channels, out_channels, 3, padding=1, bias=False),
|
| 177 |
+
)
|
| 178 |
+
|
| 179 |
+
# 1 x 1 convolution layer to match the feature dimensions
|
| 180 |
+
self.conv1by1 = None
|
| 181 |
+
if self.downsample:
|
| 182 |
+
self.conv1by1 = nn.Conv2d(in_channels, out_channels, 1, bias=False)
|
| 183 |
+
|
| 184 |
+
def forward(self, x):
|
| 185 |
+
x = self.pre_conv(x)
|
| 186 |
+
if self.downsample:
|
| 187 |
+
x = self.conv(x) + self.conv1by1(x)
|
| 188 |
+
else:
|
| 189 |
+
x = self.conv(x) + x
|
| 190 |
+
return x
|
Utils/PLBERT/config.yml
ADDED
|
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
log_dir: "Checkpoint"
|
| 2 |
+
mixed_precision: "fp16"
|
| 3 |
+
data_folder: "wikipedia_20220301.en.processed"
|
| 4 |
+
batch_size: 192
|
| 5 |
+
save_interval: 5000
|
| 6 |
+
log_interval: 10
|
| 7 |
+
num_process: 1 # number of GPUs
|
| 8 |
+
num_steps: 1000000
|
| 9 |
+
|
| 10 |
+
dataset_params:
|
| 11 |
+
tokenizer: "transfo-xl-wt103"
|
| 12 |
+
token_separator: " " # token used for phoneme separator (space)
|
| 13 |
+
token_mask: "M" # token used for phoneme mask (M)
|
| 14 |
+
word_separator: 3039 # token used for word separator (<formula>)
|
| 15 |
+
token_maps: "token_maps.pkl" # token map path
|
| 16 |
+
|
| 17 |
+
max_mel_length: 512 # max phoneme length
|
| 18 |
+
|
| 19 |
+
word_mask_prob: 0.15 # probability to mask the entire word
|
| 20 |
+
phoneme_mask_prob: 0.1 # probability to mask each phoneme
|
| 21 |
+
replace_prob: 0.2 # probablity to replace phonemes
|
| 22 |
+
|
| 23 |
+
model_params:
|
| 24 |
+
vocab_size: 178
|
| 25 |
+
hidden_size: 768
|
| 26 |
+
num_attention_heads: 12
|
| 27 |
+
intermediate_size: 2048
|
| 28 |
+
max_position_embeddings: 512
|
| 29 |
+
num_hidden_layers: 12
|
| 30 |
+
dropout: 0.1
|
Utils/PLBERT/step_1000000.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:0714ff85804db43e06b3b0ac5749bf90cf206257c6c5916e8a98c5933b4c21e0
|
| 3 |
+
size 25185187
|
Utils/PLBERT/util.py
ADDED
|
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import yaml
|
| 3 |
+
import torch
|
| 4 |
+
from transformers import AlbertConfig, AlbertModel
|
| 5 |
+
|
| 6 |
+
class CustomAlbert(AlbertModel):
|
| 7 |
+
def forward(self, *args, **kwargs):
|
| 8 |
+
# Call the original forward method
|
| 9 |
+
outputs = super().forward(*args, **kwargs)
|
| 10 |
+
|
| 11 |
+
# Only return the last_hidden_state
|
| 12 |
+
return outputs.last_hidden_state
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
def load_plbert(log_dir):
|
| 16 |
+
config_path = os.path.join(log_dir, "config.yml")
|
| 17 |
+
plbert_config = yaml.safe_load(open(config_path))
|
| 18 |
+
|
| 19 |
+
albert_base_configuration = AlbertConfig(**plbert_config['model_params'])
|
| 20 |
+
bert = CustomAlbert(albert_base_configuration)
|
| 21 |
+
|
| 22 |
+
files = os.listdir(log_dir)
|
| 23 |
+
ckpts = []
|
| 24 |
+
for f in os.listdir(log_dir):
|
| 25 |
+
if f.startswith("step_"): ckpts.append(f)
|
| 26 |
+
|
| 27 |
+
iters = [int(f.split('_')[-1].split('.')[0]) for f in ckpts if os.path.isfile(os.path.join(log_dir, f))]
|
| 28 |
+
iters = sorted(iters)[-1]
|
| 29 |
+
|
| 30 |
+
checkpoint = torch.load(log_dir + "/step_" + str(iters) + ".pth", map_location='cpu')
|
| 31 |
+
state_dict = checkpoint['net']
|
| 32 |
+
from collections import OrderedDict
|
| 33 |
+
new_state_dict = OrderedDict()
|
| 34 |
+
for k, v in state_dict.items():
|
| 35 |
+
name = k[7:] # remove `module.`
|
| 36 |
+
if name.startswith('encoder.'):
|
| 37 |
+
name = name[8:] # remove `encoder.`
|
| 38 |
+
new_state_dict[name] = v
|
| 39 |
+
del new_state_dict["embeddings.position_ids"]
|
| 40 |
+
bert.load_state_dict(new_state_dict, strict=False)
|
| 41 |
+
|
| 42 |
+
return bert
|
Utils/config.yml
ADDED
|
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{ASR_config: Utils/ASR/config.yml, ASR_path: Utils/ASR/epoch_00080.pth, F0_path: Utils/JDC/bst.t7,
|
| 2 |
+
PLBERT_dir: Utils/PLBERT/, batch_size: 8, data_params: {OOD_data: Data/OOD_texts.txt,
|
| 3 |
+
min_length: 50, root_path: '', train_data: Data/train_list.txt, val_data: Data/val_list.txt},
|
| 4 |
+
device: cuda, epochs_1st: 40, epochs_2nd: 25, first_stage_path: first_stage.pth,
|
| 5 |
+
load_only_params: false, log_dir: Models/LibriTTS, log_interval: 10, loss_params: {
|
| 6 |
+
TMA_epoch: 4, diff_epoch: 0, joint_epoch: 0, lambda_F0: 1.0, lambda_ce: 20.0,
|
| 7 |
+
lambda_diff: 1.0, lambda_dur: 1.0, lambda_gen: 1.0, lambda_mel: 5.0, lambda_mono: 1.0,
|
| 8 |
+
lambda_norm: 1.0, lambda_s2s: 1.0, lambda_slm: 1.0, lambda_sty: 1.0}, max_len: 300,
|
| 9 |
+
model_params: {decoder: {resblock_dilation_sizes: [[1, 3, 5], [1, 3, 5], [1, 3,
|
| 10 |
+
5]], resblock_kernel_sizes: [3, 7, 11], type: hifigan, upsample_initial_channel: 512,
|
| 11 |
+
upsample_kernel_sizes: [20, 10, 6, 4], upsample_rates: [10, 5, 3, 2]}, diffusion: {
|
| 12 |
+
dist: {estimate_sigma_data: true, mean: -3.0, sigma_data: 0.19926648961191362,
|
| 13 |
+
std: 1.0}, embedding_mask_proba: 0.1, transformer: {head_features: 64, multiplier: 2,
|
| 14 |
+
num_heads: 8, num_layers: 3}}, dim_in: 64, dropout: 0.2, hidden_dim: 512,
|
| 15 |
+
max_conv_dim: 512, max_dur: 50, multispeaker: true, n_layer: 3, n_mels: 80, n_token: 178,
|
| 16 |
+
slm: {hidden: 768, initial_channel: 64, model: microsoft/wavlm-base-plus, nlayers: 13,
|
| 17 |
+
sr: 16000}, style_dim: 128}, optimizer_params: {bert_lr: 1.0e-05, ft_lr: 1.0e-05,
|
| 18 |
+
lr: 0.0001}, preprocess_params: {spect_params: {hop_length: 300, n_fft: 2048,
|
| 19 |
+
win_length: 1200}, sr: 24000}, pretrained_model: Models/LibriTTS/epoch_2nd_00002.pth,
|
| 20 |
+
save_freq: 1, second_stage_load_pretrained: true, slmadv_params: {batch_percentage: 0.5,
|
| 21 |
+
iter: 20, max_len: 500, min_len: 400, scale: 0.01, sig: 1.5, thresh: 5}}
|
annotated_features.npy
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ea4d9a2bd9d3139441989c822d48fc96f887e0d3ea015d55dcb5df9b004836e4
|
| 3 |
+
size 2576
|
app.py
ADDED
|
@@ -0,0 +1,506 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
|
| 3 |
+
import gradio as gr
|
| 4 |
+
import numpy as np
|
| 5 |
+
import torch
|
| 6 |
+
import json
|
| 7 |
+
import io
|
| 8 |
+
import soundfile as sf
|
| 9 |
+
from PIL import Image
|
| 10 |
+
import matplotlib
|
| 11 |
+
import joblib
|
| 12 |
+
from sklearn.decomposition import PCA
|
| 13 |
+
from collections import OrderedDict
|
| 14 |
+
|
| 15 |
+
matplotlib.use("Agg") # Use non-interactive backend
|
| 16 |
+
import matplotlib.pyplot as plt
|
| 17 |
+
|
| 18 |
+
from text2speech import tts_randomized, parse_speed, tts_with_style_vector
|
| 19 |
+
|
| 20 |
+
# Constants and Paths
|
| 21 |
+
VOICES_JSON_PATH = "voices.json"
|
| 22 |
+
PCA_MODEL_PATH = "pca_model.pkl"
|
| 23 |
+
ANNOTATED_FEATURES_PATH = "annotated_features.npy"
|
| 24 |
+
VECTOR_DIMENSION = 256
|
| 25 |
+
ANNOTATED_FEATURES_NAMES = ["Gender", "Tone", "Quality", "Enunciation", "Pace", "Style"]
|
| 26 |
+
ANNOTATED_FEATURES_INFO = [
|
| 27 |
+
"Male | Female",
|
| 28 |
+
"High | Low",
|
| 29 |
+
"Noisy | Clean",
|
| 30 |
+
"Clear | Unclear",
|
| 31 |
+
"Rapid | Slow",
|
| 32 |
+
"Colloquial | Formal",
|
| 33 |
+
]
|
| 34 |
+
|
| 35 |
+
# Load PCA model and annotated features
|
| 36 |
+
try:
|
| 37 |
+
pca = joblib.load(PCA_MODEL_PATH)
|
| 38 |
+
print("PCA model loaded successfully.")
|
| 39 |
+
except FileNotFoundError:
|
| 40 |
+
print(f"Error: PCA model file '{PCA_MODEL_PATH}' not found.")
|
| 41 |
+
pca = None
|
| 42 |
+
|
| 43 |
+
try:
|
| 44 |
+
annotated_features = np.load(ANNOTATED_FEATURES_PATH)
|
| 45 |
+
print("Annotated features loaded successfully.")
|
| 46 |
+
except FileNotFoundError:
|
| 47 |
+
print(f"Error: Annotated features file '{ANNOTATED_FEATURES_PATH}' not found.")
|
| 48 |
+
annotated_features = None
|
| 49 |
+
|
| 50 |
+
# Utility Functions
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
def load_voices_json():
|
| 54 |
+
"""Load the voices.json file."""
|
| 55 |
+
try:
|
| 56 |
+
with open(VOICES_JSON_PATH, "r") as f:
|
| 57 |
+
return json.load(f, object_pairs_hook=OrderedDict)
|
| 58 |
+
except FileNotFoundError:
|
| 59 |
+
print(f"Warning: {VOICES_JSON_PATH} not found. Creating a new one.")
|
| 60 |
+
return OrderedDict()
|
| 61 |
+
except json.JSONDecodeError:
|
| 62 |
+
print(f"Warning: {VOICES_JSON_PATH} is not valid JSON.")
|
| 63 |
+
return OrderedDict()
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
def save_voices_json(data, path=VOICES_JSON_PATH):
|
| 67 |
+
"""Save to voices.json."""
|
| 68 |
+
with open(path, "w") as f:
|
| 69 |
+
json.dump(data, f, indent=2)
|
| 70 |
+
print(f"Voices saved to '{path}'.")
|
| 71 |
+
|
| 72 |
+
|
| 73 |
+
def update_sliders(voice_name):
|
| 74 |
+
"""
|
| 75 |
+
Update slider values based on the selected predefined voice using reverse PCA.
|
| 76 |
+
|
| 77 |
+
Args:
|
| 78 |
+
voice_name (str): The name of the selected voice.
|
| 79 |
+
|
| 80 |
+
Returns:
|
| 81 |
+
list: A list of PCA component values to set the sliders.
|
| 82 |
+
"""
|
| 83 |
+
if not voice_name:
|
| 84 |
+
# Return default slider values (e.g., zeros) if no voice is selected
|
| 85 |
+
return [0.0] * len(ANNOTATED_FEATURES_NAMES)
|
| 86 |
+
|
| 87 |
+
voices_data = load_voices_json()
|
| 88 |
+
if voice_name not in voices_data:
|
| 89 |
+
print(f"Voice '{voice_name}' not found in {VOICES_JSON_PATH}.")
|
| 90 |
+
return [0.0] * len(ANNOTATED_FEATURES_NAMES)
|
| 91 |
+
|
| 92 |
+
style_vector = np.array(voices_data[voice_name], dtype=np.float32).reshape(1, -1)
|
| 93 |
+
|
| 94 |
+
if pca is None:
|
| 95 |
+
print("PCA model is not loaded.")
|
| 96 |
+
return [0.0] * len(ANNOTATED_FEATURES_NAMES)
|
| 97 |
+
|
| 98 |
+
try:
|
| 99 |
+
# Transform the style vector into PCA component values
|
| 100 |
+
pca_components = pca.transform(style_vector)[0]
|
| 101 |
+
return pca_components.tolist()
|
| 102 |
+
except Exception as e:
|
| 103 |
+
print(f"Error transforming style vector to PCA components: {e}")
|
| 104 |
+
return [0.0] * len(ANNOTATED_FEATURES_NAMES)
|
| 105 |
+
|
| 106 |
+
|
| 107 |
+
def generate_audio_with_voice(text, voice_key, speed_val):
|
| 108 |
+
"""
|
| 109 |
+
Generate audio using the style vector of the selected predefined voice.
|
| 110 |
+
|
| 111 |
+
Args:
|
| 112 |
+
text (str): The text to synthesize.
|
| 113 |
+
voice_key (str): The name of the selected voice.
|
| 114 |
+
speed_val (float): The speed multiplier.
|
| 115 |
+
|
| 116 |
+
Returns:
|
| 117 |
+
tuple: (audio_tuple, style_vector)
|
| 118 |
+
"""
|
| 119 |
+
try:
|
| 120 |
+
# Load voices data
|
| 121 |
+
voices_data = load_voices_json()
|
| 122 |
+
|
| 123 |
+
if voice_key not in voices_data:
|
| 124 |
+
print(f"Voice '{voice_key}' not found in {VOICES_JSON_PATH}.")
|
| 125 |
+
return None, None, "Selected voice not found."
|
| 126 |
+
|
| 127 |
+
# Retrieve the style vector for the selected voice
|
| 128 |
+
style_vector = np.array(voices_data[voice_key], dtype=np.float32).reshape(1, -1)
|
| 129 |
+
print(f"Selected Voice: {voice_key}")
|
| 130 |
+
print(f"Style Vector (First 6): {style_vector[0][:6]}")
|
| 131 |
+
|
| 132 |
+
# Convert to torch tensor
|
| 133 |
+
style_vec_torch = torch.from_numpy(style_vector).float()
|
| 134 |
+
|
| 135 |
+
# Generate audio using the TTS model
|
| 136 |
+
audio_np = tts_with_style_vector(
|
| 137 |
+
text,
|
| 138 |
+
style_vec=style_vec_torch,
|
| 139 |
+
speed=speed_val,
|
| 140 |
+
alpha=0.3,
|
| 141 |
+
beta=0.7,
|
| 142 |
+
diffusion_steps=7,
|
| 143 |
+
embedding_scale=1.0,
|
| 144 |
+
)
|
| 145 |
+
|
| 146 |
+
if audio_np is None:
|
| 147 |
+
print("Audio generation failed.")
|
| 148 |
+
return None, None, "Audio generation failed."
|
| 149 |
+
|
| 150 |
+
# Prepare audio for Gradio
|
| 151 |
+
sr = 24000 # Adjust based on your actual sampling rate
|
| 152 |
+
audio_tuple = (sr, audio_np)
|
| 153 |
+
|
| 154 |
+
# Return audio, image, and style vector
|
| 155 |
+
return audio_tuple, style_vector.tolist()
|
| 156 |
+
|
| 157 |
+
except Exception as e:
|
| 158 |
+
print(f"Error in generate_audio_with_voice: {e}")
|
| 159 |
+
return None, None, "An error occurred during audio generation."
|
| 160 |
+
|
| 161 |
+
|
| 162 |
+
def build_modified_vector(voice_key, top6_values):
|
| 163 |
+
"""Build a modified style vector by updating top 6 PCA components."""
|
| 164 |
+
voices_data = load_voices_json()
|
| 165 |
+
if voice_key not in voices_data:
|
| 166 |
+
print(f"Voice '{voice_key}' not found in {VOICES_JSON_PATH}.")
|
| 167 |
+
return None
|
| 168 |
+
|
| 169 |
+
arr = np.array(voices_data[voice_key], dtype=np.float32).squeeze()
|
| 170 |
+
if arr.ndim != 1 or arr.shape[0] != VECTOR_DIMENSION:
|
| 171 |
+
print(f"Voice '{voice_key}' has invalid shape {arr.shape}. Expected (256,).")
|
| 172 |
+
return None
|
| 173 |
+
|
| 174 |
+
try:
|
| 175 |
+
# Reconstruct the style vector using inverse PCA
|
| 176 |
+
pca_components = np.array(top6_values).reshape(1, -1)
|
| 177 |
+
reconstructed_vec = pca.inverse_transform(pca_components)[0]
|
| 178 |
+
return reconstructed_vec
|
| 179 |
+
except Exception as e:
|
| 180 |
+
print(f"Error reconstructing style vector: {e}")
|
| 181 |
+
return None
|
| 182 |
+
|
| 183 |
+
|
| 184 |
+
def reconstruct_style_vector(pca_components):
|
| 185 |
+
"""
|
| 186 |
+
Reconstruct the 256-dimensional style vector from PCA components.
|
| 187 |
+
"""
|
| 188 |
+
if pca is None:
|
| 189 |
+
print("PCA model is not loaded.")
|
| 190 |
+
return None
|
| 191 |
+
try:
|
| 192 |
+
return pca.inverse_transform([pca_components])[0]
|
| 193 |
+
except Exception as e:
|
| 194 |
+
print(f"Error during inverse PCA transform: {e}")
|
| 195 |
+
return None
|
| 196 |
+
|
| 197 |
+
|
| 198 |
+
def generate_custom_audio(text, voice_key, randomize, speed_str, *slider_values):
|
| 199 |
+
"""
|
| 200 |
+
Generate audio and produce a matplotlib plot of the style vector.
|
| 201 |
+
Returns:
|
| 202 |
+
- audio tuple (sr, np_array) for Gradio's Audio
|
| 203 |
+
- a PIL Image representing the style vector plot
|
| 204 |
+
- the final style vector as a list for State
|
| 205 |
+
"""
|
| 206 |
+
try:
|
| 207 |
+
speed_val = parse_speed(speed_str)
|
| 208 |
+
print(f"Parsed speed: {speed_val}")
|
| 209 |
+
|
| 210 |
+
if randomize:
|
| 211 |
+
# Generate randomized style vector
|
| 212 |
+
audio_np, random_style_vec = tts_randomized(text, speed=speed_val)
|
| 213 |
+
if random_style_vec is None:
|
| 214 |
+
print("Failed to generate randomized style vector.")
|
| 215 |
+
return None, None, None
|
| 216 |
+
# Ensure the style vector is flat
|
| 217 |
+
final_vec = (
|
| 218 |
+
random_style_vec.numpy().flatten()
|
| 219 |
+
if isinstance(random_style_vec, torch.Tensor)
|
| 220 |
+
else np.array(random_style_vec).flatten()
|
| 221 |
+
)
|
| 222 |
+
print("Randomized Style Vector (First 6):", final_vec[:6])
|
| 223 |
+
else:
|
| 224 |
+
# Reconstruct the style vector from slider values using inverse PCA
|
| 225 |
+
reconstructed_vec = build_modified_vector(voice_key, slider_values)
|
| 226 |
+
if reconstructed_vec is None:
|
| 227 |
+
print(
|
| 228 |
+
"No reconstructed vector could be constructed, skipping audio generation."
|
| 229 |
+
)
|
| 230 |
+
return None, None, None
|
| 231 |
+
|
| 232 |
+
# Convert to torch tensor
|
| 233 |
+
style_vec_torch = torch.from_numpy(reconstructed_vec).float().unsqueeze(0)
|
| 234 |
+
|
| 235 |
+
# Generate audio with the reconstructed style vector
|
| 236 |
+
audio_np = tts_with_style_vector(
|
| 237 |
+
text,
|
| 238 |
+
style_vec=style_vec_torch,
|
| 239 |
+
speed=speed_val,
|
| 240 |
+
alpha=0.3,
|
| 241 |
+
beta=0.7,
|
| 242 |
+
diffusion_steps=7,
|
| 243 |
+
embedding_scale=1.0,
|
| 244 |
+
)
|
| 245 |
+
final_vec = reconstructed_vec
|
| 246 |
+
print("Reconstructed Style Vector (First 6):", final_vec[:6])
|
| 247 |
+
|
| 248 |
+
if audio_np is None:
|
| 249 |
+
print("Audio generation failed.")
|
| 250 |
+
return None, None, None
|
| 251 |
+
|
| 252 |
+
# Prepare audio for Gradio
|
| 253 |
+
sr = 24000 # Adjust based on your actual sampling rate
|
| 254 |
+
audio_tuple = (sr, audio_np)
|
| 255 |
+
|
| 256 |
+
# Return audio, image, and style vector
|
| 257 |
+
return audio_tuple, final_vec.tolist()
|
| 258 |
+
|
| 259 |
+
except Exception as e:
|
| 260 |
+
print(f"Error generating audio and style plot: {e}")
|
| 261 |
+
return None, None, None
|
| 262 |
+
|
| 263 |
+
|
| 264 |
+
def save_style_to_json(style_data, style_name):
|
| 265 |
+
"""Saves the provided style_data (list of floats) into voices.json under style_name."""
|
| 266 |
+
if not style_name.strip():
|
| 267 |
+
return "Please enter a new style name before saving."
|
| 268 |
+
|
| 269 |
+
voices_data = load_voices_json()
|
| 270 |
+
if style_name in voices_data:
|
| 271 |
+
return (
|
| 272 |
+
f"Style name '{style_name}' already exists. Please choose a different name."
|
| 273 |
+
)
|
| 274 |
+
|
| 275 |
+
# Ensure the style_data has the correct length
|
| 276 |
+
if len(style_data) != VECTOR_DIMENSION:
|
| 277 |
+
return f"Style vector length mismatch. Expected {VECTOR_DIMENSION}, got {len(style_data)}."
|
| 278 |
+
|
| 279 |
+
# Save the style vector
|
| 280 |
+
voices_data[style_name] = style_data
|
| 281 |
+
save_voices_json(voices_data)
|
| 282 |
+
return f"Saved style as '{style_name}' in {VOICES_JSON_PATH}."
|
| 283 |
+
|
| 284 |
+
|
| 285 |
+
# Gradio Interface Functions
|
| 286 |
+
|
| 287 |
+
|
| 288 |
+
def rearrange_voices(new_order):
|
| 289 |
+
"""Rearrange the voices based on the new_order list."""
|
| 290 |
+
voices_data = load_voices_json()
|
| 291 |
+
new_order_list = [name.strip() for name in new_order.split(",")]
|
| 292 |
+
if not all(name in voices_data for name in new_order_list):
|
| 293 |
+
return "Error: New order contains invalid voice names.", list(
|
| 294 |
+
voices_data.keys()
|
| 295 |
+
)
|
| 296 |
+
ordered_data = OrderedDict()
|
| 297 |
+
for name in new_order_list:
|
| 298 |
+
ordered_data[name] = voices_data[name]
|
| 299 |
+
save_voices_json(ordered_data)
|
| 300 |
+
print(f"Voices rearranged: {list(ordered_data.keys())}")
|
| 301 |
+
return "Voices rearranged successfully.", list(ordered_data.keys())
|
| 302 |
+
|
| 303 |
+
|
| 304 |
+
def delete_voice(selected):
|
| 305 |
+
"""Delete voices from the voices.json."""
|
| 306 |
+
if not selected:
|
| 307 |
+
return "No voices selected for deletion.", list(load_voices_json().keys())
|
| 308 |
+
voices_data = load_voices_json()
|
| 309 |
+
for voice_name in selected:
|
| 310 |
+
if voice_name in voices_data:
|
| 311 |
+
del voices_data[voice_name]
|
| 312 |
+
print(f"Voice '{voice_name}' deleted.")
|
| 313 |
+
save_voices_json(voices_data)
|
| 314 |
+
return "Deleted selected voices successfully.", list(voices_data.keys())
|
| 315 |
+
|
| 316 |
+
|
| 317 |
+
def upload_new_voices(uploaded_file):
|
| 318 |
+
"""Upload new voices from a JSON file."""
|
| 319 |
+
if uploaded_file is None:
|
| 320 |
+
return "No file uploaded.", list(load_voices_json().keys())
|
| 321 |
+
try:
|
| 322 |
+
uploaded_data = json.load(uploaded_file)
|
| 323 |
+
if not isinstance(uploaded_data, dict):
|
| 324 |
+
return "Invalid JSON format. Expected a dictionary of voices.", list(
|
| 325 |
+
load_voices_json().keys()
|
| 326 |
+
)
|
| 327 |
+
voices_data = load_voices_json()
|
| 328 |
+
voices_data.update(uploaded_data)
|
| 329 |
+
save_voices_json(voices_data)
|
| 330 |
+
print(f"Voices uploaded: {list(uploaded_data.keys())}")
|
| 331 |
+
return "Voices uploaded successfully.", list(voices_data.keys())
|
| 332 |
+
except json.JSONDecodeError:
|
| 333 |
+
return "Uploaded file is not valid JSON.", list(load_voices_json().keys())
|
| 334 |
+
|
| 335 |
+
|
| 336 |
+
# Create Gradio Interface with Tabs
|
| 337 |
+
|
| 338 |
+
|
| 339 |
+
def create_combined_interface():
|
| 340 |
+
voices_data = load_voices_json()
|
| 341 |
+
voice_choices = list(voices_data.keys())
|
| 342 |
+
default_voice = voice_choices[0] if voice_choices else None
|
| 343 |
+
|
| 344 |
+
css = """
|
| 345 |
+
h4 {
|
| 346 |
+
text-align: center;
|
| 347 |
+
display:block;
|
| 348 |
+
}
|
| 349 |
+
"""
|
| 350 |
+
|
| 351 |
+
def refresh_voices():
|
| 352 |
+
"""Refresh the voices by reloading the JSON."""
|
| 353 |
+
new_choices = list(load_voices_json().keys())
|
| 354 |
+
print(f"Voices refreshed: {new_choices}")
|
| 355 |
+
return gr.Dropdown(choices=new_choices)
|
| 356 |
+
|
| 357 |
+
with gr.Blocks(theme=gr.themes.Ocean(), css=css) as demo:
|
| 358 |
+
gr.Markdown("# StyleTTS2 Studio - Build custom voices")
|
| 359 |
+
|
| 360 |
+
# ----------- Text-to-Speech Tab -----------
|
| 361 |
+
with gr.Tab("Text-to-Speech"):
|
| 362 |
+
gr.Markdown("### Generate Speech with Predefined Voices")
|
| 363 |
+
|
| 364 |
+
with gr.Column():
|
| 365 |
+
text_input = gr.Textbox(
|
| 366 |
+
label="Text to Synthesize",
|
| 367 |
+
value="Hello world from the Gradio + TTS pipeline!",
|
| 368 |
+
lines=3,
|
| 369 |
+
)
|
| 370 |
+
voice_dropdown = gr.Dropdown(
|
| 371 |
+
choices=voice_choices,
|
| 372 |
+
label="Select Base Voice",
|
| 373 |
+
value=default_voice,
|
| 374 |
+
interactive=True,
|
| 375 |
+
)
|
| 376 |
+
speed_slider = gr.Slider(
|
| 377 |
+
minimum=50,
|
| 378 |
+
maximum=200,
|
| 379 |
+
step=1,
|
| 380 |
+
label="Speed (%)",
|
| 381 |
+
value=100,
|
| 382 |
+
)
|
| 383 |
+
with gr.Row():
|
| 384 |
+
generate_btn = gr.Button("Generate Audio")
|
| 385 |
+
|
| 386 |
+
audio_output = gr.Audio(label="Synthesized Audio")
|
| 387 |
+
|
| 388 |
+
# Generate button functionality
|
| 389 |
+
def on_generate_tts(text, voice, speed):
|
| 390 |
+
if not voice:
|
| 391 |
+
return None, "No voice selected."
|
| 392 |
+
speed_val = speed / 100 # Convert percentage to multiplier
|
| 393 |
+
audio, style_vector = generate_audio_with_voice(text, voice, speed_val)
|
| 394 |
+
if audio is None:
|
| 395 |
+
return None, style_vector # style_vector contains the error message
|
| 396 |
+
return audio, "Audio generated successfully."
|
| 397 |
+
|
| 398 |
+
generate_btn.click(
|
| 399 |
+
fn=on_generate_tts,
|
| 400 |
+
inputs=[text_input, voice_dropdown, speed_slider],
|
| 401 |
+
outputs=[audio_output, gr.Textbox(label="Status", visible=False)],
|
| 402 |
+
)
|
| 403 |
+
|
| 404 |
+
# ----------- Voice Studio Tab -----------
|
| 405 |
+
with gr.Tab("Voice Studio"):
|
| 406 |
+
gr.Markdown("### Customize and Create New Voices")
|
| 407 |
+
|
| 408 |
+
with gr.Column():
|
| 409 |
+
text_input_studio = gr.Textbox(
|
| 410 |
+
label="Text to Synthesize",
|
| 411 |
+
value="Customize your voice here!",
|
| 412 |
+
lines=3,
|
| 413 |
+
)
|
| 414 |
+
voice_dropdown_studio = gr.Dropdown(
|
| 415 |
+
choices=voice_choices,
|
| 416 |
+
label="Select Base Voice",
|
| 417 |
+
value=default_voice,
|
| 418 |
+
)
|
| 419 |
+
speed_slider_studio = gr.Slider(
|
| 420 |
+
minimum=50,
|
| 421 |
+
maximum=200,
|
| 422 |
+
step=1,
|
| 423 |
+
label="Speed (%)",
|
| 424 |
+
value=100,
|
| 425 |
+
)
|
| 426 |
+
# Sliders for PCA components (6 sliders)
|
| 427 |
+
pca_sliders = [
|
| 428 |
+
gr.Slider(
|
| 429 |
+
minimum=-2.0,
|
| 430 |
+
maximum=2.0,
|
| 431 |
+
value=0.0,
|
| 432 |
+
step=0.1,
|
| 433 |
+
label=feature,
|
| 434 |
+
)
|
| 435 |
+
for feature in ANNOTATED_FEATURES_NAMES
|
| 436 |
+
]
|
| 437 |
+
|
| 438 |
+
generate_btn_studio = gr.Button("Generate Customized Audio")
|
| 439 |
+
audio_output_studio = gr.Audio(label="Customized Synthesized Audio")
|
| 440 |
+
new_style_name = gr.Textbox(label="New Style Name", value="")
|
| 441 |
+
save_btn_studio = gr.Button("Save Customized Voice")
|
| 442 |
+
status_text = gr.Textbox(label="Status", visible=True)
|
| 443 |
+
|
| 444 |
+
# State to hold the last style vector
|
| 445 |
+
style_vector_state_studio = gr.State()
|
| 446 |
+
|
| 447 |
+
# Generate button functionality
|
| 448 |
+
def on_generate_studio(text, voice, speed, *pca_values):
|
| 449 |
+
if not voice:
|
| 450 |
+
return None, "No voice selected.", None
|
| 451 |
+
speed_val = speed / 100 # Convert percentage to multiplier
|
| 452 |
+
result = generate_custom_audio(
|
| 453 |
+
text, voice, False, speed_val, *pca_values
|
| 454 |
+
)
|
| 455 |
+
if result is None:
|
| 456 |
+
return None, "Failed to generate audio.", None
|
| 457 |
+
audio_tuple, style_vector = result
|
| 458 |
+
style_vector_state_studio.value = style_vector
|
| 459 |
+
return audio_tuple, "Audio generated successfully.", style_vector
|
| 460 |
+
|
| 461 |
+
generate_btn_studio.click(
|
| 462 |
+
fn=on_generate_studio,
|
| 463 |
+
inputs=[text_input_studio, voice_dropdown_studio, speed_slider_studio]
|
| 464 |
+
+ pca_sliders,
|
| 465 |
+
outputs=[audio_output_studio, status_text, style_vector_state_studio],
|
| 466 |
+
)
|
| 467 |
+
|
| 468 |
+
# Save button functionality
|
| 469 |
+
def on_save_style_studio(style_vector, style_name):
|
| 470 |
+
if not style_name:
|
| 471 |
+
return "Please enter a name for the new voice!"
|
| 472 |
+
result = save_style_to_json(style_vector, style_name)
|
| 473 |
+
new_choices = list(load_voices_json().keys())
|
| 474 |
+
# Return multiple values to update both dropdowns and show status
|
| 475 |
+
return (
|
| 476 |
+
gr.Dropdown(choices=new_choices), # Update first dropdown
|
| 477 |
+
gr.Dropdown(choices=new_choices), # Update studio dropdown
|
| 478 |
+
result, # Status message
|
| 479 |
+
)
|
| 480 |
+
|
| 481 |
+
save_btn_studio.click(
|
| 482 |
+
fn=on_save_style_studio,
|
| 483 |
+
inputs=[style_vector_state_studio, new_style_name],
|
| 484 |
+
outputs=[voice_dropdown, voice_dropdown_studio, status_text],
|
| 485 |
+
)
|
| 486 |
+
|
| 487 |
+
# Add callback to update sliders when a voice is selected
|
| 488 |
+
voice_dropdown_studio.change(
|
| 489 |
+
fn=update_sliders,
|
| 490 |
+
inputs=voice_dropdown_studio,
|
| 491 |
+
outputs=pca_sliders,
|
| 492 |
+
)
|
| 493 |
+
|
| 494 |
+
gr.Markdown(
|
| 495 |
+
"#### Based on [StyleTTS2](https://github.com/yl4579/StyleTTS2) and [artificial StyleTTS2](https://huggingface.co/dkounadis/artificial-styletts2/tree/main)"
|
| 496 |
+
)
|
| 497 |
+
|
| 498 |
+
return demo
|
| 499 |
+
|
| 500 |
+
|
| 501 |
+
if __name__ == "__main__":
|
| 502 |
+
try:
|
| 503 |
+
interface = create_combined_interface()
|
| 504 |
+
interface.launch(share=False)
|
| 505 |
+
except Exception as e:
|
| 506 |
+
print(f"An error occurred while launching the interface: {e}")
|
espeak_util.py
ADDED
|
@@ -0,0 +1,206 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import platform
|
| 2 |
+
import subprocess
|
| 3 |
+
import shutil
|
| 4 |
+
from pathlib import Path
|
| 5 |
+
import os
|
| 6 |
+
from typing import Optional, Tuple
|
| 7 |
+
from phonemizer.backend.espeak.wrapper import EspeakWrapper
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
class EspeakConfig:
|
| 11 |
+
"""Utility class for configuring espeak-ng library and binary."""
|
| 12 |
+
|
| 13 |
+
@staticmethod
|
| 14 |
+
def find_espeak_binary() -> tuple[bool, Optional[str]]:
|
| 15 |
+
"""
|
| 16 |
+
Find espeak-ng binary using multiple methods.
|
| 17 |
+
|
| 18 |
+
Returns:
|
| 19 |
+
tuple: (bool indicating if espeak is available, path to espeak binary if found)
|
| 20 |
+
"""
|
| 21 |
+
# Common binary names
|
| 22 |
+
binary_names = ["espeak-ng", "espeak"]
|
| 23 |
+
if platform.system() == "Windows":
|
| 24 |
+
binary_names = ["espeak-ng.exe", "espeak.exe"]
|
| 25 |
+
|
| 26 |
+
# Common installation directories for Linux
|
| 27 |
+
linux_paths = [
|
| 28 |
+
"/usr/bin",
|
| 29 |
+
"/usr/local/bin",
|
| 30 |
+
"/usr/lib/espeak-ng",
|
| 31 |
+
"/usr/local/lib/espeak-ng",
|
| 32 |
+
"/opt/espeak-ng/bin",
|
| 33 |
+
]
|
| 34 |
+
|
| 35 |
+
# First check if it's in PATH
|
| 36 |
+
for name in binary_names:
|
| 37 |
+
espeak_path = shutil.which(name)
|
| 38 |
+
if espeak_path:
|
| 39 |
+
return True, espeak_path
|
| 40 |
+
|
| 41 |
+
# For Linux, check common installation directories
|
| 42 |
+
if platform.system() == "Linux":
|
| 43 |
+
for directory in linux_paths:
|
| 44 |
+
for name in binary_names:
|
| 45 |
+
path = Path(directory) / name
|
| 46 |
+
if path.exists():
|
| 47 |
+
return True, str(path)
|
| 48 |
+
|
| 49 |
+
# Try running the command directly as a last resort
|
| 50 |
+
try:
|
| 51 |
+
subprocess.run(
|
| 52 |
+
["espeak-ng", "--version"],
|
| 53 |
+
stdout=subprocess.PIPE,
|
| 54 |
+
stderr=subprocess.PIPE,
|
| 55 |
+
check=True,
|
| 56 |
+
)
|
| 57 |
+
return True, "espeak-ng"
|
| 58 |
+
except (subprocess.SubprocessError, FileNotFoundError):
|
| 59 |
+
pass
|
| 60 |
+
|
| 61 |
+
return False, None
|
| 62 |
+
|
| 63 |
+
@staticmethod
|
| 64 |
+
def find_library_path() -> Optional[str]:
|
| 65 |
+
"""
|
| 66 |
+
Find the espeak-ng library using multiple search methods.
|
| 67 |
+
|
| 68 |
+
Returns:
|
| 69 |
+
Optional[str]: Path to the library if found, None otherwise
|
| 70 |
+
"""
|
| 71 |
+
system = platform.system()
|
| 72 |
+
|
| 73 |
+
if system == "Linux":
|
| 74 |
+
lib_names = ["libespeak-ng.so", "libespeak-ng.so.1"]
|
| 75 |
+
common_paths = [
|
| 76 |
+
# Debian/Ubuntu paths
|
| 77 |
+
"/usr/lib/x86_64-linux-gnu",
|
| 78 |
+
"/usr/lib/aarch64-linux-gnu", # For ARM64
|
| 79 |
+
"/usr/lib/arm-linux-gnueabihf", # For ARM32
|
| 80 |
+
"/usr/lib",
|
| 81 |
+
"/usr/local/lib",
|
| 82 |
+
# Fedora/RHEL paths
|
| 83 |
+
"/usr/lib64",
|
| 84 |
+
"/usr/lib32",
|
| 85 |
+
# Common additional paths
|
| 86 |
+
"/usr/lib/espeak-ng",
|
| 87 |
+
"/usr/local/lib/espeak-ng",
|
| 88 |
+
"/opt/espeak-ng/lib",
|
| 89 |
+
]
|
| 90 |
+
|
| 91 |
+
# Check common locations first
|
| 92 |
+
for path in common_paths:
|
| 93 |
+
for lib_name in lib_names:
|
| 94 |
+
lib_path = Path(path) / lib_name
|
| 95 |
+
if lib_path.exists():
|
| 96 |
+
return str(lib_path)
|
| 97 |
+
|
| 98 |
+
# Search system library paths
|
| 99 |
+
try:
|
| 100 |
+
# Use ldconfig to find the library
|
| 101 |
+
result = subprocess.run(
|
| 102 |
+
["ldconfig", "-p"], capture_output=True, text=True, check=True
|
| 103 |
+
)
|
| 104 |
+
for line in result.stdout.splitlines():
|
| 105 |
+
if "libespeak-ng.so" in line:
|
| 106 |
+
# Extract path from ldconfig output
|
| 107 |
+
return line.split("=>")[-1].strip()
|
| 108 |
+
except (subprocess.SubprocessError, FileNotFoundError):
|
| 109 |
+
pass
|
| 110 |
+
|
| 111 |
+
elif system == "Darwin": # macOS
|
| 112 |
+
common_paths = [
|
| 113 |
+
Path("/opt/homebrew/lib/libespeak-ng.dylib"),
|
| 114 |
+
Path("/usr/local/lib/libespeak-ng.dylib"),
|
| 115 |
+
*list(
|
| 116 |
+
Path("/opt/homebrew/Cellar/espeak-ng").glob(
|
| 117 |
+
"*/lib/libespeak-ng.dylib"
|
| 118 |
+
)
|
| 119 |
+
),
|
| 120 |
+
*list(
|
| 121 |
+
Path("/usr/local/Cellar/espeak-ng").glob("*/lib/libespeak-ng.dylib")
|
| 122 |
+
),
|
| 123 |
+
]
|
| 124 |
+
|
| 125 |
+
for path in common_paths:
|
| 126 |
+
if path.exists():
|
| 127 |
+
return str(path)
|
| 128 |
+
|
| 129 |
+
elif system == "Windows":
|
| 130 |
+
common_paths = [
|
| 131 |
+
Path(os.environ.get("PROGRAMFILES", "C:\\Program Files"))
|
| 132 |
+
/ "eSpeak NG"
|
| 133 |
+
/ "libespeak-ng.dll",
|
| 134 |
+
Path(os.environ.get("PROGRAMFILES(X86)", "C:\\Program Files (x86)"))
|
| 135 |
+
/ "eSpeak NG"
|
| 136 |
+
/ "libespeak-ng.dll",
|
| 137 |
+
*[
|
| 138 |
+
Path(p) / "libespeak-ng.dll"
|
| 139 |
+
for p in os.environ.get("PATH", "").split(os.pathsep)
|
| 140 |
+
],
|
| 141 |
+
]
|
| 142 |
+
|
| 143 |
+
for path in common_paths:
|
| 144 |
+
if path.exists():
|
| 145 |
+
return str(path)
|
| 146 |
+
|
| 147 |
+
return None
|
| 148 |
+
|
| 149 |
+
@classmethod
|
| 150 |
+
def configure_espeak(cls) -> Tuple[bool, str]:
|
| 151 |
+
"""
|
| 152 |
+
Configure espeak-ng for use with the phonemizer.
|
| 153 |
+
|
| 154 |
+
Returns:
|
| 155 |
+
Tuple[bool, str]: (Success status, Status message)
|
| 156 |
+
"""
|
| 157 |
+
# First check if espeak binary is available
|
| 158 |
+
espeak_available, espeak_path = cls.find_espeak_binary()
|
| 159 |
+
if not espeak_available:
|
| 160 |
+
raise FileNotFoundError(
|
| 161 |
+
"Could not find espeak-ng binary. Please install espeak-ng:\n"
|
| 162 |
+
"Ubuntu/Debian: sudo apt-get install espeak-ng espeak-ng-data\n"
|
| 163 |
+
"Fedora: sudo dnf install espeak-ng\n"
|
| 164 |
+
"Arch: sudo pacman -S espeak-ng\n"
|
| 165 |
+
"MacOS: brew install espeak-ng\n"
|
| 166 |
+
"Windows: Download from https://github.com/espeak-ng/espeak-ng/releases"
|
| 167 |
+
)
|
| 168 |
+
|
| 169 |
+
# Find the library
|
| 170 |
+
library_path = cls.find_library_path()
|
| 171 |
+
if not library_path:
|
| 172 |
+
# On Linux, we might not need to explicitly set the library path
|
| 173 |
+
if platform.system() == "Linux":
|
| 174 |
+
return True, f"Using system espeak-ng installation at: {espeak_path}"
|
| 175 |
+
else:
|
| 176 |
+
raise FileNotFoundError(
|
| 177 |
+
"Could not find espeak-ng library. Please ensure espeak-ng is properly installed."
|
| 178 |
+
)
|
| 179 |
+
|
| 180 |
+
# Try to set the library path
|
| 181 |
+
try:
|
| 182 |
+
EspeakWrapper.set_library(library_path)
|
| 183 |
+
return True, f"Successfully configured espeak-ng library at: {library_path}"
|
| 184 |
+
except Exception as e:
|
| 185 |
+
if platform.system() == "Linux":
|
| 186 |
+
# On Linux, try to continue without explicit library path
|
| 187 |
+
return True, f"Using system espeak-ng installation at: {espeak_path}"
|
| 188 |
+
else:
|
| 189 |
+
raise RuntimeError(f"Failed to configure espeak-ng library: {str(e)}")
|
| 190 |
+
|
| 191 |
+
|
| 192 |
+
def setup_espeak():
|
| 193 |
+
"""
|
| 194 |
+
Set up espeak-ng for use with the phonemizer.
|
| 195 |
+
Raises appropriate exceptions if setup fails.
|
| 196 |
+
"""
|
| 197 |
+
try:
|
| 198 |
+
success, message = EspeakConfig.configure_espeak()
|
| 199 |
+
print(message)
|
| 200 |
+
except Exception as e:
|
| 201 |
+
print(f"Error configuring espeak-ng: {str(e)}")
|
| 202 |
+
raise
|
| 203 |
+
|
| 204 |
+
|
| 205 |
+
# Replace the original set_espeak_library function with this
|
| 206 |
+
set_espeak_library = setup_espeak
|
inference.py
ADDED
|
@@ -0,0 +1,315 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import yaml
|
| 2 |
+
import random
|
| 3 |
+
import librosa
|
| 4 |
+
import numpy as np
|
| 5 |
+
import phonemizer
|
| 6 |
+
import torch
|
| 7 |
+
import torchaudio
|
| 8 |
+
|
| 9 |
+
from collections import OrderedDict
|
| 10 |
+
from munch import Munch
|
| 11 |
+
from nltk.tokenize import word_tokenize
|
| 12 |
+
from cached_path import cached_path
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
# Local or project imports
|
| 16 |
+
from models import *
|
| 17 |
+
from espeak_util import set_espeak_library
|
| 18 |
+
from Utils.PLBERT.util import load_plbert
|
| 19 |
+
from Modules.diffusion.sampler import DiffusionSampler, ADPM2Sampler, KarrasSchedule
|
| 20 |
+
|
| 21 |
+
# -----------------------------------------------------------------------------
|
| 22 |
+
# SEEDS AND DETERMINISM
|
| 23 |
+
# -----------------------------------------------------------------------------
|
| 24 |
+
random.seed(0)
|
| 25 |
+
np.random.seed(0)
|
| 26 |
+
torch.manual_seed(0)
|
| 27 |
+
torch.backends.cudnn.benchmark = False
|
| 28 |
+
torch.backends.cudnn.deterministic = True
|
| 29 |
+
|
| 30 |
+
# -----------------------------------------------------------------------------
|
| 31 |
+
# CONSTANTS / CHARACTERS
|
| 32 |
+
# -----------------------------------------------------------------------------
|
| 33 |
+
_pad = "$"
|
| 34 |
+
_punctuation = ';:,.!?¡¿—…"«»“” '
|
| 35 |
+
_letters = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz"
|
| 36 |
+
_letters_ipa = "ɑɐɒæɓʙβɔɕçɗɖðʤəɘɚɛɜɝɞɟʄɡɠɢʛɦɧħɥʜɨɪʝɭɬɫɮʟɱɯɰŋɳɲɴøɵɸθœɶʘɹɺɾɻʀʁɽʂʃʈʧʉʊʋⱱʌɣɤʍχʎʏʑʐʒʔʡʕʢǀǁǂǃˈˌːˑʼʴʰʱʲʷˠˤ˞↓↑→↗↘'̩'ᵻ"
|
| 37 |
+
|
| 38 |
+
symbols = [_pad] + list(_punctuation) + list(_letters) + list(_letters_ipa)
|
| 39 |
+
|
| 40 |
+
dicts = {symbols[i]: i for i in range(len(symbols))}
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
# -----------------------------------------------------------------------------
|
| 44 |
+
# TEXT CLEANER
|
| 45 |
+
# -----------------------------------------------------------------------------
|
| 46 |
+
class TextCleaner:
|
| 47 |
+
"""
|
| 48 |
+
Maps individual characters to their corresponding indices.
|
| 49 |
+
If an unknown character is found, it prints a warning.
|
| 50 |
+
"""
|
| 51 |
+
|
| 52 |
+
def __init__(self, dummy=None):
|
| 53 |
+
self.word_index_dictionary = dicts
|
| 54 |
+
print(len(dicts))
|
| 55 |
+
|
| 56 |
+
def __call__(self, text):
|
| 57 |
+
indexes = []
|
| 58 |
+
for char in text:
|
| 59 |
+
try:
|
| 60 |
+
indexes.append(self.word_index_dictionary[char])
|
| 61 |
+
except KeyError:
|
| 62 |
+
print("CLEAN", text)
|
| 63 |
+
return indexes
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
textclenaer = TextCleaner()
|
| 67 |
+
|
| 68 |
+
# -----------------------------------------------------------------------------
|
| 69 |
+
# AUDIO PROCESSING
|
| 70 |
+
# -----------------------------------------------------------------------------
|
| 71 |
+
to_mel = torchaudio.transforms.MelSpectrogram(
|
| 72 |
+
n_mels=80, n_fft=2048, win_length=1200, hop_length=300
|
| 73 |
+
)
|
| 74 |
+
|
| 75 |
+
mean, std = -4, 4
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
def preprocess(wave: np.ndarray) -> torch.Tensor:
|
| 79 |
+
"""
|
| 80 |
+
Convert a NumPy audio array into a normalized mel spectrogram tensor.
|
| 81 |
+
"""
|
| 82 |
+
wave_tensor = torch.from_numpy(wave).float()
|
| 83 |
+
mel_tensor = to_mel(wave_tensor)
|
| 84 |
+
mel_tensor = (torch.log(1e-5 + mel_tensor.unsqueeze(0)) - mean) / std
|
| 85 |
+
return mel_tensor
|
| 86 |
+
|
| 87 |
+
|
| 88 |
+
def length_to_mask(lengths: torch.Tensor) -> torch.Tensor:
|
| 89 |
+
"""
|
| 90 |
+
Return a boolean mask based on the lengths of each item in the batch.
|
| 91 |
+
"""
|
| 92 |
+
max_len = lengths.max()
|
| 93 |
+
mask = (
|
| 94 |
+
torch.arange(max_len).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths)
|
| 95 |
+
)
|
| 96 |
+
mask = torch.gt(mask + 1, lengths.unsqueeze(1))
|
| 97 |
+
return mask
|
| 98 |
+
|
| 99 |
+
|
| 100 |
+
# -----------------------------------------------------------------------------
|
| 101 |
+
# MISC UTILS
|
| 102 |
+
# -----------------------------------------------------------------------------
|
| 103 |
+
def recursive_munch(d):
|
| 104 |
+
"""
|
| 105 |
+
Recursively convert dictionaries to Munch objects.
|
| 106 |
+
"""
|
| 107 |
+
if isinstance(d, dict):
|
| 108 |
+
return Munch((k, recursive_munch(v)) for k, v in d.items())
|
| 109 |
+
elif isinstance(d, list):
|
| 110 |
+
return [recursive_munch(v) for v in d]
|
| 111 |
+
else:
|
| 112 |
+
return d
|
| 113 |
+
|
| 114 |
+
|
| 115 |
+
def compute_style(path: str) -> torch.Tensor:
|
| 116 |
+
"""
|
| 117 |
+
Load an audio file, trim it, resample if needed, then
|
| 118 |
+
compute and return a style vector by passing through the style encoder
|
| 119 |
+
and predictor encoder.
|
| 120 |
+
"""
|
| 121 |
+
wave, sr = librosa.load(path, sr=24000)
|
| 122 |
+
audio, _ = librosa.effects.trim(wave, top_db=30)
|
| 123 |
+
if sr != 24000:
|
| 124 |
+
audio = librosa.resample(audio, sr, 24000)
|
| 125 |
+
|
| 126 |
+
mel_tensor = preprocess(audio).to(device)
|
| 127 |
+
with torch.no_grad():
|
| 128 |
+
ref_s = model.style_encoder(mel_tensor.unsqueeze(1))
|
| 129 |
+
ref_p = model.predictor_encoder(mel_tensor.unsqueeze(1))
|
| 130 |
+
|
| 131 |
+
return torch.cat([ref_s, ref_p], dim=1)
|
| 132 |
+
|
| 133 |
+
|
| 134 |
+
# -----------------------------------------------------------------------------
|
| 135 |
+
# DEVICE SELECTION
|
| 136 |
+
# -----------------------------------------------------------------------------
|
| 137 |
+
device = "cpu"
|
| 138 |
+
if torch.cuda.is_available():
|
| 139 |
+
device = "cuda"
|
| 140 |
+
elif torch.backends.mps.is_available():
|
| 141 |
+
# Optionally enable MPS if appropriate (commented out by default).
|
| 142 |
+
# device = "mps"
|
| 143 |
+
pass
|
| 144 |
+
|
| 145 |
+
# -----------------------------------------------------------------------------
|
| 146 |
+
# PHONEMIZER INITIALIZATION
|
| 147 |
+
# -----------------------------------------------------------------------------
|
| 148 |
+
set_espeak_library()
|
| 149 |
+
global_phonemizer = phonemizer.backend.EspeakBackend(
|
| 150 |
+
language="en-us", preserve_punctuation=True, with_stress=True
|
| 151 |
+
)
|
| 152 |
+
|
| 153 |
+
# -----------------------------------------------------------------------------
|
| 154 |
+
# LOAD CONFIG
|
| 155 |
+
# -----------------------------------------------------------------------------
|
| 156 |
+
config = yaml.safe_load(open("Utils/config.yml"))
|
| 157 |
+
|
| 158 |
+
# -----------------------------------------------------------------------------
|
| 159 |
+
# LOAD MODELS
|
| 160 |
+
# -----------------------------------------------------------------------------
|
| 161 |
+
ASR_config = config.get("ASR_config", False)
|
| 162 |
+
ASR_path = config.get("ASR_path", False)
|
| 163 |
+
text_aligner = load_ASR_models(ASR_path, ASR_config)
|
| 164 |
+
|
| 165 |
+
F0_path = config.get("F0_path", False)
|
| 166 |
+
pitch_extractor = load_F0_models(F0_path)
|
| 167 |
+
|
| 168 |
+
from Utils.PLBERT.util import load_plbert
|
| 169 |
+
|
| 170 |
+
BERT_path = config.get("PLBERT_dir", False)
|
| 171 |
+
plbert = load_plbert(BERT_path)
|
| 172 |
+
|
| 173 |
+
model_params = recursive_munch(config["model_params"])
|
| 174 |
+
model = build_model(model_params, text_aligner, pitch_extractor, plbert)
|
| 175 |
+
_ = [model[key].eval() for key in model]
|
| 176 |
+
_ = [model[key].to(device) for key in model]
|
| 177 |
+
|
| 178 |
+
params_whole = torch.load(
|
| 179 |
+
str(
|
| 180 |
+
cached_path(
|
| 181 |
+
"hf://yl4579/StyleTTS2-LibriTTS/Models/LibriTTS/epochs_2nd_00020.pth"
|
| 182 |
+
)
|
| 183 |
+
),
|
| 184 |
+
map_location="cpu",
|
| 185 |
+
)
|
| 186 |
+
params = params_whole["net"]
|
| 187 |
+
|
| 188 |
+
# Load model states
|
| 189 |
+
for key in model:
|
| 190 |
+
if key in params:
|
| 191 |
+
print(f"{key} loaded")
|
| 192 |
+
try:
|
| 193 |
+
model[key].load_state_dict(params[key])
|
| 194 |
+
except RuntimeError:
|
| 195 |
+
state_dict = params[key]
|
| 196 |
+
new_state_dict = OrderedDict()
|
| 197 |
+
for k, v in state_dict.items():
|
| 198 |
+
name = k[7:] # remove `module.`
|
| 199 |
+
new_state_dict[name] = v
|
| 200 |
+
model[key].load_state_dict(new_state_dict, strict=False)
|
| 201 |
+
|
| 202 |
+
_ = [model[key].eval() for key in model]
|
| 203 |
+
|
| 204 |
+
sampler = DiffusionSampler(
|
| 205 |
+
model.diffusion.diffusion,
|
| 206 |
+
sampler=ADPM2Sampler(),
|
| 207 |
+
sigma_schedule=KarrasSchedule(sigma_min=0.0001, sigma_max=3.0, rho=9.0),
|
| 208 |
+
clamp=False,
|
| 209 |
+
)
|
| 210 |
+
|
| 211 |
+
|
| 212 |
+
# -----------------------------------------------------------------------------
|
| 213 |
+
# INFERENCE
|
| 214 |
+
# -----------------------------------------------------------------------------
|
| 215 |
+
def inference(
|
| 216 |
+
text: str,
|
| 217 |
+
ref_s: torch.Tensor,
|
| 218 |
+
alpha: float = 0.3,
|
| 219 |
+
beta: float = 0.7,
|
| 220 |
+
diffusion_steps: int = 5,
|
| 221 |
+
embedding_scale: float = 1,
|
| 222 |
+
speed: float = 1.2,
|
| 223 |
+
):
|
| 224 |
+
"""
|
| 225 |
+
Perform TTS inference using StyleTTS2 architecture.
|
| 226 |
+
|
| 227 |
+
Args:
|
| 228 |
+
text (str): The input text to be synthesized.
|
| 229 |
+
ref_s (torch.Tensor): The reference style/predictor embedding.
|
| 230 |
+
alpha (float): Interpolation factor for the style encoder.
|
| 231 |
+
beta (float): Interpolation factor for the predictor encoder.
|
| 232 |
+
diffusion_steps (int): Number of diffusion steps.
|
| 233 |
+
embedding_scale (float): Scaling factor for the BERT embedding.
|
| 234 |
+
speed (float): Speed factor e.g. 1.2 will speed up the audio by 20%
|
| 235 |
+
|
| 236 |
+
Returns:
|
| 237 |
+
np.ndarray: Audio waveform (synthesized speech).
|
| 238 |
+
"""
|
| 239 |
+
text = text.strip()
|
| 240 |
+
# Phonemize
|
| 241 |
+
ps = global_phonemizer.phonemize([text])
|
| 242 |
+
ps = word_tokenize(ps[0])
|
| 243 |
+
ps = " ".join(ps)
|
| 244 |
+
tokens = textclenaer(ps)
|
| 245 |
+
tokens.insert(0, 0) # Insert padding index at the start
|
| 246 |
+
tokens = torch.LongTensor(tokens).to(device).unsqueeze(0)
|
| 247 |
+
|
| 248 |
+
with torch.no_grad():
|
| 249 |
+
input_lengths = torch.LongTensor([tokens.shape[-1]]).to(device)
|
| 250 |
+
text_mask = length_to_mask(input_lengths).to(device)
|
| 251 |
+
|
| 252 |
+
# Text encoder
|
| 253 |
+
t_en = model.text_encoder(tokens, input_lengths, text_mask)
|
| 254 |
+
|
| 255 |
+
# BERT duration encoding
|
| 256 |
+
bert_dur = model.bert(tokens, attention_mask=(~text_mask).int())
|
| 257 |
+
d_en = model.bert_encoder(bert_dur).transpose(-1, -2)
|
| 258 |
+
|
| 259 |
+
# Sampler for style
|
| 260 |
+
noise = torch.randn((1, 256)).unsqueeze(1).to(device)
|
| 261 |
+
s_pred = sampler(
|
| 262 |
+
noise=noise,
|
| 263 |
+
embedding=bert_dur,
|
| 264 |
+
embedding_scale=embedding_scale,
|
| 265 |
+
features=ref_s,
|
| 266 |
+
num_steps=diffusion_steps,
|
| 267 |
+
).squeeze(1)
|
| 268 |
+
|
| 269 |
+
# Split the style vector
|
| 270 |
+
s_style = s_pred[:, 128:]
|
| 271 |
+
s_ref = s_pred[:, :128]
|
| 272 |
+
|
| 273 |
+
# Interpolate with ref_s
|
| 274 |
+
s_ref = alpha * s_ref + (1 - alpha) * ref_s[:, :128]
|
| 275 |
+
s_style = beta * s_style + (1 - beta) * ref_s[:, 128:]
|
| 276 |
+
|
| 277 |
+
# Predictor
|
| 278 |
+
d = model.predictor.text_encoder(d_en, s_style, input_lengths, text_mask)
|
| 279 |
+
x, _ = model.predictor.lstm(d)
|
| 280 |
+
duration = model.predictor.duration_proj(x)
|
| 281 |
+
duration = torch.sigmoid(duration).sum(axis=-1)
|
| 282 |
+
duration = duration / speed # change speed
|
| 283 |
+
|
| 284 |
+
# Create alignment
|
| 285 |
+
pred_dur = torch.round(duration.squeeze()).clamp(min=1)
|
| 286 |
+
pred_aln_trg = torch.zeros(input_lengths, int(pred_dur.sum().data))
|
| 287 |
+
|
| 288 |
+
c_frame = 0
|
| 289 |
+
for i in range(pred_aln_trg.size(0)):
|
| 290 |
+
pd = int(pred_dur[i].data)
|
| 291 |
+
pred_aln_trg[i, c_frame : c_frame + pd] = 1
|
| 292 |
+
c_frame += pd
|
| 293 |
+
|
| 294 |
+
# Encode prosody
|
| 295 |
+
en = d.transpose(-1, -2) @ pred_aln_trg.unsqueeze(0).to(device)
|
| 296 |
+
if model_params.decoder.type == "hifigan":
|
| 297 |
+
asr_new = torch.zeros_like(en)
|
| 298 |
+
asr_new[:, :, 0] = en[:, :, 0]
|
| 299 |
+
asr_new[:, :, 1:] = en[:, :, 0:-1]
|
| 300 |
+
en = asr_new
|
| 301 |
+
|
| 302 |
+
F0_pred, N_pred = model.predictor.F0Ntrain(en, s_style)
|
| 303 |
+
|
| 304 |
+
# ASR-based encoding
|
| 305 |
+
asr = t_en @ pred_aln_trg.unsqueeze(0).to(device)
|
| 306 |
+
if model_params.decoder.type == "hifigan":
|
| 307 |
+
asr_new = torch.zeros_like(asr)
|
| 308 |
+
asr_new[:, :, 0] = asr[:, :, 0]
|
| 309 |
+
asr_new[:, :, 1:] = asr[:, :, 0:-1]
|
| 310 |
+
asr = asr_new
|
| 311 |
+
|
| 312 |
+
out = model.decoder(asr, F0_pred, N_pred, s_ref.squeeze().unsqueeze(0))
|
| 313 |
+
|
| 314 |
+
# Return waveform without the last 50 samples (as per original code)
|
| 315 |
+
return out.squeeze().cpu().numpy()[..., :-50]
|
models.py
ADDED
|
@@ -0,0 +1,611 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#coding:utf-8
|
| 2 |
+
|
| 3 |
+
import os
|
| 4 |
+
import os.path as osp
|
| 5 |
+
|
| 6 |
+
import copy
|
| 7 |
+
import math
|
| 8 |
+
|
| 9 |
+
import numpy as np
|
| 10 |
+
import torch
|
| 11 |
+
import torch.nn as nn
|
| 12 |
+
import torch.nn.functional as F
|
| 13 |
+
from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
|
| 14 |
+
|
| 15 |
+
from Utils.ASR.models import ASRCNN
|
| 16 |
+
from Utils.JDC.model import JDCNet
|
| 17 |
+
|
| 18 |
+
from Modules.diffusion.sampler import KDiffusion, LogNormalDistribution
|
| 19 |
+
from Modules.diffusion.modules import Transformer1d, StyleTransformer1d
|
| 20 |
+
from Modules.diffusion.diffusion import AudioDiffusionConditional
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
from munch import Munch
|
| 25 |
+
import yaml
|
| 26 |
+
|
| 27 |
+
class LearnedDownSample(nn.Module):
|
| 28 |
+
def __init__(self, layer_type, dim_in):
|
| 29 |
+
super().__init__()
|
| 30 |
+
self.layer_type = layer_type
|
| 31 |
+
|
| 32 |
+
if self.layer_type == 'none':
|
| 33 |
+
self.conv = nn.Identity()
|
| 34 |
+
elif self.layer_type == 'timepreserve':
|
| 35 |
+
self.conv = spectral_norm(nn.Conv2d(dim_in, dim_in, kernel_size=(3, 1), stride=(2, 1), groups=dim_in, padding=(1, 0)))
|
| 36 |
+
elif self.layer_type == 'half':
|
| 37 |
+
self.conv = spectral_norm(nn.Conv2d(dim_in, dim_in, kernel_size=(3, 3), stride=(2, 2), groups=dim_in, padding=1))
|
| 38 |
+
else:
|
| 39 |
+
raise RuntimeError('Got unexpected donwsampletype %s, expected is [none, timepreserve, half]' % self.layer_type)
|
| 40 |
+
|
| 41 |
+
def forward(self, x):
|
| 42 |
+
return self.conv(x)
|
| 43 |
+
|
| 44 |
+
class LearnedUpSample(nn.Module):
|
| 45 |
+
def __init__(self, layer_type, dim_in):
|
| 46 |
+
super().__init__()
|
| 47 |
+
self.layer_type = layer_type
|
| 48 |
+
|
| 49 |
+
if self.layer_type == 'none':
|
| 50 |
+
self.conv = nn.Identity()
|
| 51 |
+
elif self.layer_type == 'timepreserve':
|
| 52 |
+
self.conv = nn.ConvTranspose2d(dim_in, dim_in, kernel_size=(3, 1), stride=(2, 1), groups=dim_in, output_padding=(1, 0), padding=(1, 0))
|
| 53 |
+
elif self.layer_type == 'half':
|
| 54 |
+
self.conv = nn.ConvTranspose2d(dim_in, dim_in, kernel_size=(3, 3), stride=(2, 2), groups=dim_in, output_padding=1, padding=1)
|
| 55 |
+
else:
|
| 56 |
+
raise RuntimeError('Got unexpected upsampletype %s, expected is [none, timepreserve, half]' % self.layer_type)
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
def forward(self, x):
|
| 60 |
+
return self.conv(x)
|
| 61 |
+
|
| 62 |
+
class DownSample(nn.Module):
|
| 63 |
+
def __init__(self, layer_type):
|
| 64 |
+
super().__init__()
|
| 65 |
+
self.layer_type = layer_type
|
| 66 |
+
|
| 67 |
+
def forward(self, x):
|
| 68 |
+
if self.layer_type == 'none':
|
| 69 |
+
return x
|
| 70 |
+
elif self.layer_type == 'timepreserve':
|
| 71 |
+
return F.avg_pool2d(x, (2, 1))
|
| 72 |
+
elif self.layer_type == 'half':
|
| 73 |
+
if x.shape[-1] % 2 != 0:
|
| 74 |
+
x = torch.cat([x, x[..., -1].unsqueeze(-1)], dim=-1)
|
| 75 |
+
return F.avg_pool2d(x, 2)
|
| 76 |
+
else:
|
| 77 |
+
raise RuntimeError('Got unexpected donwsampletype %s, expected is [none, timepreserve, half]' % self.layer_type)
|
| 78 |
+
|
| 79 |
+
|
| 80 |
+
class UpSample(nn.Module):
|
| 81 |
+
def __init__(self, layer_type):
|
| 82 |
+
super().__init__()
|
| 83 |
+
self.layer_type = layer_type
|
| 84 |
+
|
| 85 |
+
def forward(self, x):
|
| 86 |
+
if self.layer_type == 'none':
|
| 87 |
+
return x
|
| 88 |
+
elif self.layer_type == 'timepreserve':
|
| 89 |
+
return F.interpolate(x, scale_factor=(2, 1), mode='nearest')
|
| 90 |
+
elif self.layer_type == 'half':
|
| 91 |
+
return F.interpolate(x, scale_factor=2, mode='nearest')
|
| 92 |
+
else:
|
| 93 |
+
raise RuntimeError('Got unexpected upsampletype %s, expected is [none, timepreserve, half]' % self.layer_type)
|
| 94 |
+
|
| 95 |
+
|
| 96 |
+
class ResBlk(nn.Module):
|
| 97 |
+
def __init__(self, dim_in, dim_out, actv=nn.LeakyReLU(0.2),
|
| 98 |
+
normalize=False, downsample='none'):
|
| 99 |
+
super().__init__()
|
| 100 |
+
self.actv = actv
|
| 101 |
+
self.normalize = normalize
|
| 102 |
+
self.downsample = DownSample(downsample)
|
| 103 |
+
self.downsample_res = LearnedDownSample(downsample, dim_in)
|
| 104 |
+
self.learned_sc = dim_in != dim_out
|
| 105 |
+
self._build_weights(dim_in, dim_out)
|
| 106 |
+
|
| 107 |
+
def _build_weights(self, dim_in, dim_out):
|
| 108 |
+
self.conv1 = spectral_norm(nn.Conv2d(dim_in, dim_in, 3, 1, 1))
|
| 109 |
+
self.conv2 = spectral_norm(nn.Conv2d(dim_in, dim_out, 3, 1, 1))
|
| 110 |
+
if self.normalize:
|
| 111 |
+
self.norm1 = nn.InstanceNorm2d(dim_in, affine=True)
|
| 112 |
+
self.norm2 = nn.InstanceNorm2d(dim_in, affine=True)
|
| 113 |
+
if self.learned_sc:
|
| 114 |
+
self.conv1x1 = spectral_norm(nn.Conv2d(dim_in, dim_out, 1, 1, 0, bias=False))
|
| 115 |
+
|
| 116 |
+
def _shortcut(self, x):
|
| 117 |
+
if self.learned_sc:
|
| 118 |
+
x = self.conv1x1(x)
|
| 119 |
+
if self.downsample:
|
| 120 |
+
x = self.downsample(x)
|
| 121 |
+
return x
|
| 122 |
+
|
| 123 |
+
def _residual(self, x):
|
| 124 |
+
if self.normalize:
|
| 125 |
+
x = self.norm1(x)
|
| 126 |
+
x = self.actv(x)
|
| 127 |
+
x = self.conv1(x)
|
| 128 |
+
x = self.downsample_res(x)
|
| 129 |
+
if self.normalize:
|
| 130 |
+
x = self.norm2(x)
|
| 131 |
+
x = self.actv(x)
|
| 132 |
+
x = self.conv2(x)
|
| 133 |
+
return x
|
| 134 |
+
|
| 135 |
+
def forward(self, x):
|
| 136 |
+
x = self._shortcut(x) + self._residual(x)
|
| 137 |
+
return x / math.sqrt(2) # unit variance
|
| 138 |
+
|
| 139 |
+
class StyleEncoder(nn.Module):
|
| 140 |
+
def __init__(self, dim_in=48, style_dim=48, max_conv_dim=384):
|
| 141 |
+
super().__init__()
|
| 142 |
+
blocks = []
|
| 143 |
+
blocks += [spectral_norm(nn.Conv2d(1, dim_in, 3, 1, 1))]
|
| 144 |
+
|
| 145 |
+
repeat_num = 4
|
| 146 |
+
for _ in range(repeat_num):
|
| 147 |
+
dim_out = min(dim_in*2, max_conv_dim)
|
| 148 |
+
blocks += [ResBlk(dim_in, dim_out, downsample='half')]
|
| 149 |
+
dim_in = dim_out
|
| 150 |
+
|
| 151 |
+
blocks += [nn.LeakyReLU(0.2)]
|
| 152 |
+
blocks += [spectral_norm(nn.Conv2d(dim_out, dim_out, 5, 1, 0))]
|
| 153 |
+
blocks += [nn.AdaptiveAvgPool2d(1)]
|
| 154 |
+
blocks += [nn.LeakyReLU(0.2)]
|
| 155 |
+
self.shared = nn.Sequential(*blocks)
|
| 156 |
+
|
| 157 |
+
self.unshared = nn.Linear(dim_out, style_dim)
|
| 158 |
+
|
| 159 |
+
def forward(self, x):
|
| 160 |
+
h = self.shared(x)
|
| 161 |
+
h = h.view(h.size(0), -1)
|
| 162 |
+
s = self.unshared(h)
|
| 163 |
+
|
| 164 |
+
return s
|
| 165 |
+
|
| 166 |
+
class LinearNorm(torch.nn.Module):
|
| 167 |
+
def __init__(self, in_dim, out_dim, bias=True, w_init_gain='linear'):
|
| 168 |
+
super(LinearNorm, self).__init__()
|
| 169 |
+
self.linear_layer = torch.nn.Linear(in_dim, out_dim, bias=bias)
|
| 170 |
+
|
| 171 |
+
torch.nn.init.xavier_uniform_(
|
| 172 |
+
self.linear_layer.weight,
|
| 173 |
+
gain=torch.nn.init.calculate_gain(w_init_gain))
|
| 174 |
+
|
| 175 |
+
def forward(self, x):
|
| 176 |
+
return self.linear_layer(x)
|
| 177 |
+
|
| 178 |
+
class ResBlk1d(nn.Module):
|
| 179 |
+
def __init__(self, dim_in, dim_out, actv=nn.LeakyReLU(0.2),
|
| 180 |
+
normalize=False, downsample='none', dropout_p=0.2):
|
| 181 |
+
super().__init__()
|
| 182 |
+
self.actv = actv
|
| 183 |
+
self.normalize = normalize
|
| 184 |
+
self.downsample_type = downsample
|
| 185 |
+
self.learned_sc = dim_in != dim_out
|
| 186 |
+
self._build_weights(dim_in, dim_out)
|
| 187 |
+
self.dropout_p = dropout_p
|
| 188 |
+
|
| 189 |
+
if self.downsample_type == 'none':
|
| 190 |
+
self.pool = nn.Identity()
|
| 191 |
+
else:
|
| 192 |
+
self.pool = weight_norm(nn.Conv1d(dim_in, dim_in, kernel_size=3, stride=2, groups=dim_in, padding=1))
|
| 193 |
+
|
| 194 |
+
def _build_weights(self, dim_in, dim_out):
|
| 195 |
+
self.conv1 = weight_norm(nn.Conv1d(dim_in, dim_in, 3, 1, 1))
|
| 196 |
+
self.conv2 = weight_norm(nn.Conv1d(dim_in, dim_out, 3, 1, 1))
|
| 197 |
+
if self.normalize:
|
| 198 |
+
self.norm1 = nn.InstanceNorm1d(dim_in, affine=True)
|
| 199 |
+
self.norm2 = nn.InstanceNorm1d(dim_in, affine=True)
|
| 200 |
+
if self.learned_sc:
|
| 201 |
+
self.conv1x1 = weight_norm(nn.Conv1d(dim_in, dim_out, 1, 1, 0, bias=False))
|
| 202 |
+
|
| 203 |
+
def downsample(self, x):
|
| 204 |
+
if self.downsample_type == 'none':
|
| 205 |
+
return x
|
| 206 |
+
else:
|
| 207 |
+
if x.shape[-1] % 2 != 0:
|
| 208 |
+
x = torch.cat([x, x[..., -1].unsqueeze(-1)], dim=-1)
|
| 209 |
+
return F.avg_pool1d(x, 2)
|
| 210 |
+
|
| 211 |
+
def _shortcut(self, x):
|
| 212 |
+
if self.learned_sc:
|
| 213 |
+
x = self.conv1x1(x)
|
| 214 |
+
x = self.downsample(x)
|
| 215 |
+
return x
|
| 216 |
+
|
| 217 |
+
def _residual(self, x):
|
| 218 |
+
if self.normalize:
|
| 219 |
+
x = self.norm1(x)
|
| 220 |
+
x = self.actv(x)
|
| 221 |
+
x = F.dropout(x, p=self.dropout_p, training=self.training)
|
| 222 |
+
|
| 223 |
+
x = self.conv1(x)
|
| 224 |
+
x = self.pool(x)
|
| 225 |
+
if self.normalize:
|
| 226 |
+
x = self.norm2(x)
|
| 227 |
+
|
| 228 |
+
x = self.actv(x)
|
| 229 |
+
x = F.dropout(x, p=self.dropout_p, training=self.training)
|
| 230 |
+
|
| 231 |
+
x = self.conv2(x)
|
| 232 |
+
return x
|
| 233 |
+
|
| 234 |
+
def forward(self, x):
|
| 235 |
+
x = self._shortcut(x) + self._residual(x)
|
| 236 |
+
return x / math.sqrt(2) # unit variance
|
| 237 |
+
|
| 238 |
+
class LayerNorm(nn.Module):
|
| 239 |
+
def __init__(self, channels, eps=1e-5):
|
| 240 |
+
super().__init__()
|
| 241 |
+
self.channels = channels
|
| 242 |
+
self.eps = eps
|
| 243 |
+
|
| 244 |
+
self.gamma = nn.Parameter(torch.ones(channels))
|
| 245 |
+
self.beta = nn.Parameter(torch.zeros(channels))
|
| 246 |
+
|
| 247 |
+
def forward(self, x):
|
| 248 |
+
x = x.transpose(1, -1)
|
| 249 |
+
x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps)
|
| 250 |
+
return x.transpose(1, -1)
|
| 251 |
+
|
| 252 |
+
class TextEncoder(nn.Module):
|
| 253 |
+
def __init__(self, channels, kernel_size, depth, n_symbols, actv=nn.LeakyReLU(0.2)):
|
| 254 |
+
super().__init__()
|
| 255 |
+
self.embedding = nn.Embedding(n_symbols, channels)
|
| 256 |
+
|
| 257 |
+
padding = (kernel_size - 1) // 2
|
| 258 |
+
self.cnn = nn.ModuleList()
|
| 259 |
+
for _ in range(depth):
|
| 260 |
+
self.cnn.append(nn.Sequential(
|
| 261 |
+
weight_norm(nn.Conv1d(channels, channels, kernel_size=kernel_size, padding=padding)),
|
| 262 |
+
LayerNorm(channels),
|
| 263 |
+
actv,
|
| 264 |
+
nn.Dropout(0.2),
|
| 265 |
+
))
|
| 266 |
+
# self.cnn = nn.Sequential(*self.cnn)
|
| 267 |
+
|
| 268 |
+
self.lstm = nn.LSTM(channels, channels//2, 1, batch_first=True, bidirectional=True)
|
| 269 |
+
|
| 270 |
+
def forward(self, x, input_lengths, m):
|
| 271 |
+
x = self.embedding(x) # [B, T, emb]
|
| 272 |
+
x = x.transpose(1, 2) # [B, emb, T]
|
| 273 |
+
m = m.to(input_lengths.device).unsqueeze(1)
|
| 274 |
+
x.masked_fill_(m, 0.0)
|
| 275 |
+
|
| 276 |
+
for c in self.cnn:
|
| 277 |
+
x = c(x)
|
| 278 |
+
x.masked_fill_(m, 0.0)
|
| 279 |
+
|
| 280 |
+
x = x.transpose(1, 2) # [B, T, chn]
|
| 281 |
+
|
| 282 |
+
input_lengths = input_lengths.cpu().numpy()
|
| 283 |
+
x = nn.utils.rnn.pack_padded_sequence(
|
| 284 |
+
x, input_lengths, batch_first=True, enforce_sorted=False)
|
| 285 |
+
|
| 286 |
+
self.lstm.flatten_parameters()
|
| 287 |
+
x, _ = self.lstm(x)
|
| 288 |
+
x, _ = nn.utils.rnn.pad_packed_sequence(
|
| 289 |
+
x, batch_first=True)
|
| 290 |
+
|
| 291 |
+
x = x.transpose(-1, -2)
|
| 292 |
+
x_pad = torch.zeros([x.shape[0], x.shape[1], m.shape[-1]])
|
| 293 |
+
|
| 294 |
+
x_pad[:, :, :x.shape[-1]] = x
|
| 295 |
+
x = x_pad.to(x.device)
|
| 296 |
+
|
| 297 |
+
x.masked_fill_(m, 0.0)
|
| 298 |
+
|
| 299 |
+
return x
|
| 300 |
+
|
| 301 |
+
def inference(self, x):
|
| 302 |
+
x = self.embedding(x)
|
| 303 |
+
x = x.transpose(1, 2)
|
| 304 |
+
x = self.cnn(x)
|
| 305 |
+
x = x.transpose(1, 2)
|
| 306 |
+
self.lstm.flatten_parameters()
|
| 307 |
+
x, _ = self.lstm(x)
|
| 308 |
+
return x
|
| 309 |
+
|
| 310 |
+
def length_to_mask(self, lengths):
|
| 311 |
+
mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths)
|
| 312 |
+
mask = torch.gt(mask+1, lengths.unsqueeze(1))
|
| 313 |
+
return mask
|
| 314 |
+
|
| 315 |
+
|
| 316 |
+
|
| 317 |
+
class AdaIN1d(nn.Module):
|
| 318 |
+
def __init__(self, style_dim, num_features):
|
| 319 |
+
super().__init__()
|
| 320 |
+
self.norm = nn.InstanceNorm1d(num_features, affine=False)
|
| 321 |
+
self.fc = nn.Linear(style_dim, num_features*2)
|
| 322 |
+
|
| 323 |
+
def forward(self, x, s):
|
| 324 |
+
h = self.fc(s)
|
| 325 |
+
h = h.view(h.size(0), h.size(1), 1)
|
| 326 |
+
gamma, beta = torch.chunk(h, chunks=2, dim=1)
|
| 327 |
+
# affine (1 + lin(x)) * inst(x) + lin(x) is this a skip connection where the weight is a lin of itself
|
| 328 |
+
return (1 + gamma) * self.norm(x) + beta
|
| 329 |
+
|
| 330 |
+
class UpSample1d(nn.Module):
|
| 331 |
+
def __init__(self, layer_type):
|
| 332 |
+
super().__init__()
|
| 333 |
+
self.layer_type = layer_type
|
| 334 |
+
|
| 335 |
+
def forward(self, x):
|
| 336 |
+
if self.layer_type == 'none':
|
| 337 |
+
return x
|
| 338 |
+
else:
|
| 339 |
+
return F.interpolate(x, scale_factor=2, mode='nearest')
|
| 340 |
+
|
| 341 |
+
class AdainResBlk1d(nn.Module):
|
| 342 |
+
def __init__(self, dim_in, dim_out, style_dim=64, actv=nn.LeakyReLU(0.2),
|
| 343 |
+
upsample='none', dropout_p=0.0):
|
| 344 |
+
super().__init__()
|
| 345 |
+
self.actv = actv
|
| 346 |
+
self.upsample_type = upsample
|
| 347 |
+
self.upsample = UpSample1d(upsample)
|
| 348 |
+
self.learned_sc = dim_in != dim_out
|
| 349 |
+
self._build_weights(dim_in, dim_out, style_dim)
|
| 350 |
+
self.dropout = nn.Dropout(dropout_p)
|
| 351 |
+
|
| 352 |
+
if upsample == 'none':
|
| 353 |
+
self.pool = nn.Identity()
|
| 354 |
+
else:
|
| 355 |
+
self.pool = weight_norm(nn.ConvTranspose1d(dim_in, dim_in, kernel_size=3, stride=2, groups=dim_in, padding=1, output_padding=1))
|
| 356 |
+
|
| 357 |
+
|
| 358 |
+
def _build_weights(self, dim_in, dim_out, style_dim):
|
| 359 |
+
self.conv1 = weight_norm(nn.Conv1d(dim_in, dim_out, 3, 1, 1))
|
| 360 |
+
self.conv2 = weight_norm(nn.Conv1d(dim_out, dim_out, 3, 1, 1))
|
| 361 |
+
self.norm1 = AdaIN1d(style_dim, dim_in)
|
| 362 |
+
self.norm2 = AdaIN1d(style_dim, dim_out)
|
| 363 |
+
if self.learned_sc:
|
| 364 |
+
self.conv1x1 = weight_norm(nn.Conv1d(dim_in, dim_out, 1, 1, 0, bias=False))
|
| 365 |
+
|
| 366 |
+
def _shortcut(self, x):
|
| 367 |
+
x = self.upsample(x)
|
| 368 |
+
if self.learned_sc:
|
| 369 |
+
x = self.conv1x1(x)
|
| 370 |
+
return x
|
| 371 |
+
|
| 372 |
+
def _residual(self, x, s):
|
| 373 |
+
x = self.norm1(x, s)
|
| 374 |
+
x = self.actv(x)
|
| 375 |
+
x = self.pool(x)
|
| 376 |
+
x = self.conv1(self.dropout(x))
|
| 377 |
+
x = self.norm2(x, s)
|
| 378 |
+
x = self.actv(x)
|
| 379 |
+
x = self.conv2(self.dropout(x))
|
| 380 |
+
return x
|
| 381 |
+
|
| 382 |
+
def forward(self, x, s):
|
| 383 |
+
out = self._residual(x, s)
|
| 384 |
+
out = (out + self._shortcut(x)) / math.sqrt(2)
|
| 385 |
+
return out
|
| 386 |
+
|
| 387 |
+
class AdaLayerNorm(nn.Module):
|
| 388 |
+
def __init__(self, style_dim, channels, eps=1e-5):
|
| 389 |
+
super().__init__()
|
| 390 |
+
self.channels = channels
|
| 391 |
+
self.eps = eps
|
| 392 |
+
|
| 393 |
+
self.fc = nn.Linear(style_dim, channels*2)
|
| 394 |
+
|
| 395 |
+
def forward(self, x, s):
|
| 396 |
+
x = x.transpose(-1, -2)
|
| 397 |
+
x = x.transpose(1, -1)
|
| 398 |
+
|
| 399 |
+
h = self.fc(s)
|
| 400 |
+
h = h.view(h.size(0), h.size(1), 1)
|
| 401 |
+
gamma, beta = torch.chunk(h, chunks=2, dim=1)
|
| 402 |
+
gamma, beta = gamma.transpose(1, -1), beta.transpose(1, -1)
|
| 403 |
+
|
| 404 |
+
|
| 405 |
+
x = F.layer_norm(x, (self.channels,), eps=self.eps)
|
| 406 |
+
x = (1 + gamma) * x + beta
|
| 407 |
+
return x.transpose(1, -1).transpose(-1, -2)
|
| 408 |
+
|
| 409 |
+
class ProsodyPredictor(nn.Module):
|
| 410 |
+
|
| 411 |
+
def __init__(self, style_dim, d_hid, nlayers, max_dur=50, dropout=0.1):
|
| 412 |
+
super().__init__()
|
| 413 |
+
|
| 414 |
+
self.text_encoder = DurationEncoder(sty_dim=style_dim,
|
| 415 |
+
d_model=d_hid,
|
| 416 |
+
nlayers=nlayers,
|
| 417 |
+
dropout=dropout)
|
| 418 |
+
|
| 419 |
+
self.lstm = nn.LSTM(d_hid + style_dim, d_hid // 2, 1, batch_first=True, bidirectional=True)
|
| 420 |
+
self.duration_proj = LinearNorm(d_hid, max_dur)
|
| 421 |
+
|
| 422 |
+
self.shared = nn.LSTM(d_hid + style_dim, d_hid // 2, 1, batch_first=True, bidirectional=True)
|
| 423 |
+
self.F0 = nn.ModuleList()
|
| 424 |
+
self.F0.append(AdainResBlk1d(d_hid, d_hid, style_dim, dropout_p=dropout))
|
| 425 |
+
self.F0.append(AdainResBlk1d(d_hid, d_hid // 2, style_dim, upsample=True, dropout_p=dropout))
|
| 426 |
+
self.F0.append(AdainResBlk1d(d_hid // 2, d_hid // 2, style_dim, dropout_p=dropout))
|
| 427 |
+
|
| 428 |
+
self.N = nn.ModuleList()
|
| 429 |
+
self.N.append(AdainResBlk1d(d_hid, d_hid, style_dim, dropout_p=dropout))
|
| 430 |
+
self.N.append(AdainResBlk1d(d_hid, d_hid // 2, style_dim, upsample=True, dropout_p=dropout))
|
| 431 |
+
self.N.append(AdainResBlk1d(d_hid // 2, d_hid // 2, style_dim, dropout_p=dropout))
|
| 432 |
+
|
| 433 |
+
self.F0_proj = nn.Conv1d(d_hid // 2, 1, 1, 1, 0)
|
| 434 |
+
self.N_proj = nn.Conv1d(d_hid // 2, 1, 1, 1, 0)
|
| 435 |
+
|
| 436 |
+
def F0Ntrain(self, x, s):
|
| 437 |
+
x, _ = self.shared(x.transpose(-1, -2))
|
| 438 |
+
|
| 439 |
+
F0 = x.transpose(-1, -2)
|
| 440 |
+
for block in self.F0:
|
| 441 |
+
F0 = block(F0, s)
|
| 442 |
+
F0 = self.F0_proj(F0)
|
| 443 |
+
|
| 444 |
+
N = x.transpose(-1, -2)
|
| 445 |
+
for block in self.N:
|
| 446 |
+
N = block(N, s)
|
| 447 |
+
N = self.N_proj(N)
|
| 448 |
+
|
| 449 |
+
return F0.squeeze(1), N.squeeze(1)
|
| 450 |
+
|
| 451 |
+
def length_to_mask(self, lengths):
|
| 452 |
+
mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths)
|
| 453 |
+
mask = torch.gt(mask+1, lengths.unsqueeze(1))
|
| 454 |
+
return mask
|
| 455 |
+
|
| 456 |
+
class DurationEncoder(nn.Module):
|
| 457 |
+
|
| 458 |
+
def __init__(self, sty_dim, d_model, nlayers, dropout=0.1):
|
| 459 |
+
super().__init__()
|
| 460 |
+
self.lstms = nn.ModuleList()
|
| 461 |
+
for _ in range(nlayers):
|
| 462 |
+
self.lstms.append(nn.LSTM(d_model + sty_dim,
|
| 463 |
+
d_model // 2,
|
| 464 |
+
num_layers=1,
|
| 465 |
+
batch_first=True,
|
| 466 |
+
bidirectional=True,
|
| 467 |
+
dropout=dropout))
|
| 468 |
+
self.lstms.append(AdaLayerNorm(sty_dim, d_model))
|
| 469 |
+
|
| 470 |
+
|
| 471 |
+
self.dropout = dropout
|
| 472 |
+
self.d_model = d_model
|
| 473 |
+
self.sty_dim = sty_dim
|
| 474 |
+
|
| 475 |
+
def forward(self, x, style, text_lengths, m):
|
| 476 |
+
masks = m.to(text_lengths.device)
|
| 477 |
+
|
| 478 |
+
x = x.permute(2, 0, 1)
|
| 479 |
+
s = style.expand(x.shape[0], x.shape[1], -1)
|
| 480 |
+
x = torch.cat([x, s], axis=-1)
|
| 481 |
+
x.masked_fill_(masks.unsqueeze(-1).transpose(0, 1), 0.0)
|
| 482 |
+
|
| 483 |
+
x = x.transpose(0, 1)
|
| 484 |
+
input_lengths = text_lengths.cpu().numpy()
|
| 485 |
+
x = x.transpose(-1, -2)
|
| 486 |
+
|
| 487 |
+
for block in self.lstms:
|
| 488 |
+
if isinstance(block, AdaLayerNorm):
|
| 489 |
+
x = block(x.transpose(-1, -2), style).transpose(-1, -2)
|
| 490 |
+
x = torch.cat([x, s.permute(1, -1, 0)], axis=1)
|
| 491 |
+
x.masked_fill_(masks.unsqueeze(-1).transpose(-1, -2), 0.0)
|
| 492 |
+
else:
|
| 493 |
+
x = x.transpose(-1, -2)
|
| 494 |
+
x = nn.utils.rnn.pack_padded_sequence(
|
| 495 |
+
x, input_lengths, batch_first=True, enforce_sorted=False)
|
| 496 |
+
block.flatten_parameters()
|
| 497 |
+
x, _ = block(x)
|
| 498 |
+
x, _ = nn.utils.rnn.pad_packed_sequence(
|
| 499 |
+
x, batch_first=True)
|
| 500 |
+
x = F.dropout(x, p=self.dropout, training=self.training)
|
| 501 |
+
x = x.transpose(-1, -2)
|
| 502 |
+
|
| 503 |
+
x_pad = torch.zeros([x.shape[0], x.shape[1], m.shape[-1]])
|
| 504 |
+
|
| 505 |
+
x_pad[:, :, :x.shape[-1]] = x
|
| 506 |
+
x = x_pad.to(x.device)
|
| 507 |
+
# print('Calling Duration Encoder\n\n\n\n',x.shape, x.min(), x.max())
|
| 508 |
+
# Calling Duration Encoder
|
| 509 |
+
# torch.Size([1, 640, 107]) tensor(-3.0903, device='cuda:0') tensor(2.3089, device='cuda:0')
|
| 510 |
+
return x.transpose(-1, -2)
|
| 511 |
+
|
| 512 |
+
|
| 513 |
+
|
| 514 |
+
|
| 515 |
+
def load_F0_models(path):
|
| 516 |
+
# load F0 model
|
| 517 |
+
|
| 518 |
+
F0_model = JDCNet(num_class=1, seq_len=192)
|
| 519 |
+
print(path, 'WHAT ARE YOU TRYING TO LOAD F0 L520')
|
| 520 |
+
path = path.replace('.t7', '.pth')
|
| 521 |
+
params = torch.load(path, map_location='cpu')['net']
|
| 522 |
+
F0_model.load_state_dict(params)
|
| 523 |
+
_ = F0_model.train()
|
| 524 |
+
|
| 525 |
+
return F0_model
|
| 526 |
+
|
| 527 |
+
def load_ASR_models(ASR_MODEL_PATH, ASR_MODEL_CONFIG):
|
| 528 |
+
# load ASR model
|
| 529 |
+
def _load_config(path):
|
| 530 |
+
with open(path) as f:
|
| 531 |
+
config = yaml.safe_load(f)
|
| 532 |
+
model_config = config['model_params']
|
| 533 |
+
return model_config
|
| 534 |
+
|
| 535 |
+
def _load_model(model_config, model_path):
|
| 536 |
+
model = ASRCNN(**model_config)
|
| 537 |
+
params = torch.load(model_path, map_location='cpu')['model']
|
| 538 |
+
model.load_state_dict(params)
|
| 539 |
+
return model
|
| 540 |
+
|
| 541 |
+
asr_model_config = _load_config(ASR_MODEL_CONFIG)
|
| 542 |
+
asr_model = _load_model(asr_model_config, ASR_MODEL_PATH)
|
| 543 |
+
_ = asr_model.train()
|
| 544 |
+
|
| 545 |
+
return asr_model
|
| 546 |
+
|
| 547 |
+
def build_model(args, text_aligner, pitch_extractor, bert):
|
| 548 |
+
print(f'\n==============\n {args.decoder.type=}\n==============L584 models.py @ build_model()\n')
|
| 549 |
+
|
| 550 |
+
from Modules.hifigan import Decoder
|
| 551 |
+
decoder = Decoder(dim_in=args.hidden_dim, style_dim=args.style_dim, dim_out=args.n_mels,
|
| 552 |
+
resblock_kernel_sizes = args.decoder.resblock_kernel_sizes,
|
| 553 |
+
upsample_rates = args.decoder.upsample_rates,
|
| 554 |
+
upsample_initial_channel=args.decoder.upsample_initial_channel,
|
| 555 |
+
resblock_dilation_sizes=args.decoder.resblock_dilation_sizes,
|
| 556 |
+
upsample_kernel_sizes=args.decoder.upsample_kernel_sizes)
|
| 557 |
+
|
| 558 |
+
text_encoder = TextEncoder(channels=args.hidden_dim, kernel_size=5, depth=args.n_layer, n_symbols=args.n_token)
|
| 559 |
+
|
| 560 |
+
predictor = ProsodyPredictor(style_dim=args.style_dim, d_hid=args.hidden_dim, nlayers=args.n_layer, max_dur=args.max_dur, dropout=args.dropout)
|
| 561 |
+
|
| 562 |
+
style_encoder = StyleEncoder(dim_in=args.dim_in, style_dim=args.style_dim, max_conv_dim=args.hidden_dim) # acoustic style encoder
|
| 563 |
+
predictor_encoder = StyleEncoder(dim_in=args.dim_in, style_dim=args.style_dim, max_conv_dim=args.hidden_dim) # prosodic style encoder
|
| 564 |
+
|
| 565 |
+
# define diffusion model
|
| 566 |
+
if args.multispeaker:
|
| 567 |
+
transformer = StyleTransformer1d(channels=args.style_dim*2,
|
| 568 |
+
context_embedding_features=bert.config.hidden_size,
|
| 569 |
+
context_features=args.style_dim*2,
|
| 570 |
+
**args.diffusion.transformer)
|
| 571 |
+
else:
|
| 572 |
+
transformer = Transformer1d(channels=args.style_dim*2,
|
| 573 |
+
context_embedding_features=bert.config.hidden_size,
|
| 574 |
+
**args.diffusion.transformer)
|
| 575 |
+
|
| 576 |
+
diffusion = AudioDiffusionConditional(
|
| 577 |
+
in_channels=1,
|
| 578 |
+
embedding_max_length=bert.config.max_position_embeddings,
|
| 579 |
+
embedding_features=bert.config.hidden_size,
|
| 580 |
+
embedding_mask_proba=args.diffusion.embedding_mask_proba, # Conditional dropout of batch elements,
|
| 581 |
+
channels=args.style_dim*2,
|
| 582 |
+
context_features=args.style_dim*2,
|
| 583 |
+
)
|
| 584 |
+
|
| 585 |
+
diffusion.diffusion = KDiffusion(
|
| 586 |
+
net=diffusion.unet,
|
| 587 |
+
sigma_distribution=LogNormalDistribution(mean = args.diffusion.dist.mean, std = args.diffusion.dist.std),
|
| 588 |
+
sigma_data=args.diffusion.dist.sigma_data, # a placeholder, will be changed dynamically when start training diffusion model
|
| 589 |
+
dynamic_threshold=0.0
|
| 590 |
+
)
|
| 591 |
+
diffusion.diffusion.net = transformer
|
| 592 |
+
diffusion.unet = transformer
|
| 593 |
+
|
| 594 |
+
|
| 595 |
+
nets = Munch(
|
| 596 |
+
bert=bert,
|
| 597 |
+
bert_encoder=nn.Linear(bert.config.hidden_size, args.hidden_dim),
|
| 598 |
+
|
| 599 |
+
predictor=predictor,
|
| 600 |
+
decoder=decoder,
|
| 601 |
+
text_encoder=text_encoder,
|
| 602 |
+
|
| 603 |
+
predictor_encoder=predictor_encoder,
|
| 604 |
+
style_encoder=style_encoder,
|
| 605 |
+
diffusion=diffusion,
|
| 606 |
+
|
| 607 |
+
text_aligner = text_aligner,
|
| 608 |
+
pitch_extractor=pitch_extractor
|
| 609 |
+
)
|
| 610 |
+
|
| 611 |
+
return nets
|
packages.txt
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
espeak-ng
|
pca/annotated_features.npy
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ea4d9a2bd9d3139441989c822d48fc96f887e0d3ea015d55dcb5df9b004836e4
|
| 3 |
+
size 2576
|
pca/annotations.json
ADDED
|
@@ -0,0 +1,1991 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[
|
| 2 |
+
{
|
| 3 |
+
"audio": "\/data\/upload\/1\/a0e6621c-09uKIJP6.wav",
|
| 4 |
+
"id": 1,
|
| 5 |
+
"pacing": [
|
| 6 |
+
{
|
| 7 |
+
"rating": 2
|
| 8 |
+
}
|
| 9 |
+
],
|
| 10 |
+
"gender": [
|
| 11 |
+
{
|
| 12 |
+
"rating": 1
|
| 13 |
+
}
|
| 14 |
+
],
|
| 15 |
+
"tone": [
|
| 16 |
+
{
|
| 17 |
+
"rating": 1
|
| 18 |
+
}
|
| 19 |
+
],
|
| 20 |
+
"enunciation": [
|
| 21 |
+
{
|
| 22 |
+
"rating": 3
|
| 23 |
+
}
|
| 24 |
+
],
|
| 25 |
+
"quality": [
|
| 26 |
+
{
|
| 27 |
+
"rating": 1
|
| 28 |
+
}
|
| 29 |
+
],
|
| 30 |
+
"style": [
|
| 31 |
+
{
|
| 32 |
+
"rating": 3
|
| 33 |
+
}
|
| 34 |
+
],
|
| 35 |
+
"annotator": 1,
|
| 36 |
+
"annotation_id": 1,
|
| 37 |
+
"created_at": "2024-12-24T11:07:30.438634Z",
|
| 38 |
+
"updated_at": "2024-12-24T11:07:30.438652Z",
|
| 39 |
+
"lead_time": 78.024
|
| 40 |
+
},
|
| 41 |
+
{
|
| 42 |
+
"audio": "\/data\/upload\/1\/e8e3e271-gKtQS1UY.wav",
|
| 43 |
+
"id": 2,
|
| 44 |
+
"gender": [
|
| 45 |
+
{
|
| 46 |
+
"rating": 3
|
| 47 |
+
}
|
| 48 |
+
],
|
| 49 |
+
"tone": [
|
| 50 |
+
{
|
| 51 |
+
"rating": 3
|
| 52 |
+
}
|
| 53 |
+
],
|
| 54 |
+
"pacing": [
|
| 55 |
+
{
|
| 56 |
+
"rating": 3
|
| 57 |
+
}
|
| 58 |
+
],
|
| 59 |
+
"enunciation": [
|
| 60 |
+
{
|
| 61 |
+
"rating": 4
|
| 62 |
+
}
|
| 63 |
+
],
|
| 64 |
+
"quality": [
|
| 65 |
+
{
|
| 66 |
+
"rating": 4
|
| 67 |
+
}
|
| 68 |
+
],
|
| 69 |
+
"style": [
|
| 70 |
+
{
|
| 71 |
+
"rating": 4
|
| 72 |
+
}
|
| 73 |
+
],
|
| 74 |
+
"annotator": 1,
|
| 75 |
+
"annotation_id": 2,
|
| 76 |
+
"created_at": "2024-12-24T11:07:48.953656Z",
|
| 77 |
+
"updated_at": "2024-12-24T11:07:48.953687Z",
|
| 78 |
+
"lead_time": 18.297
|
| 79 |
+
},
|
| 80 |
+
{
|
| 81 |
+
"audio": "\/data\/upload\/1\/77d7e6d8-PTYJ87FC.wav",
|
| 82 |
+
"id": 3,
|
| 83 |
+
"gender": [
|
| 84 |
+
{
|
| 85 |
+
"rating": 2
|
| 86 |
+
}
|
| 87 |
+
],
|
| 88 |
+
"tone": [
|
| 89 |
+
{
|
| 90 |
+
"rating": 2
|
| 91 |
+
}
|
| 92 |
+
],
|
| 93 |
+
"pacing": [
|
| 94 |
+
{
|
| 95 |
+
"rating": 3
|
| 96 |
+
}
|
| 97 |
+
],
|
| 98 |
+
"enunciation": [
|
| 99 |
+
{
|
| 100 |
+
"rating": 3
|
| 101 |
+
}
|
| 102 |
+
],
|
| 103 |
+
"quality": [
|
| 104 |
+
{
|
| 105 |
+
"rating": 1
|
| 106 |
+
}
|
| 107 |
+
],
|
| 108 |
+
"style": [
|
| 109 |
+
{
|
| 110 |
+
"rating": 3
|
| 111 |
+
}
|
| 112 |
+
],
|
| 113 |
+
"annotator": 1,
|
| 114 |
+
"annotation_id": 3,
|
| 115 |
+
"created_at": "2024-12-24T11:08:08.418844Z",
|
| 116 |
+
"updated_at": "2024-12-24T11:08:08.418858Z",
|
| 117 |
+
"lead_time": 19.242
|
| 118 |
+
},
|
| 119 |
+
{
|
| 120 |
+
"audio": "\/data\/upload\/1\/31246ad1-IPKUCJ5q.wav",
|
| 121 |
+
"id": 4,
|
| 122 |
+
"gender": [
|
| 123 |
+
{
|
| 124 |
+
"rating": 3
|
| 125 |
+
}
|
| 126 |
+
],
|
| 127 |
+
"tone": [
|
| 128 |
+
{
|
| 129 |
+
"rating": 5
|
| 130 |
+
}
|
| 131 |
+
],
|
| 132 |
+
"pacing": [
|
| 133 |
+
{
|
| 134 |
+
"rating": 4
|
| 135 |
+
}
|
| 136 |
+
],
|
| 137 |
+
"enunciation": [
|
| 138 |
+
{
|
| 139 |
+
"rating": 4
|
| 140 |
+
}
|
| 141 |
+
],
|
| 142 |
+
"quality": [
|
| 143 |
+
{
|
| 144 |
+
"rating": 3
|
| 145 |
+
}
|
| 146 |
+
],
|
| 147 |
+
"style": [
|
| 148 |
+
{
|
| 149 |
+
"rating": 4
|
| 150 |
+
}
|
| 151 |
+
],
|
| 152 |
+
"annotator": 1,
|
| 153 |
+
"annotation_id": 4,
|
| 154 |
+
"created_at": "2024-12-24T11:09:05.335687Z",
|
| 155 |
+
"updated_at": "2024-12-24T11:09:05.335705Z",
|
| 156 |
+
"lead_time": 18.536
|
| 157 |
+
},
|
| 158 |
+
{
|
| 159 |
+
"audio": "\/data\/upload\/1\/98bc1f15-aMNM7RnL.wav",
|
| 160 |
+
"id": 5,
|
| 161 |
+
"gender": [
|
| 162 |
+
{
|
| 163 |
+
"rating": 4
|
| 164 |
+
}
|
| 165 |
+
],
|
| 166 |
+
"tone": [
|
| 167 |
+
{
|
| 168 |
+
"rating": 4
|
| 169 |
+
}
|
| 170 |
+
],
|
| 171 |
+
"pacing": [
|
| 172 |
+
{
|
| 173 |
+
"rating": 4
|
| 174 |
+
}
|
| 175 |
+
],
|
| 176 |
+
"enunciation": [
|
| 177 |
+
{
|
| 178 |
+
"rating": 4
|
| 179 |
+
}
|
| 180 |
+
],
|
| 181 |
+
"quality": [
|
| 182 |
+
{
|
| 183 |
+
"rating": 3
|
| 184 |
+
}
|
| 185 |
+
],
|
| 186 |
+
"style": [
|
| 187 |
+
{
|
| 188 |
+
"rating": 3
|
| 189 |
+
}
|
| 190 |
+
],
|
| 191 |
+
"annotator": 1,
|
| 192 |
+
"annotation_id": 5,
|
| 193 |
+
"created_at": "2024-12-24T11:09:22.334461Z",
|
| 194 |
+
"updated_at": "2024-12-24T11:09:22.334478Z",
|
| 195 |
+
"lead_time": 16.818
|
| 196 |
+
},
|
| 197 |
+
{
|
| 198 |
+
"audio": "\/data\/upload\/1\/23109e4f-icIKTMCB.wav",
|
| 199 |
+
"id": 6,
|
| 200 |
+
"gender": [
|
| 201 |
+
{
|
| 202 |
+
"rating": 3
|
| 203 |
+
}
|
| 204 |
+
],
|
| 205 |
+
"tone": [
|
| 206 |
+
{
|
| 207 |
+
"rating": 3
|
| 208 |
+
}
|
| 209 |
+
],
|
| 210 |
+
"pacing": [
|
| 211 |
+
{
|
| 212 |
+
"rating": 4
|
| 213 |
+
}
|
| 214 |
+
],
|
| 215 |
+
"enunciation": [
|
| 216 |
+
{
|
| 217 |
+
"rating": 5
|
| 218 |
+
}
|
| 219 |
+
],
|
| 220 |
+
"quality": [
|
| 221 |
+
{
|
| 222 |
+
"rating": 2
|
| 223 |
+
}
|
| 224 |
+
],
|
| 225 |
+
"style": [
|
| 226 |
+
{
|
| 227 |
+
"rating": 4
|
| 228 |
+
}
|
| 229 |
+
],
|
| 230 |
+
"annotator": 1,
|
| 231 |
+
"annotation_id": 6,
|
| 232 |
+
"created_at": "2024-12-24T11:09:38.553151Z",
|
| 233 |
+
"updated_at": "2024-12-24T11:09:38.553169Z",
|
| 234 |
+
"lead_time": 16.039
|
| 235 |
+
},
|
| 236 |
+
{
|
| 237 |
+
"audio": "\/data\/upload\/1\/224025c1-E5F0dino.wav",
|
| 238 |
+
"id": 7,
|
| 239 |
+
"gender": [
|
| 240 |
+
{
|
| 241 |
+
"rating": 2
|
| 242 |
+
}
|
| 243 |
+
],
|
| 244 |
+
"tone": [
|
| 245 |
+
{
|
| 246 |
+
"rating": 2
|
| 247 |
+
}
|
| 248 |
+
],
|
| 249 |
+
"pacing": [
|
| 250 |
+
{
|
| 251 |
+
"rating": 2
|
| 252 |
+
}
|
| 253 |
+
],
|
| 254 |
+
"enunciation": [
|
| 255 |
+
{
|
| 256 |
+
"rating": 4
|
| 257 |
+
}
|
| 258 |
+
],
|
| 259 |
+
"quality": [
|
| 260 |
+
{
|
| 261 |
+
"rating": 3
|
| 262 |
+
}
|
| 263 |
+
],
|
| 264 |
+
"style": [
|
| 265 |
+
{
|
| 266 |
+
"rating": 4
|
| 267 |
+
}
|
| 268 |
+
],
|
| 269 |
+
"annotator": 1,
|
| 270 |
+
"annotation_id": 7,
|
| 271 |
+
"created_at": "2024-12-24T11:09:56.657942Z",
|
| 272 |
+
"updated_at": "2024-12-24T11:09:56.657961Z",
|
| 273 |
+
"lead_time": 17.889
|
| 274 |
+
},
|
| 275 |
+
{
|
| 276 |
+
"audio": "\/data\/upload\/1\/cb85576d-1EtXTH9V.wav",
|
| 277 |
+
"id": 8,
|
| 278 |
+
"gender": [
|
| 279 |
+
{
|
| 280 |
+
"rating": 4
|
| 281 |
+
}
|
| 282 |
+
],
|
| 283 |
+
"tone": [
|
| 284 |
+
{
|
| 285 |
+
"rating": 4
|
| 286 |
+
}
|
| 287 |
+
],
|
| 288 |
+
"pacing": [
|
| 289 |
+
{
|
| 290 |
+
"rating": 4
|
| 291 |
+
}
|
| 292 |
+
],
|
| 293 |
+
"enunciation": [
|
| 294 |
+
{
|
| 295 |
+
"rating": 4
|
| 296 |
+
}
|
| 297 |
+
],
|
| 298 |
+
"quality": [
|
| 299 |
+
{
|
| 300 |
+
"rating": 5
|
| 301 |
+
}
|
| 302 |
+
],
|
| 303 |
+
"style": [
|
| 304 |
+
{
|
| 305 |
+
"rating": 4
|
| 306 |
+
}
|
| 307 |
+
],
|
| 308 |
+
"annotator": 1,
|
| 309 |
+
"annotation_id": 8,
|
| 310 |
+
"created_at": "2024-12-24T11:10:14.123722Z",
|
| 311 |
+
"updated_at": "2024-12-24T11:10:14.123739Z",
|
| 312 |
+
"lead_time": 17.245
|
| 313 |
+
},
|
| 314 |
+
{
|
| 315 |
+
"audio": "\/data\/upload\/1\/60474851-a1k94fVP.wav",
|
| 316 |
+
"id": 9,
|
| 317 |
+
"gender": [
|
| 318 |
+
{
|
| 319 |
+
"rating": 2
|
| 320 |
+
}
|
| 321 |
+
],
|
| 322 |
+
"quality": [
|
| 323 |
+
{
|
| 324 |
+
"rating": 1
|
| 325 |
+
}
|
| 326 |
+
],
|
| 327 |
+
"enunciation": [
|
| 328 |
+
{
|
| 329 |
+
"rating": 3
|
| 330 |
+
}
|
| 331 |
+
],
|
| 332 |
+
"pacing": [
|
| 333 |
+
{
|
| 334 |
+
"rating": 3
|
| 335 |
+
}
|
| 336 |
+
],
|
| 337 |
+
"tone": [
|
| 338 |
+
{
|
| 339 |
+
"rating": 2
|
| 340 |
+
}
|
| 341 |
+
],
|
| 342 |
+
"style": [
|
| 343 |
+
{
|
| 344 |
+
"rating": 3
|
| 345 |
+
}
|
| 346 |
+
],
|
| 347 |
+
"annotator": 1,
|
| 348 |
+
"annotation_id": 9,
|
| 349 |
+
"created_at": "2024-12-24T11:10:29.310038Z",
|
| 350 |
+
"updated_at": "2024-12-24T11:10:29.310055Z",
|
| 351 |
+
"lead_time": 14.969
|
| 352 |
+
},
|
| 353 |
+
{
|
| 354 |
+
"audio": "\/data\/upload\/1\/38b8e84f-NMbCNxj4.wav",
|
| 355 |
+
"id": 10,
|
| 356 |
+
"gender": [
|
| 357 |
+
{
|
| 358 |
+
"rating": 3
|
| 359 |
+
}
|
| 360 |
+
],
|
| 361 |
+
"tone": [
|
| 362 |
+
{
|
| 363 |
+
"rating": 3
|
| 364 |
+
}
|
| 365 |
+
],
|
| 366 |
+
"pacing": [
|
| 367 |
+
{
|
| 368 |
+
"rating": 2
|
| 369 |
+
}
|
| 370 |
+
],
|
| 371 |
+
"enunciation": [
|
| 372 |
+
{
|
| 373 |
+
"rating": 4
|
| 374 |
+
}
|
| 375 |
+
],
|
| 376 |
+
"quality": [
|
| 377 |
+
{
|
| 378 |
+
"rating": 2
|
| 379 |
+
}
|
| 380 |
+
],
|
| 381 |
+
"style": [
|
| 382 |
+
{
|
| 383 |
+
"rating": 4
|
| 384 |
+
}
|
| 385 |
+
],
|
| 386 |
+
"annotator": 1,
|
| 387 |
+
"annotation_id": 10,
|
| 388 |
+
"created_at": "2024-12-24T11:10:48.858033Z",
|
| 389 |
+
"updated_at": "2024-12-24T11:10:48.858047Z",
|
| 390 |
+
"lead_time": 19.352
|
| 391 |
+
},
|
| 392 |
+
{
|
| 393 |
+
"audio": "\/data\/upload\/1\/5701e1ab-smOpJVPt.wav",
|
| 394 |
+
"id": 11,
|
| 395 |
+
"gender": [
|
| 396 |
+
{
|
| 397 |
+
"rating": 2
|
| 398 |
+
}
|
| 399 |
+
],
|
| 400 |
+
"tone": [
|
| 401 |
+
{
|
| 402 |
+
"rating": 2
|
| 403 |
+
}
|
| 404 |
+
],
|
| 405 |
+
"pacing": [
|
| 406 |
+
{
|
| 407 |
+
"rating": 2
|
| 408 |
+
}
|
| 409 |
+
],
|
| 410 |
+
"enunciation": [
|
| 411 |
+
{
|
| 412 |
+
"rating": 3
|
| 413 |
+
}
|
| 414 |
+
],
|
| 415 |
+
"quality": [
|
| 416 |
+
{
|
| 417 |
+
"rating": 2
|
| 418 |
+
}
|
| 419 |
+
],
|
| 420 |
+
"style": [
|
| 421 |
+
{
|
| 422 |
+
"rating": 3
|
| 423 |
+
}
|
| 424 |
+
],
|
| 425 |
+
"annotator": 1,
|
| 426 |
+
"annotation_id": 11,
|
| 427 |
+
"created_at": "2024-12-24T11:11:09.250985Z",
|
| 428 |
+
"updated_at": "2024-12-24T11:11:09.251003Z",
|
| 429 |
+
"lead_time": 20.202
|
| 430 |
+
},
|
| 431 |
+
{
|
| 432 |
+
"audio": "\/data\/upload\/1\/d2348238-b0hbiZd4.wav",
|
| 433 |
+
"id": 12,
|
| 434 |
+
"gender": [
|
| 435 |
+
{
|
| 436 |
+
"rating": 5
|
| 437 |
+
}
|
| 438 |
+
],
|
| 439 |
+
"tone": [
|
| 440 |
+
{
|
| 441 |
+
"rating": 5
|
| 442 |
+
}
|
| 443 |
+
],
|
| 444 |
+
"pacing": [
|
| 445 |
+
{
|
| 446 |
+
"rating": 3
|
| 447 |
+
}
|
| 448 |
+
],
|
| 449 |
+
"enunciation": [
|
| 450 |
+
{
|
| 451 |
+
"rating": 4
|
| 452 |
+
}
|
| 453 |
+
],
|
| 454 |
+
"quality": [
|
| 455 |
+
{
|
| 456 |
+
"rating": 4
|
| 457 |
+
}
|
| 458 |
+
],
|
| 459 |
+
"style": [
|
| 460 |
+
{
|
| 461 |
+
"rating": 3
|
| 462 |
+
}
|
| 463 |
+
],
|
| 464 |
+
"annotator": 1,
|
| 465 |
+
"annotation_id": 12,
|
| 466 |
+
"created_at": "2024-12-24T11:11:24.519944Z",
|
| 467 |
+
"updated_at": "2024-12-24T11:11:24.519960Z",
|
| 468 |
+
"lead_time": 15.064
|
| 469 |
+
},
|
| 470 |
+
{
|
| 471 |
+
"audio": "\/data\/upload\/1\/e24973a9-w6xb7KtX.wav",
|
| 472 |
+
"id": 13,
|
| 473 |
+
"gender": [
|
| 474 |
+
{
|
| 475 |
+
"rating": 2
|
| 476 |
+
}
|
| 477 |
+
],
|
| 478 |
+
"tone": [
|
| 479 |
+
{
|
| 480 |
+
"rating": 3
|
| 481 |
+
}
|
| 482 |
+
],
|
| 483 |
+
"pacing": [
|
| 484 |
+
{
|
| 485 |
+
"rating": 3
|
| 486 |
+
}
|
| 487 |
+
],
|
| 488 |
+
"enunciation": [
|
| 489 |
+
{
|
| 490 |
+
"rating": 4
|
| 491 |
+
}
|
| 492 |
+
],
|
| 493 |
+
"quality": [
|
| 494 |
+
{
|
| 495 |
+
"rating": 4
|
| 496 |
+
}
|
| 497 |
+
],
|
| 498 |
+
"style": [
|
| 499 |
+
{
|
| 500 |
+
"rating": 4
|
| 501 |
+
}
|
| 502 |
+
],
|
| 503 |
+
"annotator": 1,
|
| 504 |
+
"annotation_id": 13,
|
| 505 |
+
"created_at": "2024-12-24T11:11:43.845338Z",
|
| 506 |
+
"updated_at": "2024-12-24T11:11:43.845355Z",
|
| 507 |
+
"lead_time": 19.115
|
| 508 |
+
},
|
| 509 |
+
{
|
| 510 |
+
"audio": "\/data\/upload\/1\/1c7b216d-9uBvtpvw.wav",
|
| 511 |
+
"id": 14,
|
| 512 |
+
"gender": [
|
| 513 |
+
{
|
| 514 |
+
"rating": 4
|
| 515 |
+
}
|
| 516 |
+
],
|
| 517 |
+
"tone": [
|
| 518 |
+
{
|
| 519 |
+
"rating": 4
|
| 520 |
+
}
|
| 521 |
+
],
|
| 522 |
+
"pacing": [
|
| 523 |
+
{
|
| 524 |
+
"rating": 3
|
| 525 |
+
}
|
| 526 |
+
],
|
| 527 |
+
"enunciation": [
|
| 528 |
+
{
|
| 529 |
+
"rating": 5
|
| 530 |
+
}
|
| 531 |
+
],
|
| 532 |
+
"quality": [
|
| 533 |
+
{
|
| 534 |
+
"rating": 3
|
| 535 |
+
}
|
| 536 |
+
],
|
| 537 |
+
"style": [
|
| 538 |
+
{
|
| 539 |
+
"rating": 3
|
| 540 |
+
}
|
| 541 |
+
],
|
| 542 |
+
"annotator": 1,
|
| 543 |
+
"annotation_id": 14,
|
| 544 |
+
"created_at": "2024-12-24T11:12:05.707588Z",
|
| 545 |
+
"updated_at": "2024-12-24T11:12:05.707607Z",
|
| 546 |
+
"lead_time": 21.646
|
| 547 |
+
},
|
| 548 |
+
{
|
| 549 |
+
"audio": "\/data\/upload\/1\/f4a0294e-U3XBhPBR.wav",
|
| 550 |
+
"id": 15,
|
| 551 |
+
"gender": [
|
| 552 |
+
{
|
| 553 |
+
"rating": 3
|
| 554 |
+
}
|
| 555 |
+
],
|
| 556 |
+
"tone": [
|
| 557 |
+
{
|
| 558 |
+
"rating": 3
|
| 559 |
+
}
|
| 560 |
+
],
|
| 561 |
+
"pacing": [
|
| 562 |
+
{
|
| 563 |
+
"rating": 3
|
| 564 |
+
}
|
| 565 |
+
],
|
| 566 |
+
"enunciation": [
|
| 567 |
+
{
|
| 568 |
+
"rating": 5
|
| 569 |
+
}
|
| 570 |
+
],
|
| 571 |
+
"quality": [
|
| 572 |
+
{
|
| 573 |
+
"rating": 3
|
| 574 |
+
}
|
| 575 |
+
],
|
| 576 |
+
"style": [
|
| 577 |
+
{
|
| 578 |
+
"rating": 5
|
| 579 |
+
}
|
| 580 |
+
],
|
| 581 |
+
"annotator": 1,
|
| 582 |
+
"annotation_id": 15,
|
| 583 |
+
"created_at": "2024-12-24T11:12:24.220074Z",
|
| 584 |
+
"updated_at": "2024-12-24T11:12:24.220103Z",
|
| 585 |
+
"lead_time": 18.288
|
| 586 |
+
},
|
| 587 |
+
{
|
| 588 |
+
"audio": "\/data\/upload\/1\/bf754fd0-c5qSnKvS.wav",
|
| 589 |
+
"id": 16,
|
| 590 |
+
"gender": [
|
| 591 |
+
{
|
| 592 |
+
"rating": 3
|
| 593 |
+
}
|
| 594 |
+
],
|
| 595 |
+
"tone": [
|
| 596 |
+
{
|
| 597 |
+
"rating": 3
|
| 598 |
+
}
|
| 599 |
+
],
|
| 600 |
+
"pacing": [
|
| 601 |
+
{
|
| 602 |
+
"rating": 4
|
| 603 |
+
}
|
| 604 |
+
],
|
| 605 |
+
"enunciation": [
|
| 606 |
+
{
|
| 607 |
+
"rating": 4
|
| 608 |
+
}
|
| 609 |
+
],
|
| 610 |
+
"quality": [
|
| 611 |
+
{
|
| 612 |
+
"rating": 2
|
| 613 |
+
}
|
| 614 |
+
],
|
| 615 |
+
"style": [
|
| 616 |
+
{
|
| 617 |
+
"rating": 3
|
| 618 |
+
}
|
| 619 |
+
],
|
| 620 |
+
"annotator": 1,
|
| 621 |
+
"annotation_id": 16,
|
| 622 |
+
"created_at": "2024-12-24T11:12:44.912272Z",
|
| 623 |
+
"updated_at": "2024-12-24T11:12:44.912290Z",
|
| 624 |
+
"lead_time": 20.478
|
| 625 |
+
},
|
| 626 |
+
{
|
| 627 |
+
"audio": "\/data\/upload\/1\/4f38ebb9-gQGR5r2f.wav",
|
| 628 |
+
"id": 17,
|
| 629 |
+
"gender": [
|
| 630 |
+
{
|
| 631 |
+
"rating": 2
|
| 632 |
+
}
|
| 633 |
+
],
|
| 634 |
+
"tone": [
|
| 635 |
+
{
|
| 636 |
+
"rating": 2
|
| 637 |
+
}
|
| 638 |
+
],
|
| 639 |
+
"pacing": [
|
| 640 |
+
{
|
| 641 |
+
"rating": 3
|
| 642 |
+
}
|
| 643 |
+
],
|
| 644 |
+
"enunciation": [
|
| 645 |
+
{
|
| 646 |
+
"rating": 4
|
| 647 |
+
}
|
| 648 |
+
],
|
| 649 |
+
"quality": [
|
| 650 |
+
{
|
| 651 |
+
"rating": 3
|
| 652 |
+
}
|
| 653 |
+
],
|
| 654 |
+
"style": [
|
| 655 |
+
{
|
| 656 |
+
"rating": 4
|
| 657 |
+
}
|
| 658 |
+
],
|
| 659 |
+
"annotator": 1,
|
| 660 |
+
"annotation_id": 17,
|
| 661 |
+
"created_at": "2024-12-24T11:12:59.915745Z",
|
| 662 |
+
"updated_at": "2024-12-24T11:12:59.915768Z",
|
| 663 |
+
"lead_time": 14.792
|
| 664 |
+
},
|
| 665 |
+
{
|
| 666 |
+
"audio": "\/data\/upload\/1\/d11c1e40-bjFLpT38.wav",
|
| 667 |
+
"id": 18,
|
| 668 |
+
"tone": [
|
| 669 |
+
{
|
| 670 |
+
"rating": 4
|
| 671 |
+
}
|
| 672 |
+
],
|
| 673 |
+
"gender": [
|
| 674 |
+
{
|
| 675 |
+
"rating": 4
|
| 676 |
+
}
|
| 677 |
+
],
|
| 678 |
+
"pacing": [
|
| 679 |
+
{
|
| 680 |
+
"rating": 5
|
| 681 |
+
}
|
| 682 |
+
],
|
| 683 |
+
"enunciation": [
|
| 684 |
+
{
|
| 685 |
+
"rating": 4
|
| 686 |
+
}
|
| 687 |
+
],
|
| 688 |
+
"quality": [
|
| 689 |
+
{
|
| 690 |
+
"rating": 4
|
| 691 |
+
}
|
| 692 |
+
],
|
| 693 |
+
"style": [
|
| 694 |
+
{
|
| 695 |
+
"rating": 3
|
| 696 |
+
}
|
| 697 |
+
],
|
| 698 |
+
"annotator": 1,
|
| 699 |
+
"annotation_id": 18,
|
| 700 |
+
"created_at": "2024-12-24T11:13:18.604486Z",
|
| 701 |
+
"updated_at": "2024-12-24T11:13:18.604513Z",
|
| 702 |
+
"lead_time": 18.46
|
| 703 |
+
},
|
| 704 |
+
{
|
| 705 |
+
"audio": "\/data\/upload\/1\/8bb81706-FAjL28lO.wav",
|
| 706 |
+
"id": 19,
|
| 707 |
+
"gender": [
|
| 708 |
+
{
|
| 709 |
+
"rating": 3
|
| 710 |
+
}
|
| 711 |
+
],
|
| 712 |
+
"tone": [
|
| 713 |
+
{
|
| 714 |
+
"rating": 3
|
| 715 |
+
}
|
| 716 |
+
],
|
| 717 |
+
"pacing": [
|
| 718 |
+
{
|
| 719 |
+
"rating": 3
|
| 720 |
+
}
|
| 721 |
+
],
|
| 722 |
+
"enunciation": [
|
| 723 |
+
{
|
| 724 |
+
"rating": 5
|
| 725 |
+
}
|
| 726 |
+
],
|
| 727 |
+
"quality": [
|
| 728 |
+
{
|
| 729 |
+
"rating": 3
|
| 730 |
+
}
|
| 731 |
+
],
|
| 732 |
+
"style": [
|
| 733 |
+
{
|
| 734 |
+
"rating": 5
|
| 735 |
+
}
|
| 736 |
+
],
|
| 737 |
+
"annotator": 1,
|
| 738 |
+
"annotation_id": 19,
|
| 739 |
+
"created_at": "2024-12-24T11:13:38.605869Z",
|
| 740 |
+
"updated_at": "2024-12-24T11:13:38.605883Z",
|
| 741 |
+
"lead_time": 19.81
|
| 742 |
+
},
|
| 743 |
+
{
|
| 744 |
+
"audio": "\/data\/upload\/1\/aecc6e1e-oWkO6Hjw.wav",
|
| 745 |
+
"id": 20,
|
| 746 |
+
"gender": [
|
| 747 |
+
{
|
| 748 |
+
"rating": 4
|
| 749 |
+
}
|
| 750 |
+
],
|
| 751 |
+
"tone": [
|
| 752 |
+
{
|
| 753 |
+
"rating": 4
|
| 754 |
+
}
|
| 755 |
+
],
|
| 756 |
+
"pacing": [
|
| 757 |
+
{
|
| 758 |
+
"rating": 3
|
| 759 |
+
}
|
| 760 |
+
],
|
| 761 |
+
"enunciation": [
|
| 762 |
+
{
|
| 763 |
+
"rating": 4
|
| 764 |
+
}
|
| 765 |
+
],
|
| 766 |
+
"quality": [
|
| 767 |
+
{
|
| 768 |
+
"rating": 3
|
| 769 |
+
}
|
| 770 |
+
],
|
| 771 |
+
"style": [
|
| 772 |
+
{
|
| 773 |
+
"rating": 4
|
| 774 |
+
}
|
| 775 |
+
],
|
| 776 |
+
"annotator": 1,
|
| 777 |
+
"annotation_id": 20,
|
| 778 |
+
"created_at": "2024-12-24T11:13:56.837635Z",
|
| 779 |
+
"updated_at": "2024-12-24T11:13:56.837651Z",
|
| 780 |
+
"lead_time": 18.017
|
| 781 |
+
},
|
| 782 |
+
{
|
| 783 |
+
"audio": "\/data\/upload\/1\/ebe57847-6784JzTG.wav",
|
| 784 |
+
"id": 21,
|
| 785 |
+
"gender": [
|
| 786 |
+
{
|
| 787 |
+
"rating": 5
|
| 788 |
+
}
|
| 789 |
+
],
|
| 790 |
+
"tone": [
|
| 791 |
+
{
|
| 792 |
+
"rating": 3
|
| 793 |
+
}
|
| 794 |
+
],
|
| 795 |
+
"quality": [
|
| 796 |
+
{
|
| 797 |
+
"rating": 2
|
| 798 |
+
}
|
| 799 |
+
],
|
| 800 |
+
"pacing": [
|
| 801 |
+
{
|
| 802 |
+
"rating": 3
|
| 803 |
+
}
|
| 804 |
+
],
|
| 805 |
+
"enunciation": [
|
| 806 |
+
{
|
| 807 |
+
"rating": 4
|
| 808 |
+
}
|
| 809 |
+
],
|
| 810 |
+
"style": [
|
| 811 |
+
{
|
| 812 |
+
"rating": 4
|
| 813 |
+
}
|
| 814 |
+
],
|
| 815 |
+
"annotator": 1,
|
| 816 |
+
"annotation_id": 21,
|
| 817 |
+
"created_at": "2024-12-24T11:14:10.304635Z",
|
| 818 |
+
"updated_at": "2024-12-24T11:14:10.304650Z",
|
| 819 |
+
"lead_time": 13.261
|
| 820 |
+
},
|
| 821 |
+
{
|
| 822 |
+
"audio": "\/data\/upload\/1\/3e2fb517-eKehysg6.wav",
|
| 823 |
+
"id": 22,
|
| 824 |
+
"gender": [
|
| 825 |
+
{
|
| 826 |
+
"rating": 3
|
| 827 |
+
}
|
| 828 |
+
],
|
| 829 |
+
"tone": [
|
| 830 |
+
{
|
| 831 |
+
"rating": 2
|
| 832 |
+
}
|
| 833 |
+
],
|
| 834 |
+
"pacing": [
|
| 835 |
+
{
|
| 836 |
+
"rating": 3
|
| 837 |
+
}
|
| 838 |
+
],
|
| 839 |
+
"enunciation": [
|
| 840 |
+
{
|
| 841 |
+
"rating": 4
|
| 842 |
+
}
|
| 843 |
+
],
|
| 844 |
+
"quality": [
|
| 845 |
+
{
|
| 846 |
+
"rating": 2
|
| 847 |
+
}
|
| 848 |
+
],
|
| 849 |
+
"style": [
|
| 850 |
+
{
|
| 851 |
+
"rating": 4
|
| 852 |
+
}
|
| 853 |
+
],
|
| 854 |
+
"annotator": 1,
|
| 855 |
+
"annotation_id": 22,
|
| 856 |
+
"created_at": "2024-12-24T11:14:30.874016Z",
|
| 857 |
+
"updated_at": "2024-12-24T11:14:30.874050Z",
|
| 858 |
+
"lead_time": 20.356
|
| 859 |
+
},
|
| 860 |
+
{
|
| 861 |
+
"audio": "\/data\/upload\/1\/e54d1cd4-VyDYticQ.wav",
|
| 862 |
+
"id": 23,
|
| 863 |
+
"gender": [
|
| 864 |
+
{
|
| 865 |
+
"rating": 2
|
| 866 |
+
}
|
| 867 |
+
],
|
| 868 |
+
"tone": [
|
| 869 |
+
{
|
| 870 |
+
"rating": 3
|
| 871 |
+
}
|
| 872 |
+
],
|
| 873 |
+
"pacing": [
|
| 874 |
+
{
|
| 875 |
+
"rating": 4
|
| 876 |
+
}
|
| 877 |
+
],
|
| 878 |
+
"enunciation": [
|
| 879 |
+
{
|
| 880 |
+
"rating": 5
|
| 881 |
+
}
|
| 882 |
+
],
|
| 883 |
+
"quality": [
|
| 884 |
+
{
|
| 885 |
+
"rating": 5
|
| 886 |
+
}
|
| 887 |
+
],
|
| 888 |
+
"style": [
|
| 889 |
+
{
|
| 890 |
+
"rating": 5
|
| 891 |
+
}
|
| 892 |
+
],
|
| 893 |
+
"annotator": 1,
|
| 894 |
+
"annotation_id": 23,
|
| 895 |
+
"created_at": "2024-12-24T11:14:50.274649Z",
|
| 896 |
+
"updated_at": "2024-12-24T11:14:50.274679Z",
|
| 897 |
+
"lead_time": 19.207
|
| 898 |
+
},
|
| 899 |
+
{
|
| 900 |
+
"audio": "\/data\/upload\/1\/06ae990f-u3g9CMFd.wav",
|
| 901 |
+
"id": 24,
|
| 902 |
+
"gender": [
|
| 903 |
+
{
|
| 904 |
+
"rating": 2
|
| 905 |
+
}
|
| 906 |
+
],
|
| 907 |
+
"tone": [
|
| 908 |
+
{
|
| 909 |
+
"rating": 4
|
| 910 |
+
}
|
| 911 |
+
],
|
| 912 |
+
"pacing": [
|
| 913 |
+
{
|
| 914 |
+
"rating": 3
|
| 915 |
+
}
|
| 916 |
+
],
|
| 917 |
+
"enunciation": [
|
| 918 |
+
{
|
| 919 |
+
"rating": 4
|
| 920 |
+
}
|
| 921 |
+
],
|
| 922 |
+
"quality": [
|
| 923 |
+
{
|
| 924 |
+
"rating": 3
|
| 925 |
+
}
|
| 926 |
+
],
|
| 927 |
+
"style": [
|
| 928 |
+
{
|
| 929 |
+
"rating": 5
|
| 930 |
+
}
|
| 931 |
+
],
|
| 932 |
+
"annotator": 1,
|
| 933 |
+
"annotation_id": 24,
|
| 934 |
+
"created_at": "2024-12-24T11:15:09.533558Z",
|
| 935 |
+
"updated_at": "2024-12-24T11:15:09.533575Z",
|
| 936 |
+
"lead_time": 19.046
|
| 937 |
+
},
|
| 938 |
+
{
|
| 939 |
+
"audio": "\/data\/upload\/1\/2b0a0481-60HQeXwq.wav",
|
| 940 |
+
"id": 25,
|
| 941 |
+
"gender": [
|
| 942 |
+
{
|
| 943 |
+
"rating": 4
|
| 944 |
+
}
|
| 945 |
+
],
|
| 946 |
+
"tone": [
|
| 947 |
+
{
|
| 948 |
+
"rating": 2
|
| 949 |
+
}
|
| 950 |
+
],
|
| 951 |
+
"pacing": [
|
| 952 |
+
{
|
| 953 |
+
"rating": 2
|
| 954 |
+
}
|
| 955 |
+
],
|
| 956 |
+
"enunciation": [
|
| 957 |
+
{
|
| 958 |
+
"rating": 4
|
| 959 |
+
}
|
| 960 |
+
],
|
| 961 |
+
"quality": [
|
| 962 |
+
{
|
| 963 |
+
"rating": 3
|
| 964 |
+
}
|
| 965 |
+
],
|
| 966 |
+
"style": [
|
| 967 |
+
{
|
| 968 |
+
"rating": 4
|
| 969 |
+
}
|
| 970 |
+
],
|
| 971 |
+
"annotator": 1,
|
| 972 |
+
"annotation_id": 25,
|
| 973 |
+
"created_at": "2024-12-24T11:15:36.688760Z",
|
| 974 |
+
"updated_at": "2024-12-24T11:15:36.688777Z",
|
| 975 |
+
"lead_time": 26.939
|
| 976 |
+
},
|
| 977 |
+
{
|
| 978 |
+
"audio": "\/data\/upload\/1\/6b789c7b-lXr0TsEs.wav",
|
| 979 |
+
"id": 26,
|
| 980 |
+
"gender": [
|
| 981 |
+
{
|
| 982 |
+
"rating": 3
|
| 983 |
+
}
|
| 984 |
+
],
|
| 985 |
+
"tone": [
|
| 986 |
+
{
|
| 987 |
+
"rating": 3
|
| 988 |
+
}
|
| 989 |
+
],
|
| 990 |
+
"pacing": [
|
| 991 |
+
{
|
| 992 |
+
"rating": 2
|
| 993 |
+
}
|
| 994 |
+
],
|
| 995 |
+
"enunciation": [
|
| 996 |
+
{
|
| 997 |
+
"rating": 5
|
| 998 |
+
}
|
| 999 |
+
],
|
| 1000 |
+
"quality": [
|
| 1001 |
+
{
|
| 1002 |
+
"rating": 1
|
| 1003 |
+
}
|
| 1004 |
+
],
|
| 1005 |
+
"style": [
|
| 1006 |
+
{
|
| 1007 |
+
"rating": 4
|
| 1008 |
+
}
|
| 1009 |
+
],
|
| 1010 |
+
"annotator": 1,
|
| 1011 |
+
"annotation_id": 26,
|
| 1012 |
+
"created_at": "2024-12-24T11:16:02.130089Z",
|
| 1013 |
+
"updated_at": "2024-12-24T11:16:02.130104Z",
|
| 1014 |
+
"lead_time": 25.222
|
| 1015 |
+
},
|
| 1016 |
+
{
|
| 1017 |
+
"audio": "\/data\/upload\/1\/54701cf9-Xmsf8FAI.wav",
|
| 1018 |
+
"id": 27,
|
| 1019 |
+
"gender": [
|
| 1020 |
+
{
|
| 1021 |
+
"rating": 3
|
| 1022 |
+
}
|
| 1023 |
+
],
|
| 1024 |
+
"tone": [
|
| 1025 |
+
{
|
| 1026 |
+
"rating": 3
|
| 1027 |
+
}
|
| 1028 |
+
],
|
| 1029 |
+
"pacing": [
|
| 1030 |
+
{
|
| 1031 |
+
"rating": 3
|
| 1032 |
+
}
|
| 1033 |
+
],
|
| 1034 |
+
"enunciation": [
|
| 1035 |
+
{
|
| 1036 |
+
"rating": 5
|
| 1037 |
+
}
|
| 1038 |
+
],
|
| 1039 |
+
"quality": [
|
| 1040 |
+
{
|
| 1041 |
+
"rating": 2
|
| 1042 |
+
}
|
| 1043 |
+
],
|
| 1044 |
+
"style": [
|
| 1045 |
+
{
|
| 1046 |
+
"rating": 4
|
| 1047 |
+
}
|
| 1048 |
+
],
|
| 1049 |
+
"annotator": 1,
|
| 1050 |
+
"annotation_id": 27,
|
| 1051 |
+
"created_at": "2024-12-24T11:16:24.322800Z",
|
| 1052 |
+
"updated_at": "2024-12-24T11:16:24.322816Z",
|
| 1053 |
+
"lead_time": 21.974
|
| 1054 |
+
},
|
| 1055 |
+
{
|
| 1056 |
+
"audio": "\/data\/upload\/1\/d4c11f09-k74bHcAg.wav",
|
| 1057 |
+
"id": 28,
|
| 1058 |
+
"gender": [
|
| 1059 |
+
{
|
| 1060 |
+
"rating": 2
|
| 1061 |
+
}
|
| 1062 |
+
],
|
| 1063 |
+
"tone": [
|
| 1064 |
+
{
|
| 1065 |
+
"rating": 3
|
| 1066 |
+
}
|
| 1067 |
+
],
|
| 1068 |
+
"pacing": [
|
| 1069 |
+
{
|
| 1070 |
+
"rating": 2
|
| 1071 |
+
}
|
| 1072 |
+
],
|
| 1073 |
+
"enunciation": [
|
| 1074 |
+
{
|
| 1075 |
+
"rating": 4
|
| 1076 |
+
}
|
| 1077 |
+
],
|
| 1078 |
+
"quality": [
|
| 1079 |
+
{
|
| 1080 |
+
"rating": 2
|
| 1081 |
+
}
|
| 1082 |
+
],
|
| 1083 |
+
"style": [
|
| 1084 |
+
{
|
| 1085 |
+
"rating": 3
|
| 1086 |
+
}
|
| 1087 |
+
],
|
| 1088 |
+
"annotator": 1,
|
| 1089 |
+
"annotation_id": 28,
|
| 1090 |
+
"created_at": "2024-12-24T11:16:45.824302Z",
|
| 1091 |
+
"updated_at": "2024-12-24T11:16:45.824318Z",
|
| 1092 |
+
"lead_time": 21.292
|
| 1093 |
+
},
|
| 1094 |
+
{
|
| 1095 |
+
"audio": "\/data\/upload\/1\/47f26601-mvoZlxHp.wav",
|
| 1096 |
+
"id": 29,
|
| 1097 |
+
"gender": [
|
| 1098 |
+
{
|
| 1099 |
+
"rating": 3
|
| 1100 |
+
}
|
| 1101 |
+
],
|
| 1102 |
+
"tone": [
|
| 1103 |
+
{
|
| 1104 |
+
"rating": 3
|
| 1105 |
+
}
|
| 1106 |
+
],
|
| 1107 |
+
"pacing": [
|
| 1108 |
+
{
|
| 1109 |
+
"rating": 3
|
| 1110 |
+
}
|
| 1111 |
+
],
|
| 1112 |
+
"enunciation": [
|
| 1113 |
+
{
|
| 1114 |
+
"rating": 4
|
| 1115 |
+
}
|
| 1116 |
+
],
|
| 1117 |
+
"style": [
|
| 1118 |
+
{
|
| 1119 |
+
"rating": 3
|
| 1120 |
+
}
|
| 1121 |
+
],
|
| 1122 |
+
"quality": [
|
| 1123 |
+
{
|
| 1124 |
+
"rating": 3
|
| 1125 |
+
}
|
| 1126 |
+
],
|
| 1127 |
+
"annotator": 1,
|
| 1128 |
+
"annotation_id": 29,
|
| 1129 |
+
"created_at": "2024-12-24T11:17:03.084102Z",
|
| 1130 |
+
"updated_at": "2024-12-24T11:17:03.084117Z",
|
| 1131 |
+
"lead_time": 17.05
|
| 1132 |
+
},
|
| 1133 |
+
{
|
| 1134 |
+
"audio": "\/data\/upload\/1\/bcfd3f48-PRqxs9Rw.wav",
|
| 1135 |
+
"id": 30,
|
| 1136 |
+
"gender": [
|
| 1137 |
+
{
|
| 1138 |
+
"rating": 1
|
| 1139 |
+
}
|
| 1140 |
+
],
|
| 1141 |
+
"tone": [
|
| 1142 |
+
{
|
| 1143 |
+
"rating": 1
|
| 1144 |
+
}
|
| 1145 |
+
],
|
| 1146 |
+
"pacing": [
|
| 1147 |
+
{
|
| 1148 |
+
"rating": 2
|
| 1149 |
+
}
|
| 1150 |
+
],
|
| 1151 |
+
"enunciation": [
|
| 1152 |
+
{
|
| 1153 |
+
"rating": 3
|
| 1154 |
+
}
|
| 1155 |
+
],
|
| 1156 |
+
"quality": [
|
| 1157 |
+
{
|
| 1158 |
+
"rating": 2
|
| 1159 |
+
}
|
| 1160 |
+
],
|
| 1161 |
+
"style": [
|
| 1162 |
+
{
|
| 1163 |
+
"rating": 3
|
| 1164 |
+
}
|
| 1165 |
+
],
|
| 1166 |
+
"annotator": 1,
|
| 1167 |
+
"annotation_id": 30,
|
| 1168 |
+
"created_at": "2024-12-24T11:17:37.512393Z",
|
| 1169 |
+
"updated_at": "2024-12-24T11:17:37.512413Z",
|
| 1170 |
+
"lead_time": 18.603
|
| 1171 |
+
},
|
| 1172 |
+
{
|
| 1173 |
+
"audio": "\/data\/upload\/1\/8a85e9db-BMW1WUKl.wav",
|
| 1174 |
+
"id": 31,
|
| 1175 |
+
"gender": [
|
| 1176 |
+
{
|
| 1177 |
+
"rating": 3
|
| 1178 |
+
}
|
| 1179 |
+
],
|
| 1180 |
+
"tone": [
|
| 1181 |
+
{
|
| 1182 |
+
"rating": 3
|
| 1183 |
+
}
|
| 1184 |
+
],
|
| 1185 |
+
"pacing": [
|
| 1186 |
+
{
|
| 1187 |
+
"rating": 2
|
| 1188 |
+
}
|
| 1189 |
+
],
|
| 1190 |
+
"enunciation": [
|
| 1191 |
+
{
|
| 1192 |
+
"rating": 5
|
| 1193 |
+
}
|
| 1194 |
+
],
|
| 1195 |
+
"quality": [
|
| 1196 |
+
{
|
| 1197 |
+
"rating": 4
|
| 1198 |
+
}
|
| 1199 |
+
],
|
| 1200 |
+
"style": [
|
| 1201 |
+
{
|
| 1202 |
+
"rating": 5
|
| 1203 |
+
}
|
| 1204 |
+
],
|
| 1205 |
+
"annotator": 1,
|
| 1206 |
+
"annotation_id": 31,
|
| 1207 |
+
"created_at": "2024-12-24T11:17:57.564014Z",
|
| 1208 |
+
"updated_at": "2024-12-24T11:17:57.564028Z",
|
| 1209 |
+
"lead_time": 19.839
|
| 1210 |
+
},
|
| 1211 |
+
{
|
| 1212 |
+
"audio": "\/data\/upload\/1\/2fe4e716-GWHpVwcn.wav",
|
| 1213 |
+
"id": 32,
|
| 1214 |
+
"gender": [
|
| 1215 |
+
{
|
| 1216 |
+
"rating": 1
|
| 1217 |
+
}
|
| 1218 |
+
],
|
| 1219 |
+
"tone": [
|
| 1220 |
+
{
|
| 1221 |
+
"rating": 2
|
| 1222 |
+
}
|
| 1223 |
+
],
|
| 1224 |
+
"pacing": [
|
| 1225 |
+
{
|
| 1226 |
+
"rating": 3
|
| 1227 |
+
}
|
| 1228 |
+
],
|
| 1229 |
+
"enunciation": [
|
| 1230 |
+
{
|
| 1231 |
+
"rating": 4
|
| 1232 |
+
}
|
| 1233 |
+
],
|
| 1234 |
+
"quality": [
|
| 1235 |
+
{
|
| 1236 |
+
"rating": 2
|
| 1237 |
+
}
|
| 1238 |
+
],
|
| 1239 |
+
"style": [
|
| 1240 |
+
{
|
| 1241 |
+
"rating": 3
|
| 1242 |
+
}
|
| 1243 |
+
],
|
| 1244 |
+
"annotator": 1,
|
| 1245 |
+
"annotation_id": 32,
|
| 1246 |
+
"created_at": "2024-12-24T11:18:16.433573Z",
|
| 1247 |
+
"updated_at": "2024-12-24T11:18:16.433589Z",
|
| 1248 |
+
"lead_time": 18.673
|
| 1249 |
+
},
|
| 1250 |
+
{
|
| 1251 |
+
"audio": "\/data\/upload\/1\/a398fdc8-THjkbhMN.wav",
|
| 1252 |
+
"id": 33,
|
| 1253 |
+
"gender": [
|
| 1254 |
+
{
|
| 1255 |
+
"rating": 3
|
| 1256 |
+
}
|
| 1257 |
+
],
|
| 1258 |
+
"tone": [
|
| 1259 |
+
{
|
| 1260 |
+
"rating": 3
|
| 1261 |
+
}
|
| 1262 |
+
],
|
| 1263 |
+
"pacing": [
|
| 1264 |
+
{
|
| 1265 |
+
"rating": 4
|
| 1266 |
+
}
|
| 1267 |
+
],
|
| 1268 |
+
"enunciation": [
|
| 1269 |
+
{
|
| 1270 |
+
"rating": 3
|
| 1271 |
+
}
|
| 1272 |
+
],
|
| 1273 |
+
"quality": [
|
| 1274 |
+
{
|
| 1275 |
+
"rating": 3
|
| 1276 |
+
}
|
| 1277 |
+
],
|
| 1278 |
+
"style": [
|
| 1279 |
+
{
|
| 1280 |
+
"rating": 3
|
| 1281 |
+
}
|
| 1282 |
+
],
|
| 1283 |
+
"annotator": 1,
|
| 1284 |
+
"annotation_id": 33,
|
| 1285 |
+
"created_at": "2024-12-24T11:18:33.011557Z",
|
| 1286 |
+
"updated_at": "2024-12-24T11:18:33.011573Z",
|
| 1287 |
+
"lead_time": 16.387
|
| 1288 |
+
},
|
| 1289 |
+
{
|
| 1290 |
+
"audio": "\/data\/upload\/1\/9479d680-MY4NGnyn.wav",
|
| 1291 |
+
"id": 34,
|
| 1292 |
+
"gender": [
|
| 1293 |
+
{
|
| 1294 |
+
"rating": 2
|
| 1295 |
+
}
|
| 1296 |
+
],
|
| 1297 |
+
"tone": [
|
| 1298 |
+
{
|
| 1299 |
+
"rating": 4
|
| 1300 |
+
}
|
| 1301 |
+
],
|
| 1302 |
+
"pacing": [
|
| 1303 |
+
{
|
| 1304 |
+
"rating": 4
|
| 1305 |
+
}
|
| 1306 |
+
],
|
| 1307 |
+
"enunciation": [
|
| 1308 |
+
{
|
| 1309 |
+
"rating": 5
|
| 1310 |
+
}
|
| 1311 |
+
],
|
| 1312 |
+
"quality": [
|
| 1313 |
+
{
|
| 1314 |
+
"rating": 4
|
| 1315 |
+
}
|
| 1316 |
+
],
|
| 1317 |
+
"style": [
|
| 1318 |
+
{
|
| 1319 |
+
"rating": 3
|
| 1320 |
+
}
|
| 1321 |
+
],
|
| 1322 |
+
"annotator": 1,
|
| 1323 |
+
"annotation_id": 34,
|
| 1324 |
+
"created_at": "2024-12-24T11:18:53.212410Z",
|
| 1325 |
+
"updated_at": "2024-12-24T11:18:53.212424Z",
|
| 1326 |
+
"lead_time": 20.005
|
| 1327 |
+
},
|
| 1328 |
+
{
|
| 1329 |
+
"audio": "\/data\/upload\/1\/099ef5d9-1EXWzyIB.wav",
|
| 1330 |
+
"id": 35,
|
| 1331 |
+
"quality": [
|
| 1332 |
+
{
|
| 1333 |
+
"rating": 1
|
| 1334 |
+
}
|
| 1335 |
+
],
|
| 1336 |
+
"gender": [
|
| 1337 |
+
{
|
| 1338 |
+
"rating": 3
|
| 1339 |
+
}
|
| 1340 |
+
],
|
| 1341 |
+
"tone": [
|
| 1342 |
+
{
|
| 1343 |
+
"rating": 3
|
| 1344 |
+
}
|
| 1345 |
+
],
|
| 1346 |
+
"pacing": [
|
| 1347 |
+
{
|
| 1348 |
+
"rating": 4
|
| 1349 |
+
}
|
| 1350 |
+
],
|
| 1351 |
+
"enunciation": [
|
| 1352 |
+
{
|
| 1353 |
+
"rating": 3
|
| 1354 |
+
}
|
| 1355 |
+
],
|
| 1356 |
+
"style": [
|
| 1357 |
+
{
|
| 1358 |
+
"rating": 3
|
| 1359 |
+
}
|
| 1360 |
+
],
|
| 1361 |
+
"annotator": 1,
|
| 1362 |
+
"annotation_id": 35,
|
| 1363 |
+
"created_at": "2024-12-24T11:19:15.157540Z",
|
| 1364 |
+
"updated_at": "2024-12-24T11:19:15.157555Z",
|
| 1365 |
+
"lead_time": 21.708
|
| 1366 |
+
},
|
| 1367 |
+
{
|
| 1368 |
+
"audio": "\/data\/upload\/1\/7757c410-iJzdxYU8.wav",
|
| 1369 |
+
"id": 36,
|
| 1370 |
+
"gender": [
|
| 1371 |
+
{
|
| 1372 |
+
"rating": 1
|
| 1373 |
+
}
|
| 1374 |
+
],
|
| 1375 |
+
"tone": [
|
| 1376 |
+
{
|
| 1377 |
+
"rating": 1
|
| 1378 |
+
}
|
| 1379 |
+
],
|
| 1380 |
+
"pacing": [
|
| 1381 |
+
{
|
| 1382 |
+
"rating": 3
|
| 1383 |
+
}
|
| 1384 |
+
],
|
| 1385 |
+
"enunciation": [
|
| 1386 |
+
{
|
| 1387 |
+
"rating": 2
|
| 1388 |
+
}
|
| 1389 |
+
],
|
| 1390 |
+
"quality": [
|
| 1391 |
+
{
|
| 1392 |
+
"rating": 2
|
| 1393 |
+
}
|
| 1394 |
+
],
|
| 1395 |
+
"style": [
|
| 1396 |
+
{
|
| 1397 |
+
"rating": 3
|
| 1398 |
+
}
|
| 1399 |
+
],
|
| 1400 |
+
"annotator": 1,
|
| 1401 |
+
"annotation_id": 36,
|
| 1402 |
+
"created_at": "2024-12-24T11:19:33.880308Z",
|
| 1403 |
+
"updated_at": "2024-12-24T11:19:33.880323Z",
|
| 1404 |
+
"lead_time": 18.515
|
| 1405 |
+
},
|
| 1406 |
+
{
|
| 1407 |
+
"audio": "\/data\/upload\/1\/160cf4d1-ClmchUus.wav",
|
| 1408 |
+
"id": 37,
|
| 1409 |
+
"gender": [
|
| 1410 |
+
{
|
| 1411 |
+
"rating": 3
|
| 1412 |
+
}
|
| 1413 |
+
],
|
| 1414 |
+
"tone": [
|
| 1415 |
+
{
|
| 1416 |
+
"rating": 2
|
| 1417 |
+
}
|
| 1418 |
+
],
|
| 1419 |
+
"pacing": [
|
| 1420 |
+
{
|
| 1421 |
+
"rating": 3
|
| 1422 |
+
}
|
| 1423 |
+
],
|
| 1424 |
+
"enunciation": [
|
| 1425 |
+
{
|
| 1426 |
+
"rating": 4
|
| 1427 |
+
}
|
| 1428 |
+
],
|
| 1429 |
+
"style": [
|
| 1430 |
+
{
|
| 1431 |
+
"rating": 5
|
| 1432 |
+
}
|
| 1433 |
+
],
|
| 1434 |
+
"quality": [
|
| 1435 |
+
{
|
| 1436 |
+
"rating": 4
|
| 1437 |
+
}
|
| 1438 |
+
],
|
| 1439 |
+
"annotator": 1,
|
| 1440 |
+
"annotation_id": 37,
|
| 1441 |
+
"created_at": "2024-12-24T11:19:49.775185Z",
|
| 1442 |
+
"updated_at": "2024-12-24T11:19:49.775199Z",
|
| 1443 |
+
"lead_time": 15.7
|
| 1444 |
+
},
|
| 1445 |
+
{
|
| 1446 |
+
"audio": "\/data\/upload\/1\/937219e2-YKQzFNZm.wav",
|
| 1447 |
+
"id": 38,
|
| 1448 |
+
"gender": [
|
| 1449 |
+
{
|
| 1450 |
+
"rating": 3
|
| 1451 |
+
}
|
| 1452 |
+
],
|
| 1453 |
+
"tone": [
|
| 1454 |
+
{
|
| 1455 |
+
"rating": 3
|
| 1456 |
+
}
|
| 1457 |
+
],
|
| 1458 |
+
"pacing": [
|
| 1459 |
+
{
|
| 1460 |
+
"rating": 4
|
| 1461 |
+
}
|
| 1462 |
+
],
|
| 1463 |
+
"enunciation": [
|
| 1464 |
+
{
|
| 1465 |
+
"rating": 4
|
| 1466 |
+
}
|
| 1467 |
+
],
|
| 1468 |
+
"quality": [
|
| 1469 |
+
{
|
| 1470 |
+
"rating": 3
|
| 1471 |
+
}
|
| 1472 |
+
],
|
| 1473 |
+
"style": [
|
| 1474 |
+
{
|
| 1475 |
+
"rating": 3
|
| 1476 |
+
}
|
| 1477 |
+
],
|
| 1478 |
+
"annotator": 1,
|
| 1479 |
+
"annotation_id": 38,
|
| 1480 |
+
"created_at": "2024-12-24T11:20:28.907802Z",
|
| 1481 |
+
"updated_at": "2024-12-24T11:20:28.907820Z",
|
| 1482 |
+
"lead_time": 17.855
|
| 1483 |
+
},
|
| 1484 |
+
{
|
| 1485 |
+
"audio": "\/data\/upload\/1\/85b05ec9-yYkxPNG5.wav",
|
| 1486 |
+
"id": 39,
|
| 1487 |
+
"quality": [
|
| 1488 |
+
{
|
| 1489 |
+
"rating": 1
|
| 1490 |
+
}
|
| 1491 |
+
],
|
| 1492 |
+
"enunciation": [
|
| 1493 |
+
{
|
| 1494 |
+
"rating": 4
|
| 1495 |
+
}
|
| 1496 |
+
],
|
| 1497 |
+
"pacing": [
|
| 1498 |
+
{
|
| 1499 |
+
"rating": 3
|
| 1500 |
+
}
|
| 1501 |
+
],
|
| 1502 |
+
"tone": [
|
| 1503 |
+
{
|
| 1504 |
+
"rating": 3
|
| 1505 |
+
}
|
| 1506 |
+
],
|
| 1507 |
+
"gender": [
|
| 1508 |
+
{
|
| 1509 |
+
"rating": 3
|
| 1510 |
+
}
|
| 1511 |
+
],
|
| 1512 |
+
"style": [
|
| 1513 |
+
{
|
| 1514 |
+
"rating": 3
|
| 1515 |
+
}
|
| 1516 |
+
],
|
| 1517 |
+
"annotator": 1,
|
| 1518 |
+
"annotation_id": 39,
|
| 1519 |
+
"created_at": "2024-12-24T11:20:49.809333Z",
|
| 1520 |
+
"updated_at": "2024-12-24T11:20:49.809349Z",
|
| 1521 |
+
"lead_time": 20.679
|
| 1522 |
+
},
|
| 1523 |
+
{
|
| 1524 |
+
"audio": "\/data\/upload\/1\/3b2dfcc0-cfyLTOg1.wav",
|
| 1525 |
+
"id": 40,
|
| 1526 |
+
"gender": [
|
| 1527 |
+
{
|
| 1528 |
+
"rating": 1
|
| 1529 |
+
}
|
| 1530 |
+
],
|
| 1531 |
+
"tone": [
|
| 1532 |
+
{
|
| 1533 |
+
"rating": 1
|
| 1534 |
+
}
|
| 1535 |
+
],
|
| 1536 |
+
"pacing": [
|
| 1537 |
+
{
|
| 1538 |
+
"rating": 3
|
| 1539 |
+
}
|
| 1540 |
+
],
|
| 1541 |
+
"enunciation": [
|
| 1542 |
+
{
|
| 1543 |
+
"rating": 4
|
| 1544 |
+
}
|
| 1545 |
+
],
|
| 1546 |
+
"quality": [
|
| 1547 |
+
{
|
| 1548 |
+
"rating": 3
|
| 1549 |
+
}
|
| 1550 |
+
],
|
| 1551 |
+
"style": [
|
| 1552 |
+
{
|
| 1553 |
+
"rating": 3
|
| 1554 |
+
}
|
| 1555 |
+
],
|
| 1556 |
+
"annotator": 1,
|
| 1557 |
+
"annotation_id": 40,
|
| 1558 |
+
"created_at": "2024-12-24T11:21:06.264451Z",
|
| 1559 |
+
"updated_at": "2024-12-24T11:21:06.264483Z",
|
| 1560 |
+
"lead_time": 16.248
|
| 1561 |
+
},
|
| 1562 |
+
{
|
| 1563 |
+
"audio": "\/data\/upload\/1\/2411d637-ACYkJHOa.wav",
|
| 1564 |
+
"id": 41,
|
| 1565 |
+
"gender": [
|
| 1566 |
+
{
|
| 1567 |
+
"rating": 3
|
| 1568 |
+
}
|
| 1569 |
+
],
|
| 1570 |
+
"tone": [
|
| 1571 |
+
{
|
| 1572 |
+
"rating": 3
|
| 1573 |
+
}
|
| 1574 |
+
],
|
| 1575 |
+
"pacing": [
|
| 1576 |
+
{
|
| 1577 |
+
"rating": 4
|
| 1578 |
+
}
|
| 1579 |
+
],
|
| 1580 |
+
"enunciation": [
|
| 1581 |
+
{
|
| 1582 |
+
"rating": 3
|
| 1583 |
+
}
|
| 1584 |
+
],
|
| 1585 |
+
"quality": [
|
| 1586 |
+
{
|
| 1587 |
+
"rating": 2
|
| 1588 |
+
}
|
| 1589 |
+
],
|
| 1590 |
+
"style": [
|
| 1591 |
+
{
|
| 1592 |
+
"rating": 5
|
| 1593 |
+
}
|
| 1594 |
+
],
|
| 1595 |
+
"annotator": 1,
|
| 1596 |
+
"annotation_id": 41,
|
| 1597 |
+
"created_at": "2024-12-24T11:21:24.839843Z",
|
| 1598 |
+
"updated_at": "2024-12-24T11:21:24.839861Z",
|
| 1599 |
+
"lead_time": 18.37
|
| 1600 |
+
},
|
| 1601 |
+
{
|
| 1602 |
+
"audio": "\/data\/upload\/1\/079a1904-IvSZLYao.wav",
|
| 1603 |
+
"id": 42,
|
| 1604 |
+
"gender": [
|
| 1605 |
+
{
|
| 1606 |
+
"rating": 4
|
| 1607 |
+
}
|
| 1608 |
+
],
|
| 1609 |
+
"tone": [
|
| 1610 |
+
{
|
| 1611 |
+
"rating": 3
|
| 1612 |
+
}
|
| 1613 |
+
],
|
| 1614 |
+
"pacing": [
|
| 1615 |
+
{
|
| 1616 |
+
"rating": 5
|
| 1617 |
+
}
|
| 1618 |
+
],
|
| 1619 |
+
"enunciation": [
|
| 1620 |
+
{
|
| 1621 |
+
"rating": 4
|
| 1622 |
+
}
|
| 1623 |
+
],
|
| 1624 |
+
"quality": [
|
| 1625 |
+
{
|
| 1626 |
+
"rating": 4
|
| 1627 |
+
}
|
| 1628 |
+
],
|
| 1629 |
+
"style": [
|
| 1630 |
+
{
|
| 1631 |
+
"rating": 3
|
| 1632 |
+
}
|
| 1633 |
+
],
|
| 1634 |
+
"annotator": 1,
|
| 1635 |
+
"annotation_id": 42,
|
| 1636 |
+
"created_at": "2024-12-24T11:21:41.007058Z",
|
| 1637 |
+
"updated_at": "2024-12-24T11:21:41.007073Z",
|
| 1638 |
+
"lead_time": 15.937
|
| 1639 |
+
},
|
| 1640 |
+
{
|
| 1641 |
+
"audio": "\/data\/upload\/1\/1a523970-Kaze7Zvg.wav",
|
| 1642 |
+
"id": 43,
|
| 1643 |
+
"gender": [
|
| 1644 |
+
{
|
| 1645 |
+
"rating": 3
|
| 1646 |
+
}
|
| 1647 |
+
],
|
| 1648 |
+
"tone": [
|
| 1649 |
+
{
|
| 1650 |
+
"rating": 4
|
| 1651 |
+
}
|
| 1652 |
+
],
|
| 1653 |
+
"pacing": [
|
| 1654 |
+
{
|
| 1655 |
+
"rating": 3
|
| 1656 |
+
}
|
| 1657 |
+
],
|
| 1658 |
+
"enunciation": [
|
| 1659 |
+
{
|
| 1660 |
+
"rating": 4
|
| 1661 |
+
}
|
| 1662 |
+
],
|
| 1663 |
+
"quality": [
|
| 1664 |
+
{
|
| 1665 |
+
"rating": 3
|
| 1666 |
+
}
|
| 1667 |
+
],
|
| 1668 |
+
"style": [
|
| 1669 |
+
{
|
| 1670 |
+
"rating": 4
|
| 1671 |
+
}
|
| 1672 |
+
],
|
| 1673 |
+
"annotator": 1,
|
| 1674 |
+
"annotation_id": 43,
|
| 1675 |
+
"created_at": "2024-12-24T11:22:04.349613Z",
|
| 1676 |
+
"updated_at": "2024-12-24T11:22:04.349628Z",
|
| 1677 |
+
"lead_time": 23.163
|
| 1678 |
+
},
|
| 1679 |
+
{
|
| 1680 |
+
"audio": "\/data\/upload\/1\/d157ccb8-xHX2MO3X.wav",
|
| 1681 |
+
"id": 44,
|
| 1682 |
+
"gender": [
|
| 1683 |
+
{
|
| 1684 |
+
"rating": 4
|
| 1685 |
+
}
|
| 1686 |
+
],
|
| 1687 |
+
"tone": [
|
| 1688 |
+
{
|
| 1689 |
+
"rating": 5
|
| 1690 |
+
}
|
| 1691 |
+
],
|
| 1692 |
+
"pacing": [
|
| 1693 |
+
{
|
| 1694 |
+
"rating": 5
|
| 1695 |
+
}
|
| 1696 |
+
],
|
| 1697 |
+
"enunciation": [
|
| 1698 |
+
{
|
| 1699 |
+
"rating": 4
|
| 1700 |
+
}
|
| 1701 |
+
],
|
| 1702 |
+
"quality": [
|
| 1703 |
+
{
|
| 1704 |
+
"rating": 2
|
| 1705 |
+
}
|
| 1706 |
+
],
|
| 1707 |
+
"style": [
|
| 1708 |
+
{
|
| 1709 |
+
"rating": 3
|
| 1710 |
+
}
|
| 1711 |
+
],
|
| 1712 |
+
"annotator": 1,
|
| 1713 |
+
"annotation_id": 44,
|
| 1714 |
+
"created_at": "2024-12-24T11:22:22.055807Z",
|
| 1715 |
+
"updated_at": "2024-12-24T11:22:22.055826Z",
|
| 1716 |
+
"lead_time": 17.508
|
| 1717 |
+
},
|
| 1718 |
+
{
|
| 1719 |
+
"audio": "\/data\/upload\/1\/c37c9115-dlEOGJ9f.wav",
|
| 1720 |
+
"id": 45,
|
| 1721 |
+
"gender": [
|
| 1722 |
+
{
|
| 1723 |
+
"rating": 5
|
| 1724 |
+
}
|
| 1725 |
+
],
|
| 1726 |
+
"tone": [
|
| 1727 |
+
{
|
| 1728 |
+
"rating": 3
|
| 1729 |
+
}
|
| 1730 |
+
],
|
| 1731 |
+
"pacing": [
|
| 1732 |
+
{
|
| 1733 |
+
"rating": 2
|
| 1734 |
+
}
|
| 1735 |
+
],
|
| 1736 |
+
"enunciation": [
|
| 1737 |
+
{
|
| 1738 |
+
"rating": 5
|
| 1739 |
+
}
|
| 1740 |
+
],
|
| 1741 |
+
"quality": [
|
| 1742 |
+
{
|
| 1743 |
+
"rating": 3
|
| 1744 |
+
}
|
| 1745 |
+
],
|
| 1746 |
+
"style": [
|
| 1747 |
+
{
|
| 1748 |
+
"rating": 4
|
| 1749 |
+
}
|
| 1750 |
+
],
|
| 1751 |
+
"annotator": 1,
|
| 1752 |
+
"annotation_id": 45,
|
| 1753 |
+
"created_at": "2024-12-24T11:22:39.871511Z",
|
| 1754 |
+
"updated_at": "2024-12-24T11:22:39.871527Z",
|
| 1755 |
+
"lead_time": 17.6
|
| 1756 |
+
},
|
| 1757 |
+
{
|
| 1758 |
+
"audio": "\/data\/upload\/1\/68bceda3-LL2BqHEb.wav",
|
| 1759 |
+
"id": 46,
|
| 1760 |
+
"tone": [
|
| 1761 |
+
{
|
| 1762 |
+
"rating": 4
|
| 1763 |
+
}
|
| 1764 |
+
],
|
| 1765 |
+
"gender": [
|
| 1766 |
+
{
|
| 1767 |
+
"rating": 3
|
| 1768 |
+
}
|
| 1769 |
+
],
|
| 1770 |
+
"pacing": [
|
| 1771 |
+
{
|
| 1772 |
+
"rating": 4
|
| 1773 |
+
}
|
| 1774 |
+
],
|
| 1775 |
+
"enunciation": [
|
| 1776 |
+
{
|
| 1777 |
+
"rating": 4
|
| 1778 |
+
}
|
| 1779 |
+
],
|
| 1780 |
+
"quality": [
|
| 1781 |
+
{
|
| 1782 |
+
"rating": 3
|
| 1783 |
+
}
|
| 1784 |
+
],
|
| 1785 |
+
"style": [
|
| 1786 |
+
{
|
| 1787 |
+
"rating": 3
|
| 1788 |
+
}
|
| 1789 |
+
],
|
| 1790 |
+
"annotator": 1,
|
| 1791 |
+
"annotation_id": 46,
|
| 1792 |
+
"created_at": "2024-12-24T11:23:08.481278Z",
|
| 1793 |
+
"updated_at": "2024-12-24T11:23:08.481294Z",
|
| 1794 |
+
"lead_time": 28.379
|
| 1795 |
+
},
|
| 1796 |
+
{
|
| 1797 |
+
"audio": "\/data\/upload\/1\/b1a204c2-nU9SXVYj.wav",
|
| 1798 |
+
"id": 47,
|
| 1799 |
+
"gender": [
|
| 1800 |
+
{
|
| 1801 |
+
"rating": 2
|
| 1802 |
+
}
|
| 1803 |
+
],
|
| 1804 |
+
"tone": [
|
| 1805 |
+
{
|
| 1806 |
+
"rating": 2
|
| 1807 |
+
}
|
| 1808 |
+
],
|
| 1809 |
+
"pacing": [
|
| 1810 |
+
{
|
| 1811 |
+
"rating": 2
|
| 1812 |
+
}
|
| 1813 |
+
],
|
| 1814 |
+
"enunciation": [
|
| 1815 |
+
{
|
| 1816 |
+
"rating": 3
|
| 1817 |
+
}
|
| 1818 |
+
],
|
| 1819 |
+
"quality": [
|
| 1820 |
+
{
|
| 1821 |
+
"rating": 3
|
| 1822 |
+
}
|
| 1823 |
+
],
|
| 1824 |
+
"style": [
|
| 1825 |
+
{
|
| 1826 |
+
"rating": 4
|
| 1827 |
+
}
|
| 1828 |
+
],
|
| 1829 |
+
"annotator": 1,
|
| 1830 |
+
"annotation_id": 47,
|
| 1831 |
+
"created_at": "2024-12-24T11:23:29.486018Z",
|
| 1832 |
+
"updated_at": "2024-12-24T11:23:29.486034Z",
|
| 1833 |
+
"lead_time": 20.793
|
| 1834 |
+
},
|
| 1835 |
+
{
|
| 1836 |
+
"audio": "\/data\/upload\/1\/0cd94ebd-7ZZ5zeJH.wav",
|
| 1837 |
+
"id": 48,
|
| 1838 |
+
"gender": [
|
| 1839 |
+
{
|
| 1840 |
+
"rating": 2
|
| 1841 |
+
}
|
| 1842 |
+
],
|
| 1843 |
+
"tone": [
|
| 1844 |
+
{
|
| 1845 |
+
"rating": 3
|
| 1846 |
+
}
|
| 1847 |
+
],
|
| 1848 |
+
"pacing": [
|
| 1849 |
+
{
|
| 1850 |
+
"rating": 2
|
| 1851 |
+
}
|
| 1852 |
+
],
|
| 1853 |
+
"enunciation": [
|
| 1854 |
+
{
|
| 1855 |
+
"rating": 5
|
| 1856 |
+
}
|
| 1857 |
+
],
|
| 1858 |
+
"quality": [
|
| 1859 |
+
{
|
| 1860 |
+
"rating": 3
|
| 1861 |
+
}
|
| 1862 |
+
],
|
| 1863 |
+
"style": [
|
| 1864 |
+
{
|
| 1865 |
+
"rating": 4
|
| 1866 |
+
}
|
| 1867 |
+
],
|
| 1868 |
+
"annotator": 1,
|
| 1869 |
+
"annotation_id": 48,
|
| 1870 |
+
"created_at": "2024-12-24T11:23:46.816956Z",
|
| 1871 |
+
"updated_at": "2024-12-24T11:23:46.816974Z",
|
| 1872 |
+
"lead_time": 17.117
|
| 1873 |
+
},
|
| 1874 |
+
{
|
| 1875 |
+
"audio": "\/data\/upload\/1\/0e73f1d1-vxsp9Z1b.wav",
|
| 1876 |
+
"id": 49,
|
| 1877 |
+
"gender": [
|
| 1878 |
+
{
|
| 1879 |
+
"rating": 3
|
| 1880 |
+
}
|
| 1881 |
+
],
|
| 1882 |
+
"tone": [
|
| 1883 |
+
{
|
| 1884 |
+
"rating": 3
|
| 1885 |
+
}
|
| 1886 |
+
],
|
| 1887 |
+
"pacing": [
|
| 1888 |
+
{
|
| 1889 |
+
"rating": 4
|
| 1890 |
+
}
|
| 1891 |
+
],
|
| 1892 |
+
"enunciation": [
|
| 1893 |
+
{
|
| 1894 |
+
"rating": 3
|
| 1895 |
+
}
|
| 1896 |
+
],
|
| 1897 |
+
"quality": [
|
| 1898 |
+
{
|
| 1899 |
+
"rating": 2
|
| 1900 |
+
}
|
| 1901 |
+
],
|
| 1902 |
+
"style": [
|
| 1903 |
+
{
|
| 1904 |
+
"rating": 4
|
| 1905 |
+
}
|
| 1906 |
+
],
|
| 1907 |
+
"annotator": 1,
|
| 1908 |
+
"annotation_id": 49,
|
| 1909 |
+
"created_at": "2024-12-24T11:24:04.381173Z",
|
| 1910 |
+
"updated_at": "2024-12-24T11:24:04.381190Z",
|
| 1911 |
+
"lead_time": 17.363
|
| 1912 |
+
},
|
| 1913 |
+
{
|
| 1914 |
+
"audio": "\/data\/upload\/1\/8dda7cf2-7IskTrY6.wav",
|
| 1915 |
+
"id": 50,
|
| 1916 |
+
"gender": [
|
| 1917 |
+
{
|
| 1918 |
+
"rating": 3
|
| 1919 |
+
}
|
| 1920 |
+
],
|
| 1921 |
+
"tone": [
|
| 1922 |
+
{
|
| 1923 |
+
"rating": 2
|
| 1924 |
+
}
|
| 1925 |
+
],
|
| 1926 |
+
"pacing": [
|
| 1927 |
+
{
|
| 1928 |
+
"rating": 2
|
| 1929 |
+
}
|
| 1930 |
+
],
|
| 1931 |
+
"enunciation": [
|
| 1932 |
+
{
|
| 1933 |
+
"rating": 4
|
| 1934 |
+
}
|
| 1935 |
+
],
|
| 1936 |
+
"quality": [
|
| 1937 |
+
{
|
| 1938 |
+
"rating": 2
|
| 1939 |
+
}
|
| 1940 |
+
],
|
| 1941 |
+
"style": [
|
| 1942 |
+
{
|
| 1943 |
+
"rating": 5
|
| 1944 |
+
}
|
| 1945 |
+
],
|
| 1946 |
+
"annotator": 1,
|
| 1947 |
+
"annotation_id": 50,
|
| 1948 |
+
"created_at": "2024-12-24T11:24:23.266193Z",
|
| 1949 |
+
"updated_at": "2024-12-24T11:24:23.266207Z",
|
| 1950 |
+
"lead_time": 18.68
|
| 1951 |
+
},
|
| 1952 |
+
{
|
| 1953 |
+
"audio": "\/data\/upload\/1\/d7107f33-TDGKyS0u.wav",
|
| 1954 |
+
"id": 51,
|
| 1955 |
+
"gender": [
|
| 1956 |
+
{
|
| 1957 |
+
"rating": 4
|
| 1958 |
+
}
|
| 1959 |
+
],
|
| 1960 |
+
"tone": [
|
| 1961 |
+
{
|
| 1962 |
+
"rating": 3
|
| 1963 |
+
}
|
| 1964 |
+
],
|
| 1965 |
+
"pacing": [
|
| 1966 |
+
{
|
| 1967 |
+
"rating": 3
|
| 1968 |
+
}
|
| 1969 |
+
],
|
| 1970 |
+
"enunciation": [
|
| 1971 |
+
{
|
| 1972 |
+
"rating": 3
|
| 1973 |
+
}
|
| 1974 |
+
],
|
| 1975 |
+
"quality": [
|
| 1976 |
+
{
|
| 1977 |
+
"rating": 3
|
| 1978 |
+
}
|
| 1979 |
+
],
|
| 1980 |
+
"style": [
|
| 1981 |
+
{
|
| 1982 |
+
"rating": 4
|
| 1983 |
+
}
|
| 1984 |
+
],
|
| 1985 |
+
"annotator": 1,
|
| 1986 |
+
"annotation_id": 51,
|
| 1987 |
+
"created_at": "2024-12-24T11:24:41.890559Z",
|
| 1988 |
+
"updated_at": "2024-12-24T11:24:41.890574Z",
|
| 1989 |
+
"lead_time": 18.436
|
| 1990 |
+
}
|
| 1991 |
+
]
|
pca/generate_pca.py
ADDED
|
@@ -0,0 +1,147 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
import json
|
| 3 |
+
from sklearn.decomposition import PCA
|
| 4 |
+
import joblib
|
| 5 |
+
|
| 6 |
+
# File paths
|
| 7 |
+
VOICES_JSON_PATH = "voices.json"
|
| 8 |
+
ANNOTATIONS_JSON_PATH = "annotations.json"
|
| 9 |
+
PCA_MODEL_PATH = "pca_model.pkl"
|
| 10 |
+
VECTOR_DIMENSION = 256 # Adjust based on your actual vector size
|
| 11 |
+
N_COMPONENTS = 6 # Number of PCA components for annotated features
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
def load_json(file_path):
|
| 15 |
+
"""Load a JSON file."""
|
| 16 |
+
try:
|
| 17 |
+
with open(file_path, "r") as f:
|
| 18 |
+
return json.load(f)
|
| 19 |
+
except FileNotFoundError:
|
| 20 |
+
print(f"Error: {file_path} not found.")
|
| 21 |
+
return {}
|
| 22 |
+
except json.JSONDecodeError:
|
| 23 |
+
print(f"Error: {file_path} is not valid JSON.")
|
| 24 |
+
return {}
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
def extract_annotated_vectors():
|
| 28 |
+
"""
|
| 29 |
+
Load annotations and match annotated features with style vectors.
|
| 30 |
+
Returns:
|
| 31 |
+
np.ndarray: Style vectors (256-dim).
|
| 32 |
+
np.ndarray: Annotated features (n_components-dim).
|
| 33 |
+
"""
|
| 34 |
+
# Load data
|
| 35 |
+
voices_data = load_json(VOICES_JSON_PATH)
|
| 36 |
+
annotations = load_json(ANNOTATIONS_JSON_PATH)
|
| 37 |
+
|
| 38 |
+
style_vectors = []
|
| 39 |
+
annotated_features = []
|
| 40 |
+
|
| 41 |
+
# Extract annotated features and match style vectors
|
| 42 |
+
for item in annotations:
|
| 43 |
+
# Extract the key for the style vector
|
| 44 |
+
audio_path = item.get("audio", "")
|
| 45 |
+
key = audio_path.split("/")[-1].split("-")[-1].replace(".wav", "")
|
| 46 |
+
|
| 47 |
+
# Skip if the style vector is missing
|
| 48 |
+
if key not in voices_data:
|
| 49 |
+
print(f"Warning: No style vector found for key '{key}'. Skipping.")
|
| 50 |
+
continue
|
| 51 |
+
|
| 52 |
+
# Get the style vector and ensure it's flattened to 1D
|
| 53 |
+
style_vector = np.array(voices_data[key], dtype=np.float32).squeeze()
|
| 54 |
+
if style_vector.ndim != 1:
|
| 55 |
+
print(f"Skipping vector with unexpected dimensions: {style_vector.shape}")
|
| 56 |
+
continue
|
| 57 |
+
|
| 58 |
+
# Extract annotated features (pacing, gender, tone, enunciation, style)
|
| 59 |
+
features = [
|
| 60 |
+
item["gender"][0]["rating"],
|
| 61 |
+
item["tone"][0]["rating"],
|
| 62 |
+
item["pacing"][0]["rating"],
|
| 63 |
+
item["enunciation"][0]["rating"],
|
| 64 |
+
item["quality"][0]["rating"],
|
| 65 |
+
item["style"][0]["rating"],
|
| 66 |
+
]
|
| 67 |
+
|
| 68 |
+
# Append data
|
| 69 |
+
style_vectors.append(style_vector)
|
| 70 |
+
annotated_features.append(features)
|
| 71 |
+
|
| 72 |
+
if not style_vectors or not annotated_features:
|
| 73 |
+
print("Error: No valid style vectors or annotations found.")
|
| 74 |
+
return None, None
|
| 75 |
+
|
| 76 |
+
return np.array(style_vectors), np.array(annotated_features)
|
| 77 |
+
|
| 78 |
+
|
| 79 |
+
def train_and_save_pca_model():
|
| 80 |
+
"""
|
| 81 |
+
Train the PCA model using annotated style vectors and save the model.
|
| 82 |
+
"""
|
| 83 |
+
# Extract style vectors and annotated features
|
| 84 |
+
style_vectors, annotated_features = extract_annotated_vectors()
|
| 85 |
+
if style_vectors is None or annotated_features is None:
|
| 86 |
+
print("Error: Unable to extract annotated data.")
|
| 87 |
+
return
|
| 88 |
+
|
| 89 |
+
# Validate shape of style_vectors
|
| 90 |
+
print(f"Style vectors shape: {style_vectors.shape}") # Should be (n_samples, 256)
|
| 91 |
+
print(
|
| 92 |
+
f"Annotated features shape: {annotated_features.shape}"
|
| 93 |
+
) # Should be (n_samples, 5)
|
| 94 |
+
|
| 95 |
+
# Train PCA on style vectors
|
| 96 |
+
print(f"Training PCA on {len(style_vectors)} style vectors...")
|
| 97 |
+
pca = PCA(n_components=N_COMPONENTS)
|
| 98 |
+
pca.fit(style_vectors)
|
| 99 |
+
|
| 100 |
+
# Save PCA model
|
| 101 |
+
joblib.dump(pca, PCA_MODEL_PATH)
|
| 102 |
+
print(f"PCA model saved to {PCA_MODEL_PATH}.")
|
| 103 |
+
|
| 104 |
+
# Optionally save annotated features for downstream tasks
|
| 105 |
+
np.save("annotated_features.npy", annotated_features)
|
| 106 |
+
print("Annotated features saved to 'annotated_features.npy'.")
|
| 107 |
+
|
| 108 |
+
|
| 109 |
+
def load_pca_model():
|
| 110 |
+
"""Load the trained PCA model."""
|
| 111 |
+
try:
|
| 112 |
+
return joblib.load(PCA_MODEL_PATH)
|
| 113 |
+
except FileNotFoundError:
|
| 114 |
+
print(f"Error: {PCA_MODEL_PATH} not found.")
|
| 115 |
+
return None
|
| 116 |
+
|
| 117 |
+
|
| 118 |
+
def reduce_to_pca_components(style_vector, pca):
|
| 119 |
+
"""
|
| 120 |
+
Reduce a 256-dimensional style vector to PCA space.
|
| 121 |
+
|
| 122 |
+
Args:
|
| 123 |
+
style_vector (np.ndarray): Original style vector (256-dim).
|
| 124 |
+
pca (PCA): Trained PCA model.
|
| 125 |
+
|
| 126 |
+
Returns:
|
| 127 |
+
np.ndarray: Reduced vector in PCA space (n_components-dim).
|
| 128 |
+
"""
|
| 129 |
+
return pca.transform([style_vector])[0]
|
| 130 |
+
|
| 131 |
+
|
| 132 |
+
def reconstruct_from_pca_components(pca_vector, pca):
|
| 133 |
+
"""
|
| 134 |
+
Reconstruct the original style vector from PCA space.
|
| 135 |
+
|
| 136 |
+
Args:
|
| 137 |
+
pca_vector (np.ndarray): Vector in PCA space (n_components-dim).
|
| 138 |
+
pca (PCA): Trained PCA model.
|
| 139 |
+
|
| 140 |
+
Returns:
|
| 141 |
+
np.ndarray: Reconstructed style vector (256-dim).
|
| 142 |
+
"""
|
| 143 |
+
return pca.inverse_transform([pca_vector])[0]
|
| 144 |
+
|
| 145 |
+
|
| 146 |
+
if __name__ == "__main__":
|
| 147 |
+
train_and_save_pca_model()
|
pca/pca_model.pkl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:1e81889d232f9a2c09355466b8069e29f3368f4ccc2e7d640be6223c1eea1d8c
|
| 3 |
+
size 8175
|
pca/voices.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
pca_model.pkl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:1e81889d232f9a2c09355466b8069e29f3368f4ccc2e7d640be6223c1eea1d8c
|
| 3 |
+
size 8175
|
pyproject.toml
ADDED
|
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[project]
|
| 2 |
+
name = "artificial-styletts2"
|
| 3 |
+
version = "0.1.0"
|
| 4 |
+
description = "Add your description here"
|
| 5 |
+
readme = "README.md"
|
| 6 |
+
requires-python = ">=3.10"
|
| 7 |
+
dependencies = [
|
| 8 |
+
"audiofile>=1.5.0",
|
| 9 |
+
"cached-path>=1.6.6",
|
| 10 |
+
"einops>=0.8.0",
|
| 11 |
+
"einops-exts>=0.0.4",
|
| 12 |
+
"gradio>=5.9.1",
|
| 13 |
+
"huggingface-hub>=0.26.5",
|
| 14 |
+
"librosa>=0.10.2.post1",
|
| 15 |
+
"markdown>=3.7",
|
| 16 |
+
"matplotlib>=3.10.0",
|
| 17 |
+
"monotonic-align",
|
| 18 |
+
"munch>=4.0.0",
|
| 19 |
+
"nltk>=3.9.1",
|
| 20 |
+
"numpy==2.0",
|
| 21 |
+
"phonemizer>=3.3.0",
|
| 22 |
+
"scikit-learn>=1.6.0",
|
| 23 |
+
"soundfile>=0.12.1",
|
| 24 |
+
"torch>=2.5.1",
|
| 25 |
+
"torchaudio>=2.5.1",
|
| 26 |
+
"tqdm>=4.67.1",
|
| 27 |
+
"transformers>=4.47.1",
|
| 28 |
+
"txtsplit>=1.0.0",
|
| 29 |
+
]
|
| 30 |
+
|
| 31 |
+
[tool.uv.sources]
|
| 32 |
+
monotonic-align = { git = "https://github.com/resemble-ai/monotonic_align.git" }
|
requirements.txt
ADDED
|
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
git+https://github.com/resemble-ai/monotonic_align.git
|
| 2 |
+
gradio
|
| 3 |
+
audiofile==1.5.0
|
| 4 |
+
cached_path
|
| 5 |
+
einops==0.8.0
|
| 6 |
+
einops_exts==0.0.4
|
| 7 |
+
huggingface_hub
|
| 8 |
+
librosa
|
| 9 |
+
Markdown==3.7
|
| 10 |
+
matplotlib==3.10.0
|
| 11 |
+
munch==4.0.0
|
| 12 |
+
nltk==3.9.1
|
| 13 |
+
numpy
|
| 14 |
+
phonemizer==3.3.0
|
| 15 |
+
scikit-learn
|
| 16 |
+
soundfile==0.12.1
|
| 17 |
+
torch
|
| 18 |
+
torchaudio==2.5.1
|
| 19 |
+
tqdm==4.67.1
|
| 20 |
+
transformers==4.47.1
|
| 21 |
+
txtsplit==1.0.0
|
text2speech.py
ADDED
|
@@ -0,0 +1,598 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
# -*- coding: utf-8 -*-
|
| 3 |
+
|
| 4 |
+
import json
|
| 5 |
+
import os
|
| 6 |
+
import argparse
|
| 7 |
+
import random
|
| 8 |
+
import string
|
| 9 |
+
|
| 10 |
+
import numpy as np
|
| 11 |
+
import soundfile as sf # Alias for clarity
|
| 12 |
+
import torch
|
| 13 |
+
|
| 14 |
+
import inference
|
| 15 |
+
from txtsplit import txtsplit # Import txtsplit
|
| 16 |
+
from typing import Optional, Tuple, List
|
| 17 |
+
|
| 18 |
+
VOICES_JSON_PATH = "voices.json" # Contains your known style vectors
|
| 19 |
+
RANDOM_VOICES_JSON_PATH = "random_voices.json" # We'll store newly sampled vectors here
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
##############################################################################
|
| 23 |
+
# JSON LOAD/SAVE
|
| 24 |
+
##############################################################################
|
| 25 |
+
def load_json(path: str) -> dict:
|
| 26 |
+
"""
|
| 27 |
+
Load existing style vectors from the given JSON file.
|
| 28 |
+
|
| 29 |
+
Additionally, validates that all style vectors have the same length.
|
| 30 |
+
|
| 31 |
+
Args:
|
| 32 |
+
path (str): Path to the JSON file.
|
| 33 |
+
|
| 34 |
+
Returns:
|
| 35 |
+
dict: Loaded JSON data.
|
| 36 |
+
"""
|
| 37 |
+
data = {}
|
| 38 |
+
if os.path.exists(path):
|
| 39 |
+
with open(path, "r") as f:
|
| 40 |
+
data = json.load(f)
|
| 41 |
+
# Verify all vectors have the same length
|
| 42 |
+
lengths = set(len(vec) for vec in data.values())
|
| 43 |
+
if len(lengths) > 1:
|
| 44 |
+
raise ValueError(
|
| 45 |
+
f"Inconsistent vector lengths found in '{path}': {lengths}. "
|
| 46 |
+
"All style vectors must have the same dimensionality."
|
| 47 |
+
)
|
| 48 |
+
print(f"Loaded {len(data)} style vectors from '{path}'.")
|
| 49 |
+
else:
|
| 50 |
+
print(f"No existing '{path}' found. Starting with an empty dictionary.")
|
| 51 |
+
return data
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
def save_json(data: dict, path: str) -> None:
|
| 55 |
+
"""
|
| 56 |
+
Save a dict of style vectors to the given JSON file.
|
| 57 |
+
|
| 58 |
+
Args:
|
| 59 |
+
data (dict): Data to save.
|
| 60 |
+
path (str): Path to the JSON file.
|
| 61 |
+
"""
|
| 62 |
+
with open(path, "w") as f:
|
| 63 |
+
json.dump(data, f, indent=2)
|
| 64 |
+
print(f"Saved {len(data)} style vectors to '{path}'.")
|
| 65 |
+
|
| 66 |
+
|
| 67 |
+
##############################################################################
|
| 68 |
+
# GAUSSIAN FIT AND SAMPLING
|
| 69 |
+
##############################################################################
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
def fit_gaussian_to_voices(voices_data: dict) -> Tuple[np.ndarray, np.ndarray]:
|
| 73 |
+
"""
|
| 74 |
+
Fit a Gaussian distribution (mean & cov) to the style vectors in 'voices_data'.
|
| 75 |
+
'voices_data' is a dict: { "key.wav": <list-of-floats>, ... }
|
| 76 |
+
|
| 77 |
+
Args:
|
| 78 |
+
voices_data (dict): Dictionary containing style vectors.
|
| 79 |
+
|
| 80 |
+
Returns:
|
| 81 |
+
Tuple[np.ndarray, np.ndarray]: Mean and covariance of the fitted Gaussian.
|
| 82 |
+
"""
|
| 83 |
+
all_vecs = []
|
| 84 |
+
|
| 85 |
+
for key, data in voices_data.items():
|
| 86 |
+
# Convert to array
|
| 87 |
+
arr = np.array(data, dtype=np.float32)
|
| 88 |
+
# Squeeze out any dimension of size 1
|
| 89 |
+
arr = np.squeeze(arr)
|
| 90 |
+
|
| 91 |
+
if arr.ndim == 1:
|
| 92 |
+
# It's shape (D,)
|
| 93 |
+
all_vecs.append(arr)
|
| 94 |
+
else:
|
| 95 |
+
# If still not 1D, we skip or warn
|
| 96 |
+
print(
|
| 97 |
+
f"Skipping '{key}' because shape is {arr.shape}, not 1D after squeeze."
|
| 98 |
+
)
|
| 99 |
+
|
| 100 |
+
# Must have at least 2 valid vectors to compute a meaningful covariance
|
| 101 |
+
if len(all_vecs) < 2:
|
| 102 |
+
raise ValueError(
|
| 103 |
+
"Need at least 2 valid style vectors to fit a Gaussian distribution.\n"
|
| 104 |
+
"Check that each entry is 1D (or (1,D) which can be squeezed)."
|
| 105 |
+
)
|
| 106 |
+
|
| 107 |
+
# Stack into (N, D)
|
| 108 |
+
mat = np.stack(all_vecs, axis=0) # shape => (N, D)
|
| 109 |
+
# Sanity check
|
| 110 |
+
if mat.ndim != 2:
|
| 111 |
+
raise ValueError("Style vectors must collectively form a 2D array (N, D).")
|
| 112 |
+
|
| 113 |
+
# Compute mean & covariance
|
| 114 |
+
mean = np.mean(mat, axis=0) # shape (D,)
|
| 115 |
+
cov = np.cov(mat, rowvar=False) # shape (D, D)
|
| 116 |
+
print("Fitted Gaussian distribution to style vectors.")
|
| 117 |
+
return mean, cov
|
| 118 |
+
|
| 119 |
+
|
| 120 |
+
def sample_random_style(mean: np.ndarray, cov: np.ndarray) -> torch.Tensor:
|
| 121 |
+
"""
|
| 122 |
+
Sample a random style vector from a Gaussian distribution.
|
| 123 |
+
|
| 124 |
+
Args:
|
| 125 |
+
mean (np.ndarray): Mean vector of the Gaussian.
|
| 126 |
+
cov (np.ndarray): Covariance matrix of the Gaussian.
|
| 127 |
+
|
| 128 |
+
Returns:
|
| 129 |
+
torch.Tensor: Sampled style vector as a tensor of shape (1, D).
|
| 130 |
+
"""
|
| 131 |
+
# Sample from multivariate normal distribution
|
| 132 |
+
z = np.random.multivariate_normal(mean, cov)
|
| 133 |
+
# Convert to torch tensor
|
| 134 |
+
style_tensor = torch.tensor(z, dtype=torch.float32)
|
| 135 |
+
# Unsqueeze to shape (1, D)
|
| 136 |
+
style_tensor = style_tensor.unsqueeze(0)
|
| 137 |
+
print(f"Sampled a new random style vector with shape {style_tensor.shape}.")
|
| 138 |
+
return style_tensor
|
| 139 |
+
|
| 140 |
+
|
| 141 |
+
##############################################################################
|
| 142 |
+
# UTILITIES
|
| 143 |
+
##############################################################################
|
| 144 |
+
|
| 145 |
+
|
| 146 |
+
def parse_speed(value) -> float:
|
| 147 |
+
"""
|
| 148 |
+
Convert 'value' into a float between 0.5 and 2.0 based on custom logic.
|
| 149 |
+
|
| 150 |
+
Examples:
|
| 151 |
+
parse_speed("120%") -> 1.2
|
| 152 |
+
parse_speed(0.3) -> 0.5 (clamped)
|
| 153 |
+
parse_speed(5) -> 2.0 (clamped)
|
| 154 |
+
parse_speed("100%") -> 1.0
|
| 155 |
+
parse_speed(1) -> 1.0
|
| 156 |
+
parse_speed(3) -> 2.0 (clamped)
|
| 157 |
+
parse_speed(50) -> 0.5
|
| 158 |
+
parse_speed(100) -> 1.0
|
| 159 |
+
parse_speed(130) -> 1.3
|
| 160 |
+
parse_speed("150") -> 1.5
|
| 161 |
+
"""
|
| 162 |
+
|
| 163 |
+
# 1) If string ends with '%', parse percentage
|
| 164 |
+
if isinstance(value, str):
|
| 165 |
+
value = value.strip()
|
| 166 |
+
if value.endswith("%"):
|
| 167 |
+
numeric_str = value[:-1].strip() # remove '%' suffix
|
| 168 |
+
try:
|
| 169 |
+
f = float(numeric_str)
|
| 170 |
+
except ValueError:
|
| 171 |
+
print(
|
| 172 |
+
f"Invalid speed format '{value}'. Falling back to default speed 1.0."
|
| 173 |
+
)
|
| 174 |
+
f = 100.0 # fallback to "100%" -> 1.0
|
| 175 |
+
speed = f / 100.0
|
| 176 |
+
else:
|
| 177 |
+
# It's a normal string; parse as float
|
| 178 |
+
try:
|
| 179 |
+
f = float(value)
|
| 180 |
+
except ValueError:
|
| 181 |
+
print(
|
| 182 |
+
f"Invalid speed format '{value}'. Falling back to default speed 1.0."
|
| 183 |
+
)
|
| 184 |
+
f = 100.0 # fallback to "100" -> 1.0
|
| 185 |
+
# If f >= 10, treat as f/100. Example: 50 -> 0.5, 150 -> 1.5
|
| 186 |
+
speed = f / 100.0 if f >= 10 else f
|
| 187 |
+
else:
|
| 188 |
+
# 2) If not string, parse as float
|
| 189 |
+
try:
|
| 190 |
+
f = float(value)
|
| 191 |
+
except ValueError:
|
| 192 |
+
print(f"Invalid speed value '{value}'. Falling back to default speed 1.0.")
|
| 193 |
+
f = 1.0 # fallback to 1.0
|
| 194 |
+
# If f >= 10, treat as f/100
|
| 195 |
+
speed = f / 100.0 if f >= 10 else f
|
| 196 |
+
|
| 197 |
+
# 3) Clamp to [0.5, 2.0]
|
| 198 |
+
clamped_speed = max(0.5, min(2.0, speed))
|
| 199 |
+
if clamped_speed != speed:
|
| 200 |
+
print(f"Speed {speed} clamped to {clamped_speed}.")
|
| 201 |
+
else:
|
| 202 |
+
print(f"Parsed speed: {clamped_speed}")
|
| 203 |
+
return clamped_speed
|
| 204 |
+
|
| 205 |
+
|
| 206 |
+
def concatenate_audios(audios: List[np.ndarray]) -> np.ndarray:
|
| 207 |
+
"""
|
| 208 |
+
Concatenate a list of NumPy audio arrays into a single array.
|
| 209 |
+
|
| 210 |
+
Args:
|
| 211 |
+
audios (List[np.ndarray]): List of audio waveforms to concatenate.
|
| 212 |
+
|
| 213 |
+
Returns:
|
| 214 |
+
np.ndarray: Concatenated audio waveform.
|
| 215 |
+
"""
|
| 216 |
+
return np.concatenate(audios, axis=0)
|
| 217 |
+
|
| 218 |
+
|
| 219 |
+
##############################################################################
|
| 220 |
+
# SYNTHESIS CORE FUNCTION
|
| 221 |
+
##############################################################################
|
| 222 |
+
def synthesize_audio(
|
| 223 |
+
text_chunks: List[str],
|
| 224 |
+
style_vec: torch.Tensor,
|
| 225 |
+
speed: float,
|
| 226 |
+
alpha: float = 0.3,
|
| 227 |
+
beta: float = 0.7,
|
| 228 |
+
diffusion_steps: int = 7,
|
| 229 |
+
embedding_scale: float = 1.0,
|
| 230 |
+
) -> Optional[np.ndarray]:
|
| 231 |
+
"""
|
| 232 |
+
Core function to synthesize audio from text chunks and a style vector.
|
| 233 |
+
|
| 234 |
+
Args:
|
| 235 |
+
text_chunks (List[str]): List of text segments to synthesize.
|
| 236 |
+
style_vec (torch.Tensor): Style vector tensor of shape (1, D).
|
| 237 |
+
speed (float): Parsed speed factor.
|
| 238 |
+
alpha (float): Alpha parameter for inference.
|
| 239 |
+
beta (float): Beta parameter for inference.
|
| 240 |
+
diffusion_steps (int): Number of diffusion steps for inference.
|
| 241 |
+
embedding_scale (float): Embedding scale parameter.
|
| 242 |
+
|
| 243 |
+
Returns:
|
| 244 |
+
Optional[np.ndarray]: Concatenated audio waveform, or None if synthesis fails.
|
| 245 |
+
"""
|
| 246 |
+
audios = []
|
| 247 |
+
for idx, chunk in enumerate(text_chunks, 1):
|
| 248 |
+
print(f"Synthesizing chunk {idx}/{len(text_chunks)}...")
|
| 249 |
+
audio_segment = inference.inference(
|
| 250 |
+
chunk,
|
| 251 |
+
style_vec,
|
| 252 |
+
alpha=alpha,
|
| 253 |
+
beta=beta,
|
| 254 |
+
diffusion_steps=diffusion_steps,
|
| 255 |
+
embedding_scale=embedding_scale,
|
| 256 |
+
speed=speed,
|
| 257 |
+
)
|
| 258 |
+
if audio_segment is not None:
|
| 259 |
+
audios.append(audio_segment)
|
| 260 |
+
print(f"Chunk {idx} synthesized successfully.")
|
| 261 |
+
else:
|
| 262 |
+
print(f"Inference returned None for text segment {idx}: {chunk[:30]}...")
|
| 263 |
+
|
| 264 |
+
if not audios:
|
| 265 |
+
print("No audio segments were generated.")
|
| 266 |
+
return None
|
| 267 |
+
|
| 268 |
+
# Concatenate all audio segments
|
| 269 |
+
print("Concatenating audio segments...")
|
| 270 |
+
full_audio = concatenate_audios(audios)
|
| 271 |
+
print(f"Concatenated audio length: {len(full_audio)} samples.")
|
| 272 |
+
return full_audio
|
| 273 |
+
|
| 274 |
+
|
| 275 |
+
##############################################################################
|
| 276 |
+
# TTS USING A RANDOMLY SAMPLED STYLE
|
| 277 |
+
##############################################################################
|
| 278 |
+
def tts_randomized(
|
| 279 |
+
text: str, speed: float = 1.2
|
| 280 |
+
) -> Tuple[Optional[np.ndarray], Optional[torch.Tensor]]:
|
| 281 |
+
"""
|
| 282 |
+
1) Loads style vectors from voices.json
|
| 283 |
+
2) Fits a Gaussian to those vectors
|
| 284 |
+
3) Samples a new style vector from that distribution
|
| 285 |
+
4) Saves it in random_voices.json
|
| 286 |
+
5) Synthesizes TTS using that random style, handling long texts.
|
| 287 |
+
|
| 288 |
+
Args:
|
| 289 |
+
text (str): The text to be synthesized.
|
| 290 |
+
speed (float): Speed of the generated audio.
|
| 291 |
+
|
| 292 |
+
Returns:
|
| 293 |
+
Tuple[Optional[np.ndarray], Optional[torch.Tensor]]: (audio_waveform, style_vector)
|
| 294 |
+
"""
|
| 295 |
+
# Load known style vectors from voices.json
|
| 296 |
+
voices_data = load_json(VOICES_JSON_PATH)
|
| 297 |
+
if not voices_data:
|
| 298 |
+
print(f"No data found in '{VOICES_JSON_PATH}'; cannot sample a random style.")
|
| 299 |
+
return None, None
|
| 300 |
+
|
| 301 |
+
# Fit Gaussian
|
| 302 |
+
try:
|
| 303 |
+
mean, cov = fit_gaussian_to_voices(voices_data)
|
| 304 |
+
except ValueError as e:
|
| 305 |
+
print(f"Error fitting Gaussian: {e}")
|
| 306 |
+
return None, None
|
| 307 |
+
|
| 308 |
+
# Sample new vector
|
| 309 |
+
random_style_tensor = sample_random_style(mean, cov)
|
| 310 |
+
|
| 311 |
+
# Optionally create a random key for storing
|
| 312 |
+
random_key = "random_" + "".join(random.choices(string.digits, k=6))
|
| 313 |
+
print(f"Generated random style key: '{random_key}'")
|
| 314 |
+
|
| 315 |
+
# Save in random_voices.json
|
| 316 |
+
random_voices_data = load_json(RANDOM_VOICES_JSON_PATH)
|
| 317 |
+
random_voices_data[random_key] = random_style_tensor.squeeze(0).tolist()
|
| 318 |
+
save_json(random_voices_data, RANDOM_VOICES_JSON_PATH)
|
| 319 |
+
print(
|
| 320 |
+
f"Saved random style vector to '{RANDOM_VOICES_JSON_PATH}' under key '{random_key}'."
|
| 321 |
+
)
|
| 322 |
+
|
| 323 |
+
# Parse speed
|
| 324 |
+
speed = parse_speed(speed)
|
| 325 |
+
|
| 326 |
+
# Split text into manageable chunks using txtsplit
|
| 327 |
+
print("Splitting text into chunks...")
|
| 328 |
+
text_chunks = txtsplit(text)
|
| 329 |
+
print(f"Text split into {len(text_chunks)} chunks.")
|
| 330 |
+
|
| 331 |
+
# Synthesize audio using the core function
|
| 332 |
+
full_audio = synthesize_audio(
|
| 333 |
+
text_chunks=text_chunks, style_vec=random_style_tensor, speed=speed
|
| 334 |
+
)
|
| 335 |
+
|
| 336 |
+
return full_audio, random_style_tensor
|
| 337 |
+
|
| 338 |
+
|
| 339 |
+
##############################################################################
|
| 340 |
+
# NORMAL (NON-RANDOM) TTS LOGIC
|
| 341 |
+
##############################################################################
|
| 342 |
+
def get_or_compute_style_vector(key_or_path: str, voices_data: dict) -> torch.Tensor:
|
| 343 |
+
"""
|
| 344 |
+
If key_or_path is in voices_data, load it.
|
| 345 |
+
If it's a file path, compute style from audio.
|
| 346 |
+
Otherwise, raise an error.
|
| 347 |
+
|
| 348 |
+
Args:
|
| 349 |
+
key_or_path (str): Voice key or file path.
|
| 350 |
+
voices_data (dict): Dictionary of existing style vectors.
|
| 351 |
+
|
| 352 |
+
Returns:
|
| 353 |
+
torch.Tensor: Style vector tensor of shape (1, D).
|
| 354 |
+
"""
|
| 355 |
+
if key_or_path in voices_data:
|
| 356 |
+
print(f"Found style vector for '{key_or_path}' in '{VOICES_JSON_PATH}'.")
|
| 357 |
+
style_vec = torch.tensor(voices_data[key_or_path], dtype=torch.float32)
|
| 358 |
+
elif os.path.isfile(key_or_path):
|
| 359 |
+
print(
|
| 360 |
+
f"No existing style for '{key_or_path}'. Attempting to compute from audio..."
|
| 361 |
+
)
|
| 362 |
+
style_vec = inference.compute_style(key_or_path)
|
| 363 |
+
if style_vec is None:
|
| 364 |
+
raise ValueError(f"Failed to compute style vector from '{key_or_path}'.")
|
| 365 |
+
voices_data[key_or_path] = style_vec.squeeze(0).tolist()
|
| 366 |
+
save_json(voices_data, VOICES_JSON_PATH)
|
| 367 |
+
print(
|
| 368 |
+
f"Computed and saved new style vector for '{key_or_path}' to '{VOICES_JSON_PATH}'."
|
| 369 |
+
)
|
| 370 |
+
else:
|
| 371 |
+
raise ValueError(
|
| 372 |
+
f"'{key_or_path}' not found in '{VOICES_JSON_PATH}' and is not a valid file path."
|
| 373 |
+
)
|
| 374 |
+
|
| 375 |
+
print(f"Original style vector shape: {style_vec.shape}")
|
| 376 |
+
|
| 377 |
+
# Ensure style_vec is 2D: (1, D)
|
| 378 |
+
if style_vec.dim() == 1:
|
| 379 |
+
style_vec = style_vec.unsqueeze(0)
|
| 380 |
+
print(f"Unsqueezed style vector to shape: {style_vec.shape}")
|
| 381 |
+
elif style_vec.dim() == 3:
|
| 382 |
+
style_vec = style_vec.squeeze(1)
|
| 383 |
+
print(f"Squeezed style vector to shape: {style_vec.shape}")
|
| 384 |
+
elif style_vec.dim() != 2:
|
| 385 |
+
raise ValueError(
|
| 386 |
+
f"Unexpected style vector dimensions: {style_vec.shape}. Expected 2D tensor."
|
| 387 |
+
)
|
| 388 |
+
|
| 389 |
+
print(f"Processed style vector shape: {style_vec.shape}")
|
| 390 |
+
return style_vec
|
| 391 |
+
|
| 392 |
+
|
| 393 |
+
def validate_style_vectors(voices_data: dict):
|
| 394 |
+
"""
|
| 395 |
+
Validates that all style vectors in voices_data have the same dimensionality.
|
| 396 |
+
|
| 397 |
+
Args:
|
| 398 |
+
voices_data (dict): Dictionary containing style vectors.
|
| 399 |
+
|
| 400 |
+
Raises:
|
| 401 |
+
ValueError: If inconsistent vector lengths are found.
|
| 402 |
+
"""
|
| 403 |
+
if not voices_data:
|
| 404 |
+
print("No style vectors to validate.")
|
| 405 |
+
return
|
| 406 |
+
|
| 407 |
+
lengths = set(len(vec) for vec in voices_data.values())
|
| 408 |
+
if len(lengths) > 1:
|
| 409 |
+
raise ValueError(
|
| 410 |
+
f"Inconsistent style vector lengths found: {lengths}. "
|
| 411 |
+
"All style vectors must have the same dimensionality."
|
| 412 |
+
)
|
| 413 |
+
print("All style vectors have consistent lengths.")
|
| 414 |
+
|
| 415 |
+
|
| 416 |
+
def tts_normal(text: str, voice: str, speed: float = 1.2) -> Optional[np.ndarray]:
|
| 417 |
+
"""
|
| 418 |
+
Load an existing style vector from voices.json if it exists and has 'voice'.
|
| 419 |
+
Otherwise, if 'voice' is a valid .wav file, compute its style vector
|
| 420 |
+
and store it. Finally, run normal TTS with the obtained style vector,
|
| 421 |
+
handling long texts.
|
| 422 |
+
|
| 423 |
+
Args:
|
| 424 |
+
text (str): The text to be synthesized.
|
| 425 |
+
voice (str): Either the key in voices.json or a .wav file path.
|
| 426 |
+
speed (float): Speed of the generated audio.
|
| 427 |
+
|
| 428 |
+
Returns:
|
| 429 |
+
Optional[np.ndarray]: Synthesized audio waveform, or None if something fails.
|
| 430 |
+
"""
|
| 431 |
+
# Load voices_data
|
| 432 |
+
try:
|
| 433 |
+
voices_data = load_json(VOICES_JSON_PATH)
|
| 434 |
+
validate_style_vectors(voices_data)
|
| 435 |
+
except ValueError as e:
|
| 436 |
+
print(f"Error loading/validating '{VOICES_JSON_PATH}': {e}")
|
| 437 |
+
return None
|
| 438 |
+
|
| 439 |
+
try:
|
| 440 |
+
style_vec = get_or_compute_style_vector(voice, voices_data)
|
| 441 |
+
except ValueError as e:
|
| 442 |
+
print(e)
|
| 443 |
+
return None
|
| 444 |
+
|
| 445 |
+
if style_vec is None:
|
| 446 |
+
print("No style vector found or computed; cannot run TTS.")
|
| 447 |
+
return None
|
| 448 |
+
|
| 449 |
+
# Parse speed
|
| 450 |
+
speed = parse_speed(speed)
|
| 451 |
+
|
| 452 |
+
# Split text into manageable chunks using txtsplit
|
| 453 |
+
print("Splitting text into chunks...")
|
| 454 |
+
text_chunks = txtsplit(text)
|
| 455 |
+
print(f"Text split into {len(text_chunks)} chunks.")
|
| 456 |
+
|
| 457 |
+
# Synthesize audio using the core function
|
| 458 |
+
full_audio = synthesize_audio(
|
| 459 |
+
text_chunks=text_chunks,
|
| 460 |
+
style_vec=style_vec,
|
| 461 |
+
speed=speed,
|
| 462 |
+
)
|
| 463 |
+
|
| 464 |
+
return full_audio
|
| 465 |
+
|
| 466 |
+
|
| 467 |
+
##############################################################################
|
| 468 |
+
# TTS USING A DIRECTLY PROVIDED STYLE VECTOR
|
| 469 |
+
##############################################################################
|
| 470 |
+
def tts_with_style_vector(
|
| 471 |
+
text: str,
|
| 472 |
+
style_vec: torch.Tensor,
|
| 473 |
+
speed: float = 1.2,
|
| 474 |
+
alpha: float = 0.3,
|
| 475 |
+
beta: float = 0.7,
|
| 476 |
+
diffusion_steps: int = 7,
|
| 477 |
+
embedding_scale: float = 1.0,
|
| 478 |
+
) -> Optional[np.ndarray]:
|
| 479 |
+
"""
|
| 480 |
+
Perform TTS synthesis using a *directly provided* style vector.
|
| 481 |
+
|
| 482 |
+
Args:
|
| 483 |
+
text (str): The text to be spoken.
|
| 484 |
+
style_vec (torch.Tensor): A PyTorch tensor representing the style vector.
|
| 485 |
+
Should be shape (1, D) if the pipeline expects a batch dimension.
|
| 486 |
+
speed (float): Speed factor for TTS. (Use parse_speed to handle fancy inputs.)
|
| 487 |
+
alpha (float): Weight for alpha in your inference function.
|
| 488 |
+
beta (float): Weight for beta in your inference function.
|
| 489 |
+
diffusion_steps (int): Number of diffusion steps for your TTS pipeline.
|
| 490 |
+
embedding_scale (float): Classifier-free guidance scale or similar.
|
| 491 |
+
|
| 492 |
+
Returns:
|
| 493 |
+
Optional[np.ndarray]: Synthesized audio waveform as a NumPy array (float32), or None if synthesis fails.
|
| 494 |
+
"""
|
| 495 |
+
# Ensure style_vec has shape (1, D)
|
| 496 |
+
if style_vec.dim() == 1:
|
| 497 |
+
style_vec = style_vec.unsqueeze(0) # e.g. (D,) -> (1, D)
|
| 498 |
+
print(f"Unsqueezed style vector to shape: {style_vec.shape}")
|
| 499 |
+
elif style_vec.dim() == 3:
|
| 500 |
+
style_vec = style_vec.squeeze(1)
|
| 501 |
+
print(f"Squeezed style vector to shape: {style_vec.shape}")
|
| 502 |
+
elif style_vec.dim() != 2:
|
| 503 |
+
print(f"Unexpected style vector shape: {style_vec.shape}. Expected 2D tensor.")
|
| 504 |
+
return None
|
| 505 |
+
|
| 506 |
+
print(f"Style vector shape for synthesis: {style_vec.shape}")
|
| 507 |
+
|
| 508 |
+
# Parse speed
|
| 509 |
+
speed_val = parse_speed(speed)
|
| 510 |
+
|
| 511 |
+
# Split text into manageable chunks using txtsplit
|
| 512 |
+
print("Splitting text into chunks...")
|
| 513 |
+
text_chunks = txtsplit(text)
|
| 514 |
+
print(f"Text split into {len(text_chunks)} chunks.")
|
| 515 |
+
|
| 516 |
+
# Synthesize audio using the core function
|
| 517 |
+
full_audio = synthesize_audio(
|
| 518 |
+
text_chunks=text_chunks,
|
| 519 |
+
style_vec=style_vec,
|
| 520 |
+
speed=speed_val,
|
| 521 |
+
alpha=alpha,
|
| 522 |
+
beta=beta,
|
| 523 |
+
diffusion_steps=diffusion_steps,
|
| 524 |
+
embedding_scale=embedding_scale,
|
| 525 |
+
)
|
| 526 |
+
|
| 527 |
+
return full_audio
|
| 528 |
+
|
| 529 |
+
|
| 530 |
+
##############################################################################
|
| 531 |
+
# MAIN CLI
|
| 532 |
+
##############################################################################
|
| 533 |
+
def main():
|
| 534 |
+
parser = argparse.ArgumentParser(
|
| 535 |
+
description="Script to TTS with either random style sampling or normal style usage."
|
| 536 |
+
)
|
| 537 |
+
parser.add_argument(
|
| 538 |
+
"--text",
|
| 539 |
+
type=str,
|
| 540 |
+
default="Hello from a random style or normal style TTS script!",
|
| 541 |
+
help="Text to be spoken.",
|
| 542 |
+
)
|
| 543 |
+
parser.add_argument(
|
| 544 |
+
"--speed",
|
| 545 |
+
type=str, # Changed to str to handle inputs like "120%"
|
| 546 |
+
default="1.2",
|
| 547 |
+
help="Speed of the generated audio (e.g., '120%', '1.2').",
|
| 548 |
+
)
|
| 549 |
+
parser.add_argument(
|
| 550 |
+
"--voice",
|
| 551 |
+
type=str,
|
| 552 |
+
default=None,
|
| 553 |
+
help="If not using --randomize, specify a voice key or .wav path to load/compute style.",
|
| 554 |
+
)
|
| 555 |
+
parser.add_argument(
|
| 556 |
+
"--randomize",
|
| 557 |
+
action="store_true",
|
| 558 |
+
help="Use random style sampling from a fitted Gaussian of known styles.",
|
| 559 |
+
)
|
| 560 |
+
parser.add_argument(
|
| 561 |
+
"--output", type=str, default="output.wav", help="Output WAV file name."
|
| 562 |
+
)
|
| 563 |
+
args = parser.parse_args()
|
| 564 |
+
|
| 565 |
+
if args.randomize:
|
| 566 |
+
# Approach: random style from distribution
|
| 567 |
+
print("Sampling a new random style vector from 'voices.json' distribution...")
|
| 568 |
+
audio, _ = tts_randomized(text=args.text, speed=args.speed)
|
| 569 |
+
else:
|
| 570 |
+
# Normal approach: use a style key or fallback
|
| 571 |
+
print("Using normal style approach (loading or computing from 'voices.json').")
|
| 572 |
+
if args.voice is None:
|
| 573 |
+
print("Error: --voice must be specified when not using --randomize.")
|
| 574 |
+
parser.print_help()
|
| 575 |
+
return
|
| 576 |
+
audio = tts_normal(text=args.text, voice=args.voice, speed=args.speed)
|
| 577 |
+
|
| 578 |
+
if audio is not None:
|
| 579 |
+
# Ensure audio is a NumPy array of type float32
|
| 580 |
+
if not isinstance(audio, np.ndarray):
|
| 581 |
+
print("Error: Synthesized audio is not a NumPy array.")
|
| 582 |
+
return
|
| 583 |
+
if audio.dtype != np.float32:
|
| 584 |
+
print(f"Converting audio from {audio.dtype} to float32.")
|
| 585 |
+
audio = audio.astype(np.float32)
|
| 586 |
+
|
| 587 |
+
# Save the concatenated audio
|
| 588 |
+
try:
|
| 589 |
+
sf.write(args.output, audio, 24000)
|
| 590 |
+
print(f"Audio saved to '{args.output}'.")
|
| 591 |
+
except Exception as e:
|
| 592 |
+
print(f"Failed to save audio to '{args.output}': {e}")
|
| 593 |
+
else:
|
| 594 |
+
print("No audio was generated. Check logs above for errors.")
|
| 595 |
+
|
| 596 |
+
|
| 597 |
+
if __name__ == "__main__":
|
| 598 |
+
main()
|
uv.lock
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
voices.json
ADDED
|
@@ -0,0 +1,2840 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"Richard_Male_EN_US": [
|
| 3 |
+
0.0838528722524643,
|
| 4 |
+
-0.20531457662582397,
|
| 5 |
+
-0.10166072100400925,
|
| 6 |
+
-0.08704791963100433,
|
| 7 |
+
-0.16887575387954712,
|
| 8 |
+
0.07563386857509613,
|
| 9 |
+
-0.11252004653215408,
|
| 10 |
+
0.0405205562710762,
|
| 11 |
+
0.17604444921016693,
|
| 12 |
+
-0.0022975243628025055,
|
| 13 |
+
0.07261361181735992,
|
| 14 |
+
0.01948651298880577,
|
| 15 |
+
0.03549861162900925,
|
| 16 |
+
0.10135026276111603,
|
| 17 |
+
-0.028263121843338013,
|
| 18 |
+
0.002969518303871155,
|
| 19 |
+
0.0983193963766098,
|
| 20 |
+
-0.0498846136033535,
|
| 21 |
+
-0.059726495295763016,
|
| 22 |
+
0.14428836107254028,
|
| 23 |
+
0.22363322973251343,
|
| 24 |
+
-0.18453018367290497,
|
| 25 |
+
-0.02805022895336151,
|
| 26 |
+
-0.04543690383434296,
|
| 27 |
+
-0.11356891691684723,
|
| 28 |
+
-0.13455606997013092,
|
| 29 |
+
0.09829540550708771,
|
| 30 |
+
-0.08688592910766602,
|
| 31 |
+
0.07672901451587677,
|
| 32 |
+
-0.18105418980121613,
|
| 33 |
+
-0.18634817004203796,
|
| 34 |
+
0.12421728670597076,
|
| 35 |
+
-0.007412530481815338,
|
| 36 |
+
-0.05725667625665665,
|
| 37 |
+
-0.1923050880432129,
|
| 38 |
+
0.12631717324256897,
|
| 39 |
+
0.19541586935520172,
|
| 40 |
+
-0.07617154717445374,
|
| 41 |
+
-0.08994933217763901,
|
| 42 |
+
-0.046437621116638184,
|
| 43 |
+
-0.043646734207868576,
|
| 44 |
+
-0.14466425776481628,
|
| 45 |
+
-0.10671895742416382,
|
| 46 |
+
-0.013705611228942871,
|
| 47 |
+
-0.207138791680336,
|
| 48 |
+
-0.752566933631897,
|
| 49 |
+
-0.1562556028366089,
|
| 50 |
+
0.15995296835899353,
|
| 51 |
+
-0.17764419317245483,
|
| 52 |
+
0.016572676599025726,
|
| 53 |
+
0.10811036825180054,
|
| 54 |
+
0.08399468660354614,
|
| 55 |
+
-0.08008511364459991,
|
| 56 |
+
-0.03857298195362091,
|
| 57 |
+
-0.0649266391992569,
|
| 58 |
+
-0.22515754401683807,
|
| 59 |
+
0.11427924036979675,
|
| 60 |
+
-0.24663931131362915,
|
| 61 |
+
0.1547779142856598,
|
| 62 |
+
-0.14620377123355865,
|
| 63 |
+
0.5633630752563477,
|
| 64 |
+
-0.1662401258945465,
|
| 65 |
+
-0.09044578671455383,
|
| 66 |
+
0.004183262586593628,
|
| 67 |
+
-0.0022140033543109894,
|
| 68 |
+
-0.04644201323390007,
|
| 69 |
+
0.09777267277240753,
|
| 70 |
+
0.007478602230548859,
|
| 71 |
+
0.09729039669036865,
|
| 72 |
+
0.014121796935796738,
|
| 73 |
+
-0.1283886432647705,
|
| 74 |
+
0.016886277124285698,
|
| 75 |
+
0.14353325963020325,
|
| 76 |
+
-0.019632495939731598,
|
| 77 |
+
-0.08626653999090195,
|
| 78 |
+
-0.13174456357955933,
|
| 79 |
+
-0.07509270310401917,
|
| 80 |
+
0.13293522596359253,
|
| 81 |
+
-0.006963282823562622,
|
| 82 |
+
0.04489506036043167,
|
| 83 |
+
0.1364283263683319,
|
| 84 |
+
-0.023780206218361855,
|
| 85 |
+
-0.13672304153442383,
|
| 86 |
+
0.0834212377667427,
|
| 87 |
+
-0.0881689265370369,
|
| 88 |
+
0.12765783071517944,
|
| 89 |
+
-0.04777761548757553,
|
| 90 |
+
0.006771944463253021,
|
| 91 |
+
0.10008896142244339,
|
| 92 |
+
-0.0004957094788551331,
|
| 93 |
+
-0.3792557418346405,
|
| 94 |
+
-0.2995077669620514,
|
| 95 |
+
-0.18048475682735443,
|
| 96 |
+
-0.05329251289367676,
|
| 97 |
+
0.15887054800987244,
|
| 98 |
+
-0.05502178147435188,
|
| 99 |
+
-0.002659738063812256,
|
| 100 |
+
-0.1500413417816162,
|
| 101 |
+
0.02029288560152054,
|
| 102 |
+
-0.13041751086711884,
|
| 103 |
+
-0.02238699235022068,
|
| 104 |
+
0.13223209977149963,
|
| 105 |
+
0.008205652236938477,
|
| 106 |
+
0.09628777951002121,
|
| 107 |
+
-0.005202248692512512,
|
| 108 |
+
0.06322506815195084,
|
| 109 |
+
0.2893131375312805,
|
| 110 |
+
0.13000035285949707,
|
| 111 |
+
-0.12980809807777405,
|
| 112 |
+
-0.19357866048812866,
|
| 113 |
+
0.010631434619426727,
|
| 114 |
+
-0.09848842024803162,
|
| 115 |
+
0.43145453929901123,
|
| 116 |
+
-0.07535015791654587,
|
| 117 |
+
0.030972477048635483,
|
| 118 |
+
-0.005491979420185089,
|
| 119 |
+
-0.23411263525485992,
|
| 120 |
+
0.0034233778715133667,
|
| 121 |
+
-0.03615764528512955,
|
| 122 |
+
0.11543036997318268,
|
| 123 |
+
-0.04371267557144165,
|
| 124 |
+
-0.11525161564350128,
|
| 125 |
+
0.023816093802452087,
|
| 126 |
+
0.028308294713497162,
|
| 127 |
+
-0.0039406418800354,
|
| 128 |
+
-0.13210836052894592,
|
| 129 |
+
0.06155262142419815,
|
| 130 |
+
-0.17223545908927917,
|
| 131 |
+
-0.07812541723251343,
|
| 132 |
+
-0.04739491268992424,
|
| 133 |
+
0.012321650981903076,
|
| 134 |
+
0.2732156217098236,
|
| 135 |
+
-0.006376683712005615,
|
| 136 |
+
0.2102227807044983,
|
| 137 |
+
-0.026796162128448486,
|
| 138 |
+
0.023160047829151154,
|
| 139 |
+
0.4432758688926697,
|
| 140 |
+
0.05461269989609718,
|
| 141 |
+
-0.05827128142118454,
|
| 142 |
+
-0.23424984514713287,
|
| 143 |
+
0.004663914442062378,
|
| 144 |
+
0.22082097828388214,
|
| 145 |
+
0.28713545203208923,
|
| 146 |
+
-0.08923299610614777,
|
| 147 |
+
-0.11788474768400192,
|
| 148 |
+
-0.14981813728809357,
|
| 149 |
+
0.008348524570465088,
|
| 150 |
+
0.15658962726593018,
|
| 151 |
+
0.2602955102920532,
|
| 152 |
+
-0.32679831981658936,
|
| 153 |
+
-0.38099929690361023,
|
| 154 |
+
0.22179332375526428,
|
| 155 |
+
-0.18678224086761475,
|
| 156 |
+
0.1026342585682869,
|
| 157 |
+
0.03508329764008522,
|
| 158 |
+
-0.0821741446852684,
|
| 159 |
+
-0.08279386162757874,
|
| 160 |
+
-0.2976434528827667,
|
| 161 |
+
-0.4842967391014099,
|
| 162 |
+
-0.22528287768363953,
|
| 163 |
+
0.05699944496154785,
|
| 164 |
+
-0.16488179564476013,
|
| 165 |
+
-0.15537670254707336,
|
| 166 |
+
0.17949746549129486,
|
| 167 |
+
-0.0883849710226059,
|
| 168 |
+
-0.07729420065879822,
|
| 169 |
+
-0.011546742171049118,
|
| 170 |
+
0.055838439613580704,
|
| 171 |
+
-0.2754920423030853,
|
| 172 |
+
0.24266156554222107,
|
| 173 |
+
-0.25005173683166504,
|
| 174 |
+
0.15594978630542755,
|
| 175 |
+
-0.2281457483768463,
|
| 176 |
+
-0.022545501589775085,
|
| 177 |
+
-0.18430665135383606,
|
| 178 |
+
-0.09129363298416138,
|
| 179 |
+
-0.46234992146492004,
|
| 180 |
+
0.18292169272899628,
|
| 181 |
+
0.3553994596004486,
|
| 182 |
+
0.18489143252372742,
|
| 183 |
+
0.16369718313217163,
|
| 184 |
+
0.06524109095335007,
|
| 185 |
+
-0.13083520531654358,
|
| 186 |
+
-0.004223830997943878,
|
| 187 |
+
0.5248246192932129,
|
| 188 |
+
-0.4541511535644531,
|
| 189 |
+
0.33416515588760376,
|
| 190 |
+
-0.23953655362129211,
|
| 191 |
+
0.039670318365097046,
|
| 192 |
+
-0.2775384485721588,
|
| 193 |
+
-0.06698162853717804,
|
| 194 |
+
-0.04875987395644188,
|
| 195 |
+
0.095211923122406,
|
| 196 |
+
-0.2521704435348511,
|
| 197 |
+
-0.1613994985818863,
|
| 198 |
+
-0.11273781210184097,
|
| 199 |
+
0.089663565158844,
|
| 200 |
+
0.4533567726612091,
|
| 201 |
+
-0.12889298796653748,
|
| 202 |
+
0.04630730301141739,
|
| 203 |
+
0.3440477252006531,
|
| 204 |
+
-0.29735368490219116,
|
| 205 |
+
-0.16942940652370453,
|
| 206 |
+
-0.30063536763191223,
|
| 207 |
+
-0.04887039214372635,
|
| 208 |
+
0.07650876045227051,
|
| 209 |
+
-0.24708417057991028,
|
| 210 |
+
0.11167217791080475,
|
| 211 |
+
0.41300496459007263,
|
| 212 |
+
-0.1990889608860016,
|
| 213 |
+
-0.03628714382648468,
|
| 214 |
+
0.1947430670261383,
|
| 215 |
+
0.002185918390750885,
|
| 216 |
+
-0.1734754890203476,
|
| 217 |
+
0.007325600832700729,
|
| 218 |
+
0.0758146345615387,
|
| 219 |
+
0.14343833923339844,
|
| 220 |
+
0.16034956276416779,
|
| 221 |
+
0.09238007664680481,
|
| 222 |
+
-0.14523102343082428,
|
| 223 |
+
0.07370740175247192,
|
| 224 |
+
-0.05756370723247528,
|
| 225 |
+
0.3471793532371521,
|
| 226 |
+
-0.09545806050300598,
|
| 227 |
+
-0.32518574595451355,
|
| 228 |
+
0.01974405348300934,
|
| 229 |
+
-0.07413671910762787,
|
| 230 |
+
-0.07332949340343475,
|
| 231 |
+
0.09689724445343018,
|
| 232 |
+
0.33527132868766785,
|
| 233 |
+
0.07647977769374847,
|
| 234 |
+
-0.07537016272544861,
|
| 235 |
+
0.19729986786842346,
|
| 236 |
+
-0.054191842675209045,
|
| 237 |
+
0.019159607589244843,
|
| 238 |
+
0.28645795583724976,
|
| 239 |
+
-0.0029614195227622986,
|
| 240 |
+
0.050225719809532166,
|
| 241 |
+
0.058712102472782135,
|
| 242 |
+
-0.020884737372398376,
|
| 243 |
+
0.32063227891921997,
|
| 244 |
+
0.13905727863311768,
|
| 245 |
+
-0.08830951899290085,
|
| 246 |
+
-0.2068493664264679,
|
| 247 |
+
-0.5085070133209229,
|
| 248 |
+
-0.19245725870132446,
|
| 249 |
+
0.07536047697067261,
|
| 250 |
+
0.3520141541957855,
|
| 251 |
+
-0.004317941144108772,
|
| 252 |
+
0.11286243796348572,
|
| 253 |
+
0.4874182343482971,
|
| 254 |
+
0.197415292263031,
|
| 255 |
+
-0.11710592359304428,
|
| 256 |
+
0.41149505972862244,
|
| 257 |
+
-0.024338984861969948,
|
| 258 |
+
-0.3128387928009033
|
| 259 |
+
],
|
| 260 |
+
"Chuck_Male_EN_US": [
|
| 261 |
+
-0.080739326775074,
|
| 262 |
+
-0.05186597257852554,
|
| 263 |
+
-0.04643955081701279,
|
| 264 |
+
-0.16995930671691895,
|
| 265 |
+
-0.08520634472370148,
|
| 266 |
+
0.26354464888572693,
|
| 267 |
+
-0.16335150599479675,
|
| 268 |
+
0.03762347623705864,
|
| 269 |
+
0.12310560047626495,
|
| 270 |
+
0.11882100999355316,
|
| 271 |
+
0.25169509649276733,
|
| 272 |
+
0.16642478108406067,
|
| 273 |
+
0.04346868768334389,
|
| 274 |
+
0.05879981815814972,
|
| 275 |
+
-0.10555227845907211,
|
| 276 |
+
0.098129041492939,
|
| 277 |
+
0.07805588096380234,
|
| 278 |
+
0.07993364334106445,
|
| 279 |
+
0.02878241240978241,
|
| 280 |
+
0.10626713931560516,
|
| 281 |
+
0.18884220719337463,
|
| 282 |
+
-0.15791675448417664,
|
| 283 |
+
-0.046336084604263306,
|
| 284 |
+
-0.06054564565420151,
|
| 285 |
+
0.14667274057865143,
|
| 286 |
+
-0.1686663031578064,
|
| 287 |
+
0.13676004111766815,
|
| 288 |
+
0.017875753343105316,
|
| 289 |
+
0.034988172352313995,
|
| 290 |
+
-0.15061573684215546,
|
| 291 |
+
-0.06622567772865295,
|
| 292 |
+
-0.018525442108511925,
|
| 293 |
+
-0.0815289169549942,
|
| 294 |
+
-0.11815841495990753,
|
| 295 |
+
-0.2079353630542755,
|
| 296 |
+
-0.12242597341537476,
|
| 297 |
+
0.1685279756784439,
|
| 298 |
+
0.005029462277889252,
|
| 299 |
+
-0.04868243634700775,
|
| 300 |
+
-0.006423652172088623,
|
| 301 |
+
-0.03062119334936142,
|
| 302 |
+
-0.10892745107412338,
|
| 303 |
+
-0.029393166303634644,
|
| 304 |
+
-0.14687927067279816,
|
| 305 |
+
-0.10593554377555847,
|
| 306 |
+
-0.7461926937103271,
|
| 307 |
+
-0.1311473250389099,
|
| 308 |
+
0.19617816805839539,
|
| 309 |
+
0.0034797536209225655,
|
| 310 |
+
0.017870396375656128,
|
| 311 |
+
0.1417236328125,
|
| 312 |
+
0.14160263538360596,
|
| 313 |
+
-0.13305433094501495,
|
| 314 |
+
-0.019239917397499084,
|
| 315 |
+
0.0768553614616394,
|
| 316 |
+
-0.2461501657962799,
|
| 317 |
+
0.11662117391824722,
|
| 318 |
+
-0.3004859685897827,
|
| 319 |
+
0.07660801708698273,
|
| 320 |
+
-0.08291581273078918,
|
| 321 |
+
0.646587610244751,
|
| 322 |
+
0.05630920082330704,
|
| 323 |
+
0.018290594220161438,
|
| 324 |
+
-0.076407790184021,
|
| 325 |
+
-0.022635802626609802,
|
| 326 |
+
-0.033361952751874924,
|
| 327 |
+
0.13813386857509613,
|
| 328 |
+
0.23338472843170166,
|
| 329 |
+
0.1526336669921875,
|
| 330 |
+
-0.010544595308601856,
|
| 331 |
+
0.0645538792014122,
|
| 332 |
+
-0.12352045625448227,
|
| 333 |
+
0.23500092327594757,
|
| 334 |
+
0.023993253707885742,
|
| 335 |
+
-0.18476025760173798,
|
| 336 |
+
0.08681316673755646,
|
| 337 |
+
-0.24495398998260498,
|
| 338 |
+
0.1805841475725174,
|
| 339 |
+
0.019407637417316437,
|
| 340 |
+
-0.1164683923125267,
|
| 341 |
+
0.04219061881303787,
|
| 342 |
+
-0.05617094039916992,
|
| 343 |
+
-0.06486696004867554,
|
| 344 |
+
0.11154982447624207,
|
| 345 |
+
0.1624276340007782,
|
| 346 |
+
0.037209782749414444,
|
| 347 |
+
0.024621259421110153,
|
| 348 |
+
-0.011263281106948853,
|
| 349 |
+
0.07437050342559814,
|
| 350 |
+
-0.027852090075612068,
|
| 351 |
+
-0.38197386264801025,
|
| 352 |
+
-0.12534263730049133,
|
| 353 |
+
-0.15090727806091309,
|
| 354 |
+
-0.016294121742248535,
|
| 355 |
+
0.20195062458515167,
|
| 356 |
+
-0.10578630119562149,
|
| 357 |
+
0.0834207683801651,
|
| 358 |
+
-0.2002831995487213,
|
| 359 |
+
0.08801543712615967,
|
| 360 |
+
-0.1744777411222458,
|
| 361 |
+
-0.019703160971403122,
|
| 362 |
+
0.18256394565105438,
|
| 363 |
+
0.019218653440475464,
|
| 364 |
+
-0.06123323366045952,
|
| 365 |
+
0.03127707168459892,
|
| 366 |
+
0.1301468461751938,
|
| 367 |
+
0.2009834200143814,
|
| 368 |
+
0.07228143513202667,
|
| 369 |
+
-0.05553338676691055,
|
| 370 |
+
-0.44165605306625366,
|
| 371 |
+
0.27527377009391785,
|
| 372 |
+
-0.08356539905071259,
|
| 373 |
+
0.5484572649002075,
|
| 374 |
+
-0.22545355558395386,
|
| 375 |
+
0.10192038118839264,
|
| 376 |
+
0.13001194596290588,
|
| 377 |
+
-0.1598789542913437,
|
| 378 |
+
0.03745634853839874,
|
| 379 |
+
0.1973172128200531,
|
| 380 |
+
0.10266508162021637,
|
| 381 |
+
-0.10606272518634796,
|
| 382 |
+
-0.043102242052555084,
|
| 383 |
+
0.023647010326385498,
|
| 384 |
+
0.0016689617186784744,
|
| 385 |
+
0.35201117396354675,
|
| 386 |
+
-0.24116483330726624,
|
| 387 |
+
0.022700302302837372,
|
| 388 |
+
-0.29655206203460693,
|
| 389 |
+
-0.11883702874183655,
|
| 390 |
+
0.06606853753328323,
|
| 391 |
+
-0.09965553879737854,
|
| 392 |
+
0.3298850655555725,
|
| 393 |
+
-0.10845916718244553,
|
| 394 |
+
0.12123875319957733,
|
| 395 |
+
-0.2904745042324066,
|
| 396 |
+
0.16466909646987915,
|
| 397 |
+
0.5250499844551086,
|
| 398 |
+
0.26844123005867004,
|
| 399 |
+
-0.1581430584192276,
|
| 400 |
+
-0.01679089665412903,
|
| 401 |
+
0.10683909058570862,
|
| 402 |
+
0.13829728960990906,
|
| 403 |
+
-0.0774451196193695,
|
| 404 |
+
-0.09715490788221359,
|
| 405 |
+
-0.15488898754119873,
|
| 406 |
+
0.09843119978904724,
|
| 407 |
+
0.18665491044521332,
|
| 408 |
+
0.499192476272583,
|
| 409 |
+
0.25495558977127075,
|
| 410 |
+
-0.3385838270187378,
|
| 411 |
+
-0.11540469527244568,
|
| 412 |
+
0.3943556845188141,
|
| 413 |
+
-0.028287045657634735,
|
| 414 |
+
0.10370328277349472,
|
| 415 |
+
0.3033093214035034,
|
| 416 |
+
-0.13608571887016296,
|
| 417 |
+
-0.07120000571012497,
|
| 418 |
+
-0.14757874608039856,
|
| 419 |
+
-0.2092522382736206,
|
| 420 |
+
-0.349817156791687,
|
| 421 |
+
-0.042082756757736206,
|
| 422 |
+
-0.28092268109321594,
|
| 423 |
+
-0.3474852740764618,
|
| 424 |
+
-0.1188138797879219,
|
| 425 |
+
-0.3396819233894348,
|
| 426 |
+
0.16733011603355408,
|
| 427 |
+
0.09606117755174637,
|
| 428 |
+
0.10766048729419708,
|
| 429 |
+
-0.19903156161308289,
|
| 430 |
+
-0.30723923444747925,
|
| 431 |
+
-0.3617871105670929,
|
| 432 |
+
-0.24389447271823883,
|
| 433 |
+
-0.33159559965133667,
|
| 434 |
+
-0.0794874057173729,
|
| 435 |
+
-0.17680421471595764,
|
| 436 |
+
-0.09732476621866226,
|
| 437 |
+
-0.6020764708518982,
|
| 438 |
+
-0.23046669363975525,
|
| 439 |
+
0.4663076400756836,
|
| 440 |
+
-0.03177022933959961,
|
| 441 |
+
0.31536608934402466,
|
| 442 |
+
0.17449232935905457,
|
| 443 |
+
0.19207462668418884,
|
| 444 |
+
-0.20476028323173523,
|
| 445 |
+
0.3841668367385864,
|
| 446 |
+
-0.46485692262649536,
|
| 447 |
+
0.07715408504009247,
|
| 448 |
+
-0.0481671467423439,
|
| 449 |
+
0.06056290864944458,
|
| 450 |
+
0.23023973405361176,
|
| 451 |
+
-0.44577276706695557,
|
| 452 |
+
0.08608794212341309,
|
| 453 |
+
0.174083411693573,
|
| 454 |
+
-0.20057682693004608,
|
| 455 |
+
0.0015126615762710571,
|
| 456 |
+
0.30561572313308716,
|
| 457 |
+
-0.0823325663805008,
|
| 458 |
+
0.6210863590240479,
|
| 459 |
+
0.12966740131378174,
|
| 460 |
+
-0.27340665459632874,
|
| 461 |
+
0.31147849559783936,
|
| 462 |
+
0.17376896739006042,
|
| 463 |
+
-0.28636378049850464,
|
| 464 |
+
0.1761811077594757,
|
| 465 |
+
-0.3044331669807434,
|
| 466 |
+
0.0771920382976532,
|
| 467 |
+
-0.04131172597408295,
|
| 468 |
+
0.17433065176010132,
|
| 469 |
+
0.11375144124031067,
|
| 470 |
+
-0.06075088679790497,
|
| 471 |
+
-0.21101467311382294,
|
| 472 |
+
0.23215331137180328,
|
| 473 |
+
0.3220982849597931,
|
| 474 |
+
-0.08772740513086319,
|
| 475 |
+
-0.1110156923532486,
|
| 476 |
+
0.150890052318573,
|
| 477 |
+
0.0899096205830574,
|
| 478 |
+
-0.11286906898021698,
|
| 479 |
+
-0.18477720022201538,
|
| 480 |
+
0.12096066772937775,
|
| 481 |
+
0.33322685956954956,
|
| 482 |
+
-0.2950510084629059,
|
| 483 |
+
0.2563823163509369,
|
| 484 |
+
0.11760752648115158,
|
| 485 |
+
-0.3458101749420166,
|
| 486 |
+
-0.4250616133213043,
|
| 487 |
+
-0.25533783435821533,
|
| 488 |
+
-0.2633964717388153,
|
| 489 |
+
-0.026663780212402344,
|
| 490 |
+
0.4655682444572449,
|
| 491 |
+
0.3740382790565491,
|
| 492 |
+
-0.05553853511810303,
|
| 493 |
+
0.024137284606695175,
|
| 494 |
+
-0.044697582721710205,
|
| 495 |
+
0.03481140360236168,
|
| 496 |
+
0.01849237084388733,
|
| 497 |
+
-0.15648233890533447,
|
| 498 |
+
-0.719332218170166,
|
| 499 |
+
0.5206979513168335,
|
| 500 |
+
-0.022456303238868713,
|
| 501 |
+
0.6854866743087769,
|
| 502 |
+
-0.32744836807250977,
|
| 503 |
+
-0.08906684815883636,
|
| 504 |
+
-0.02081950753927231,
|
| 505 |
+
-0.8612825870513916,
|
| 506 |
+
-0.1892240047454834,
|
| 507 |
+
0.07316698133945465,
|
| 508 |
+
0.4908924400806427,
|
| 509 |
+
0.30862411856651306,
|
| 510 |
+
0.3830990791320801,
|
| 511 |
+
0.38602370023727417,
|
| 512 |
+
0.25254443287849426,
|
| 513 |
+
0.26230084896087646,
|
| 514 |
+
0.12000225484371185,
|
| 515 |
+
0.0641913115978241,
|
| 516 |
+
-0.5113836526870728
|
| 517 |
+
],
|
| 518 |
+
"Sol_Female_EN_US": [
|
| 519 |
+
0.1268293261528015,
|
| 520 |
+
-0.24892280995845795,
|
| 521 |
+
0.03928159922361374,
|
| 522 |
+
-0.08916330337524414,
|
| 523 |
+
-0.08921554684638977,
|
| 524 |
+
0.018120769411325455,
|
| 525 |
+
0.009445525705814362,
|
| 526 |
+
0.09456969052553177,
|
| 527 |
+
0.23499509692192078,
|
| 528 |
+
0.12589207291603088,
|
| 529 |
+
0.0817081481218338,
|
| 530 |
+
-0.05610091611742973,
|
| 531 |
+
-0.11433179676532745,
|
| 532 |
+
0.031890347599983215,
|
| 533 |
+
0.01497705653309822,
|
| 534 |
+
0.10599376261234283,
|
| 535 |
+
0.03902814909815788,
|
| 536 |
+
0.01317581906914711,
|
| 537 |
+
0.008249595761299133,
|
| 538 |
+
0.010834900662302971,
|
| 539 |
+
0.1323947310447693,
|
| 540 |
+
-0.14897435903549194,
|
| 541 |
+
-0.044409990310668945,
|
| 542 |
+
-0.004388481378555298,
|
| 543 |
+
-0.02122711017727852,
|
| 544 |
+
-0.21078309416770935,
|
| 545 |
+
0.05238814279437065,
|
| 546 |
+
-0.24263539910316467,
|
| 547 |
+
0.10478609800338745,
|
| 548 |
+
-0.046628206968307495,
|
| 549 |
+
-0.061156079173088074,
|
| 550 |
+
0.04726453870534897,
|
| 551 |
+
0.19356507062911987,
|
| 552 |
+
-0.10425321012735367,
|
| 553 |
+
-0.1245705783367157,
|
| 554 |
+
0.2371465265750885,
|
| 555 |
+
0.15406547486782074,
|
| 556 |
+
-0.11537078022956848,
|
| 557 |
+
-0.2574460506439209,
|
| 558 |
+
0.11589224636554718,
|
| 559 |
+
0.04982087016105652,
|
| 560 |
+
-0.0768856406211853,
|
| 561 |
+
-0.11789155006408691,
|
| 562 |
+
-0.13019400835037231,
|
| 563 |
+
0.03559808060526848,
|
| 564 |
+
-0.47099581360816956,
|
| 565 |
+
0.06938941776752472,
|
| 566 |
+
0.19138163328170776,
|
| 567 |
+
0.17706745862960815,
|
| 568 |
+
0.035381563007831573,
|
| 569 |
+
0.09636449813842773,
|
| 570 |
+
0.07912801951169968,
|
| 571 |
+
0.06765618175268173,
|
| 572 |
+
-0.1303500384092331,
|
| 573 |
+
-0.039963360875844955,
|
| 574 |
+
-0.04088369756937027,
|
| 575 |
+
0.02034657448530197,
|
| 576 |
+
0.008391611278057098,
|
| 577 |
+
0.02184874564409256,
|
| 578 |
+
-0.03052680939435959,
|
| 579 |
+
0.3498419225215912,
|
| 580 |
+
-0.07705945521593094,
|
| 581 |
+
-0.2935195565223694,
|
| 582 |
+
0.034476667642593384,
|
| 583 |
+
-0.1314329355955124,
|
| 584 |
+
0.20076632499694824,
|
| 585 |
+
0.016021449118852615,
|
| 586 |
+
0.23033341765403748,
|
| 587 |
+
-0.03349122032523155,
|
| 588 |
+
-0.18335162103176117,
|
| 589 |
+
0.029580311849713326,
|
| 590 |
+
0.018869629129767418,
|
| 591 |
+
0.10253989696502686,
|
| 592 |
+
-0.09266053140163422,
|
| 593 |
+
-0.03108178824186325,
|
| 594 |
+
-0.03976592794060707,
|
| 595 |
+
0.13201536238193512,
|
| 596 |
+
-0.028312936425209045,
|
| 597 |
+
-0.09032510221004486,
|
| 598 |
+
0.05712374672293663,
|
| 599 |
+
-0.17886731028556824,
|
| 600 |
+
-0.00012268498539924622,
|
| 601 |
+
-0.17655304074287415,
|
| 602 |
+
0.21560686826705933,
|
| 603 |
+
0.07977418601512909,
|
| 604 |
+
0.09157729148864746,
|
| 605 |
+
-0.08235643059015274,
|
| 606 |
+
-0.034677520394325256,
|
| 607 |
+
0.2231934666633606,
|
| 608 |
+
0.1851099133491516,
|
| 609 |
+
-0.2730552554130554,
|
| 610 |
+
-0.2409580945968628,
|
| 611 |
+
-0.273377925157547,
|
| 612 |
+
-0.11498671770095825,
|
| 613 |
+
0.29265373945236206,
|
| 614 |
+
-0.10599346458911896,
|
| 615 |
+
-0.05672678351402283,
|
| 616 |
+
0.026578396558761597,
|
| 617 |
+
-0.22945210337638855,
|
| 618 |
+
-0.08645745366811752,
|
| 619 |
+
0.028000690042972565,
|
| 620 |
+
-0.13934218883514404,
|
| 621 |
+
0.11353091895580292,
|
| 622 |
+
0.060757409781217575,
|
| 623 |
+
0.11343018710613251,
|
| 624 |
+
0.053218141198158264,
|
| 625 |
+
0.3181232810020447,
|
| 626 |
+
0.10948897153139114,
|
| 627 |
+
0.0357043594121933,
|
| 628 |
+
-0.1203552708029747,
|
| 629 |
+
0.11475016921758652,
|
| 630 |
+
-0.005062885582447052,
|
| 631 |
+
0.3342074751853943,
|
| 632 |
+
-0.1266603022813797,
|
| 633 |
+
0.07479999959468842,
|
| 634 |
+
-0.008454116061329842,
|
| 635 |
+
0.12023192644119263,
|
| 636 |
+
-0.03595118224620819,
|
| 637 |
+
0.02898475155234337,
|
| 638 |
+
-0.020386993885040283,
|
| 639 |
+
0.006668185815215111,
|
| 640 |
+
-0.15364103019237518,
|
| 641 |
+
-0.11951534450054169,
|
| 642 |
+
-0.0910012498497963,
|
| 643 |
+
0.19956853985786438,
|
| 644 |
+
0.04014497250318527,
|
| 645 |
+
-0.09457655251026154,
|
| 646 |
+
-0.12396776676177979,
|
| 647 |
+
0.23229674994945526,
|
| 648 |
+
-0.15745335817337036,
|
| 649 |
+
0.17193259298801422,
|
| 650 |
+
0.040711648762226105,
|
| 651 |
+
-0.12352880835533142,
|
| 652 |
+
0.018167633563280106,
|
| 653 |
+
-0.08081409335136414,
|
| 654 |
+
0.23432570695877075,
|
| 655 |
+
0.17171189188957214,
|
| 656 |
+
-0.03221336752176285,
|
| 657 |
+
0.03773265331983566,
|
| 658 |
+
-0.06490489095449448,
|
| 659 |
+
-0.030414387583732605,
|
| 660 |
+
0.4086611866950989,
|
| 661 |
+
0.07678371667861938,
|
| 662 |
+
0.15471185743808746,
|
| 663 |
+
0.009691998362541199,
|
| 664 |
+
0.21592354774475098,
|
| 665 |
+
0.16220787167549133,
|
| 666 |
+
0.13170170783996582,
|
| 667 |
+
0.11527039110660553,
|
| 668 |
+
-0.3844143748283386,
|
| 669 |
+
0.0421525314450264,
|
| 670 |
+
0.4349702298641205,
|
| 671 |
+
-0.1686660647392273,
|
| 672 |
+
0.005835492163896561,
|
| 673 |
+
-0.05163434147834778,
|
| 674 |
+
-0.38664859533309937,
|
| 675 |
+
0.09356559813022614,
|
| 676 |
+
-0.2766155004501343,
|
| 677 |
+
-0.13494873046875,
|
| 678 |
+
-0.07143319398164749,
|
| 679 |
+
-0.0797828882932663,
|
| 680 |
+
-0.10624134540557861,
|
| 681 |
+
-0.05675575137138367,
|
| 682 |
+
0.2754574418067932,
|
| 683 |
+
0.11232379078865051,
|
| 684 |
+
-0.026216700673103333,
|
| 685 |
+
-0.37042930722236633,
|
| 686 |
+
0.04595255106687546,
|
| 687 |
+
-0.08378663659095764,
|
| 688 |
+
0.113258957862854,
|
| 689 |
+
-0.10497808456420898,
|
| 690 |
+
-0.3882599174976349,
|
| 691 |
+
-0.09268787503242493,
|
| 692 |
+
-0.009513184428215027,
|
| 693 |
+
-0.03547880798578262,
|
| 694 |
+
-0.11325360834598541,
|
| 695 |
+
-0.4920811951160431,
|
| 696 |
+
-0.2420617938041687,
|
| 697 |
+
0.004631944000720978,
|
| 698 |
+
0.3054035007953644,
|
| 699 |
+
0.12272718548774719,
|
| 700 |
+
-0.1861076056957245,
|
| 701 |
+
-0.1328718364238739,
|
| 702 |
+
0.22628089785575867,
|
| 703 |
+
0.1674436330795288,
|
| 704 |
+
-0.2189907729625702,
|
| 705 |
+
0.25414198637008667,
|
| 706 |
+
0.08179888129234314,
|
| 707 |
+
0.014794200658798218,
|
| 708 |
+
-0.45081019401550293,
|
| 709 |
+
-0.4995046854019165,
|
| 710 |
+
-0.0721922218799591,
|
| 711 |
+
0.20731398463249207,
|
| 712 |
+
-0.07364560663700104,
|
| 713 |
+
-0.17112991213798523,
|
| 714 |
+
0.20308616757392883,
|
| 715 |
+
0.0781199038028717,
|
| 716 |
+
0.20510229468345642,
|
| 717 |
+
-0.18790192902088165,
|
| 718 |
+
0.08215056359767914,
|
| 719 |
+
0.05191810801625252,
|
| 720 |
+
-0.15418048202991486,
|
| 721 |
+
-0.1164349764585495,
|
| 722 |
+
-0.30107319355010986,
|
| 723 |
+
-0.07877662777900696,
|
| 724 |
+
0.006951943039894104,
|
| 725 |
+
-0.2136976420879364,
|
| 726 |
+
0.18753382563591003,
|
| 727 |
+
0.1558315008878708,
|
| 728 |
+
0.03319445252418518,
|
| 729 |
+
-0.20069114863872528,
|
| 730 |
+
0.5186187028884888,
|
| 731 |
+
0.29910457134246826,
|
| 732 |
+
-0.022099845111370087,
|
| 733 |
+
-0.2004503756761551,
|
| 734 |
+
0.11575216799974442,
|
| 735 |
+
0.06575708091259003,
|
| 736 |
+
0.29491111636161804,
|
| 737 |
+
0.042733918875455856,
|
| 738 |
+
0.13065889477729797,
|
| 739 |
+
-0.025842148810625076,
|
| 740 |
+
-0.48179322481155396,
|
| 741 |
+
0.12712322175502777,
|
| 742 |
+
-0.22928954660892487,
|
| 743 |
+
-0.4731486141681671,
|
| 744 |
+
0.2035326510667801,
|
| 745 |
+
-0.33841538429260254,
|
| 746 |
+
-0.09808406233787537,
|
| 747 |
+
0.30838146805763245,
|
| 748 |
+
0.06581465899944305,
|
| 749 |
+
0.047930970788002014,
|
| 750 |
+
0.01692097634077072,
|
| 751 |
+
0.22469750046730042,
|
| 752 |
+
-0.05486059561371803,
|
| 753 |
+
0.35013893246650696,
|
| 754 |
+
-0.283150851726532,
|
| 755 |
+
0.05401553213596344,
|
| 756 |
+
-0.04293721914291382,
|
| 757 |
+
0.03238523006439209,
|
| 758 |
+
0.30903106927871704,
|
| 759 |
+
0.318570613861084,
|
| 760 |
+
-0.36268168687820435,
|
| 761 |
+
0.01699633151292801,
|
| 762 |
+
-0.122194804251194,
|
| 763 |
+
-0.08210300654172897,
|
| 764 |
+
-0.08749544620513916,
|
| 765 |
+
0.04085458070039749,
|
| 766 |
+
0.26824674010276794,
|
| 767 |
+
-0.20407041907310486,
|
| 768 |
+
0.3028109669685364,
|
| 769 |
+
0.11649337410926819,
|
| 770 |
+
-0.06361576169729233,
|
| 771 |
+
0.022716812789440155,
|
| 772 |
+
0.8145036101341248,
|
| 773 |
+
-0.001978829503059387,
|
| 774 |
+
-0.19634583592414856
|
| 775 |
+
],
|
| 776 |
+
"Georgia_Female_EN_US": [
|
| 777 |
+
0.14149390161037445,
|
| 778 |
+
-0.19759099185466766,
|
| 779 |
+
0.029538815841078758,
|
| 780 |
+
-0.1644008457660675,
|
| 781 |
+
-0.16974563896656036,
|
| 782 |
+
0.15899056196212769,
|
| 783 |
+
-0.08187974989414215,
|
| 784 |
+
0.06346520036458969,
|
| 785 |
+
0.171818345785141,
|
| 786 |
+
-0.03900427371263504,
|
| 787 |
+
0.08924897015094757,
|
| 788 |
+
0.11517727375030518,
|
| 789 |
+
-0.09470553696155548,
|
| 790 |
+
0.039182037115097046,
|
| 791 |
+
-0.0800875872373581,
|
| 792 |
+
0.027626454830169678,
|
| 793 |
+
0.057931605726480484,
|
| 794 |
+
-0.05594071373343468,
|
| 795 |
+
-0.01764649897813797,
|
| 796 |
+
0.1859845221042633,
|
| 797 |
+
0.19512777030467987,
|
| 798 |
+
-0.2715531587600708,
|
| 799 |
+
-0.15435153245925903,
|
| 800 |
+
-0.07994608581066132,
|
| 801 |
+
0.0034161433577537537,
|
| 802 |
+
-0.27405399084091187,
|
| 803 |
+
0.06616479158401489,
|
| 804 |
+
0.028649676591157913,
|
| 805 |
+
0.24419546127319336,
|
| 806 |
+
-0.053172968327999115,
|
| 807 |
+
-0.06803376972675323,
|
| 808 |
+
0.08285264670848846,
|
| 809 |
+
-0.03827327489852905,
|
| 810 |
+
-0.05404618754982948,
|
| 811 |
+
-0.1717120110988617,
|
| 812 |
+
0.0565122552216053,
|
| 813 |
+
0.12560471892356873,
|
| 814 |
+
-0.07519722729921341,
|
| 815 |
+
-0.005836378782987595,
|
| 816 |
+
-0.049631841480731964,
|
| 817 |
+
0.035924024879932404,
|
| 818 |
+
-0.20555508136749268,
|
| 819 |
+
-0.16342787444591522,
|
| 820 |
+
-0.011107422411441803,
|
| 821 |
+
-0.09510314464569092,
|
| 822 |
+
-0.8373715877532959,
|
| 823 |
+
-0.056464750319719315,
|
| 824 |
+
0.15504246950149536,
|
| 825 |
+
0.12261460721492767,
|
| 826 |
+
-0.002536684274673462,
|
| 827 |
+
0.14500755071640015,
|
| 828 |
+
0.17729829251766205,
|
| 829 |
+
-0.16478273272514343,
|
| 830 |
+
-0.07822693139314651,
|
| 831 |
+
0.03328864276409149,
|
| 832 |
+
-0.3484482765197754,
|
| 833 |
+
0.07604808360338211,
|
| 834 |
+
-0.22294224798679352,
|
| 835 |
+
0.06523670256137848,
|
| 836 |
+
-0.22709456086158752,
|
| 837 |
+
0.8876799941062927,
|
| 838 |
+
0.0027947500348091125,
|
| 839 |
+
0.0007318109273910522,
|
| 840 |
+
0.002863973379135132,
|
| 841 |
+
-0.21034874022006989,
|
| 842 |
+
0.051948100328445435,
|
| 843 |
+
-0.004550091922283173,
|
| 844 |
+
0.17473770678043365,
|
| 845 |
+
0.1153031662106514,
|
| 846 |
+
-0.09051527082920074,
|
| 847 |
+
-0.07489325851202011,
|
| 848 |
+
0.03644700348377228,
|
| 849 |
+
0.1395515352487564,
|
| 850 |
+
-0.010498672723770142,
|
| 851 |
+
-0.16194367408752441,
|
| 852 |
+
0.11820540577173233,
|
| 853 |
+
-0.1125202625989914,
|
| 854 |
+
0.07222796976566315,
|
| 855 |
+
0.0924602597951889,
|
| 856 |
+
0.009883157908916473,
|
| 857 |
+
0.14233753085136414,
|
| 858 |
+
-0.04211493209004402,
|
| 859 |
+
-0.09790381044149399,
|
| 860 |
+
0.1432836949825287,
|
| 861 |
+
-0.0207438375800848,
|
| 862 |
+
0.09433138370513916,
|
| 863 |
+
0.03480076417326927,
|
| 864 |
+
0.014073198661208153,
|
| 865 |
+
0.1459684669971466,
|
| 866 |
+
0.06838452816009521,
|
| 867 |
+
-0.4587509036064148,
|
| 868 |
+
-0.24484041333198547,
|
| 869 |
+
-0.13059453666210175,
|
| 870 |
+
-0.014020655304193497,
|
| 871 |
+
-0.04615045711398125,
|
| 872 |
+
-0.10020460933446884,
|
| 873 |
+
0.05875978618860245,
|
| 874 |
+
-0.11167144775390625,
|
| 875 |
+
-0.08788008987903595,
|
| 876 |
+
-0.06586126983165741,
|
| 877 |
+
0.0656682550907135,
|
| 878 |
+
0.06709162890911102,
|
| 879 |
+
0.02795044332742691,
|
| 880 |
+
0.11588016897439957,
|
| 881 |
+
-0.09147179126739502,
|
| 882 |
+
0.08282454311847687,
|
| 883 |
+
0.19108889997005463,
|
| 884 |
+
-0.09372390806674957,
|
| 885 |
+
-0.0004408508539199829,
|
| 886 |
+
-0.40825721621513367,
|
| 887 |
+
0.24378983676433563,
|
| 888 |
+
0.06450286507606506,
|
| 889 |
+
0.40147995948791504,
|
| 890 |
+
-0.12383461743593216,
|
| 891 |
+
0.09264419227838516,
|
| 892 |
+
0.04705287888646126,
|
| 893 |
+
-0.0979108139872551,
|
| 894 |
+
-0.04610448330640793,
|
| 895 |
+
0.06577446311712265,
|
| 896 |
+
0.06107745319604874,
|
| 897 |
+
-0.0739186629652977,
|
| 898 |
+
0.03969721123576164,
|
| 899 |
+
0.0321660116314888,
|
| 900 |
+
0.2023421972990036,
|
| 901 |
+
0.22365602850914001,
|
| 902 |
+
-0.33337128162384033,
|
| 903 |
+
0.10086256265640259,
|
| 904 |
+
-0.23017814755439758,
|
| 905 |
+
0.15227298438549042,
|
| 906 |
+
0.08262811601161957,
|
| 907 |
+
0.028533905744552612,
|
| 908 |
+
0.16887661814689636,
|
| 909 |
+
-0.1553392857313156,
|
| 910 |
+
0.04320569336414337,
|
| 911 |
+
-0.18707242608070374,
|
| 912 |
+
0.021115079522132874,
|
| 913 |
+
0.3647507131099701,
|
| 914 |
+
0.2119525820016861,
|
| 915 |
+
-0.02559354156255722,
|
| 916 |
+
0.268862247467041,
|
| 917 |
+
-0.03270912170410156,
|
| 918 |
+
0.01871364563703537,
|
| 919 |
+
-0.0919923335313797,
|
| 920 |
+
-0.13874371349811554,
|
| 921 |
+
-0.092261902987957,
|
| 922 |
+
0.0468045249581337,
|
| 923 |
+
0.29371997714042664,
|
| 924 |
+
0.21063821017742157,
|
| 925 |
+
-0.12585729360580444,
|
| 926 |
+
-0.4214266538619995,
|
| 927 |
+
-0.17777106165885925,
|
| 928 |
+
0.14042110741138458,
|
| 929 |
+
-0.1407075822353363,
|
| 930 |
+
-0.1934659481048584,
|
| 931 |
+
0.015365049242973328,
|
| 932 |
+
-0.12806877493858337,
|
| 933 |
+
-0.01690494269132614,
|
| 934 |
+
-0.2808881402015686,
|
| 935 |
+
-0.32276445627212524,
|
| 936 |
+
-0.04267498850822449,
|
| 937 |
+
0.04772596061229706,
|
| 938 |
+
-0.13011249899864197,
|
| 939 |
+
-0.4758068323135376,
|
| 940 |
+
0.21355567872524261,
|
| 941 |
+
-0.12164445221424103,
|
| 942 |
+
-0.10112264752388,
|
| 943 |
+
-0.0498490147292614,
|
| 944 |
+
0.2474687546491623,
|
| 945 |
+
-0.40088728070259094,
|
| 946 |
+
-0.21887987852096558,
|
| 947 |
+
-0.4579368829727173,
|
| 948 |
+
-0.21036852896213531,
|
| 949 |
+
-0.18377023935317993,
|
| 950 |
+
-0.23978865146636963,
|
| 951 |
+
-0.15847837924957275,
|
| 952 |
+
-0.36417555809020996,
|
| 953 |
+
-0.1878042072057724,
|
| 954 |
+
-0.12206757068634033,
|
| 955 |
+
0.4226543605327606,
|
| 956 |
+
-0.00703008845448494,
|
| 957 |
+
0.17988801002502441,
|
| 958 |
+
0.235824853181839,
|
| 959 |
+
0.0072716958820819855,
|
| 960 |
+
-0.022622771561145782,
|
| 961 |
+
0.4673866033554077,
|
| 962 |
+
-0.4320169687271118,
|
| 963 |
+
0.27932173013687134,
|
| 964 |
+
-0.1372895985841751,
|
| 965 |
+
0.13946086168289185,
|
| 966 |
+
-0.011557169258594513,
|
| 967 |
+
-0.11092820018529892,
|
| 968 |
+
-0.0025858357548713684,
|
| 969 |
+
0.06566678732633591,
|
| 970 |
+
-0.25665807723999023,
|
| 971 |
+
-0.2400297075510025,
|
| 972 |
+
0.055859118700027466,
|
| 973 |
+
-0.24934203922748566,
|
| 974 |
+
-0.05649476498365402,
|
| 975 |
+
-0.021823860704898834,
|
| 976 |
+
0.07491856813430786,
|
| 977 |
+
0.028743356466293335,
|
| 978 |
+
0.21002137660980225,
|
| 979 |
+
-0.5215728282928467,
|
| 980 |
+
0.05622958019375801,
|
| 981 |
+
-0.2222532033920288,
|
| 982 |
+
0.1794230341911316,
|
| 983 |
+
0.11855436116456985,
|
| 984 |
+
0.14668777585029602,
|
| 985 |
+
0.45487338304519653,
|
| 986 |
+
-0.1859143078327179,
|
| 987 |
+
-0.05654382333159447,
|
| 988 |
+
-0.16731679439544678,
|
| 989 |
+
-0.1562391221523285,
|
| 990 |
+
0.16424456238746643,
|
| 991 |
+
0.2154158502817154,
|
| 992 |
+
0.3380601406097412,
|
| 993 |
+
0.12264357507228851,
|
| 994 |
+
0.3392817974090576,
|
| 995 |
+
-0.060549046844244,
|
| 996 |
+
-0.14765986800193787,
|
| 997 |
+
0.11267101764678955,
|
| 998 |
+
-0.24056652188301086,
|
| 999 |
+
0.03510596603155136,
|
| 1000 |
+
0.10618807375431061,
|
| 1001 |
+
-0.15641556680202484,
|
| 1002 |
+
-0.24543322622776031,
|
| 1003 |
+
-0.19173413515090942,
|
| 1004 |
+
-0.011205855756998062,
|
| 1005 |
+
0.24790503084659576,
|
| 1006 |
+
0.32398396730422974,
|
| 1007 |
+
0.22276073694229126,
|
| 1008 |
+
0.018482085317373276,
|
| 1009 |
+
-0.03579630330204964,
|
| 1010 |
+
0.05034150183200836,
|
| 1011 |
+
0.29536929726600647,
|
| 1012 |
+
-0.050280749797821045,
|
| 1013 |
+
-0.014656215906143188,
|
| 1014 |
+
-0.3677038550376892,
|
| 1015 |
+
0.41170692443847656,
|
| 1016 |
+
0.15874658524990082,
|
| 1017 |
+
0.34870871901512146,
|
| 1018 |
+
-0.23689004778862,
|
| 1019 |
+
0.2970763146877289,
|
| 1020 |
+
0.0950806587934494,
|
| 1021 |
+
-0.1269141584634781,
|
| 1022 |
+
-0.11931035667657852,
|
| 1023 |
+
0.13633345067501068,
|
| 1024 |
+
0.42843636870384216,
|
| 1025 |
+
0.03449300676584244,
|
| 1026 |
+
0.4283212721347809,
|
| 1027 |
+
0.2762477397918701,
|
| 1028 |
+
0.1679811179637909,
|
| 1029 |
+
0.2898493707180023,
|
| 1030 |
+
-0.04722334071993828,
|
| 1031 |
+
-0.047664619982242584,
|
| 1032 |
+
-0.22933121025562286
|
| 1033 |
+
],
|
| 1034 |
+
"Marry_Female_EN_US": [
|
| 1035 |
+
0.10095467418432236,
|
| 1036 |
+
0.046844299882650375,
|
| 1037 |
+
0.05421638488769531,
|
| 1038 |
+
-0.09417131543159485,
|
| 1039 |
+
-0.18054454028606415,
|
| 1040 |
+
0.0935884565114975,
|
| 1041 |
+
-0.11312611401081085,
|
| 1042 |
+
0.02784895896911621,
|
| 1043 |
+
0.13980317115783691,
|
| 1044 |
+
-0.08165936917066574,
|
| 1045 |
+
0.10532249510288239,
|
| 1046 |
+
0.09783805906772614,
|
| 1047 |
+
0.01645722985267639,
|
| 1048 |
+
0.04216833412647247,
|
| 1049 |
+
-0.1025347113609314,
|
| 1050 |
+
0.09854228794574738,
|
| 1051 |
+
0.22359934449195862,
|
| 1052 |
+
0.08323220163583755,
|
| 1053 |
+
0.003406684845685959,
|
| 1054 |
+
0.30394530296325684,
|
| 1055 |
+
0.3451034426689148,
|
| 1056 |
+
-0.29881906509399414,
|
| 1057 |
+
-0.08311712741851807,
|
| 1058 |
+
-0.109955795109272,
|
| 1059 |
+
0.07522188872098923,
|
| 1060 |
+
-0.38127946853637695,
|
| 1061 |
+
0.029290571808815002,
|
| 1062 |
+
-0.012949233874678612,
|
| 1063 |
+
0.22986799478530884,
|
| 1064 |
+
-0.22929272055625916,
|
| 1065 |
+
-0.11333343386650085,
|
| 1066 |
+
0.1066955029964447,
|
| 1067 |
+
-0.03432668745517731,
|
| 1068 |
+
-0.10237376391887665,
|
| 1069 |
+
-0.11407271027565002,
|
| 1070 |
+
-0.01221979409456253,
|
| 1071 |
+
0.19828736782073975,
|
| 1072 |
+
-0.08432801812887192,
|
| 1073 |
+
-0.07885870337486267,
|
| 1074 |
+
-0.09633795917034149,
|
| 1075 |
+
0.07740725576877594,
|
| 1076 |
+
-0.14024686813354492,
|
| 1077 |
+
0.007659006863832474,
|
| 1078 |
+
-0.061528440564870834,
|
| 1079 |
+
-0.15116117894649506,
|
| 1080 |
+
-0.9346913695335388,
|
| 1081 |
+
-0.19321316480636597,
|
| 1082 |
+
0.09346023201942444,
|
| 1083 |
+
0.008720653131604195,
|
| 1084 |
+
0.00935569778084755,
|
| 1085 |
+
0.059522844851017,
|
| 1086 |
+
-0.0004963874816894531,
|
| 1087 |
+
-0.11127720773220062,
|
| 1088 |
+
-0.015941940248012543,
|
| 1089 |
+
0.11759459227323532,
|
| 1090 |
+
-0.38565748929977417,
|
| 1091 |
+
0.014210086315870285,
|
| 1092 |
+
-0.4402802586555481,
|
| 1093 |
+
-0.03058554232120514,
|
| 1094 |
+
-0.15320685505867004,
|
| 1095 |
+
0.925262451171875,
|
| 1096 |
+
0.05237797647714615,
|
| 1097 |
+
-0.06457516551017761,
|
| 1098 |
+
0.04277027025818825,
|
| 1099 |
+
-0.09071764349937439,
|
| 1100 |
+
-0.023430675268173218,
|
| 1101 |
+
0.018660694360733032,
|
| 1102 |
+
0.28416356444358826,
|
| 1103 |
+
0.15927383303642273,
|
| 1104 |
+
-0.036094918847084045,
|
| 1105 |
+
-0.18289241194725037,
|
| 1106 |
+
-0.16174408793449402,
|
| 1107 |
+
0.1352432817220688,
|
| 1108 |
+
-0.11155793070793152,
|
| 1109 |
+
-0.21458107233047485,
|
| 1110 |
+
-0.007756996899843216,
|
| 1111 |
+
-0.17188167572021484,
|
| 1112 |
+
-0.014599844813346863,
|
| 1113 |
+
0.03282542526721954,
|
| 1114 |
+
0.10045303404331207,
|
| 1115 |
+
0.11301460862159729,
|
| 1116 |
+
-0.04795491322875023,
|
| 1117 |
+
-0.05172593891620636,
|
| 1118 |
+
0.11332973837852478,
|
| 1119 |
+
0.07555423676967621,
|
| 1120 |
+
0.10994540899991989,
|
| 1121 |
+
-0.07060486078262329,
|
| 1122 |
+
0.004575258120894432,
|
| 1123 |
+
0.11668689548969269,
|
| 1124 |
+
0.10401762276887894,
|
| 1125 |
+
-0.6524990797042847,
|
| 1126 |
+
-0.2616415023803711,
|
| 1127 |
+
-0.2577282190322876,
|
| 1128 |
+
0.013369720429182053,
|
| 1129 |
+
0.015914201736450195,
|
| 1130 |
+
-0.1528300940990448,
|
| 1131 |
+
0.06751468777656555,
|
| 1132 |
+
-0.2593517601490021,
|
| 1133 |
+
-0.04114726930856705,
|
| 1134 |
+
-0.12167482078075409,
|
| 1135 |
+
-0.016297057271003723,
|
| 1136 |
+
0.050480689853429794,
|
| 1137 |
+
0.08136023581027985,
|
| 1138 |
+
0.10589707642793655,
|
| 1139 |
+
0.0009140158072113991,
|
| 1140 |
+
0.09637215733528137,
|
| 1141 |
+
0.13627931475639343,
|
| 1142 |
+
-0.08097885549068451,
|
| 1143 |
+
-0.04615870863199234,
|
| 1144 |
+
-0.3712182939052582,
|
| 1145 |
+
0.17477694153785706,
|
| 1146 |
+
-0.03713107109069824,
|
| 1147 |
+
0.3938117027282715,
|
| 1148 |
+
-0.16526120901107788,
|
| 1149 |
+
0.046960875391960144,
|
| 1150 |
+
0.13634932041168213,
|
| 1151 |
+
-0.2535812258720398,
|
| 1152 |
+
-0.004662476480007172,
|
| 1153 |
+
-0.1287195086479187,
|
| 1154 |
+
0.04682536423206329,
|
| 1155 |
+
-0.0553663894534111,
|
| 1156 |
+
-0.007208423689007759,
|
| 1157 |
+
-0.03398251533508301,
|
| 1158 |
+
0.04032691568136215,
|
| 1159 |
+
0.10826413333415985,
|
| 1160 |
+
-0.3297663927078247,
|
| 1161 |
+
0.12369295954704285,
|
| 1162 |
+
-0.22297564148902893,
|
| 1163 |
+
0.016204068437218666,
|
| 1164 |
+
0.22467367351055145,
|
| 1165 |
+
0.06251698732376099,
|
| 1166 |
+
0.25536197423934937,
|
| 1167 |
+
-0.0313156396150589,
|
| 1168 |
+
0.23897168040275574,
|
| 1169 |
+
-0.125069260597229,
|
| 1170 |
+
0.05682749301195145,
|
| 1171 |
+
0.2709246873855591,
|
| 1172 |
+
0.11623440682888031,
|
| 1173 |
+
-0.08916947990655899,
|
| 1174 |
+
-0.0015965849161148071,
|
| 1175 |
+
0.021189596503973007,
|
| 1176 |
+
0.1729092001914978,
|
| 1177 |
+
-0.20169132947921753,
|
| 1178 |
+
-0.010327596217393875,
|
| 1179 |
+
-0.036886122077703476,
|
| 1180 |
+
0.01917070895433426,
|
| 1181 |
+
0.18902111053466797,
|
| 1182 |
+
0.5179728269577026,
|
| 1183 |
+
0.31896597146987915,
|
| 1184 |
+
-0.7427007555961609,
|
| 1185 |
+
-0.4137954115867615,
|
| 1186 |
+
0.06960596889257431,
|
| 1187 |
+
0.06620097160339355,
|
| 1188 |
+
-0.1536514014005661,
|
| 1189 |
+
0.1503698229789734,
|
| 1190 |
+
-0.14556577801704407,
|
| 1191 |
+
0.14588545262813568,
|
| 1192 |
+
-0.18597960472106934,
|
| 1193 |
+
-0.342746764421463,
|
| 1194 |
+
0.05013357102870941,
|
| 1195 |
+
-0.02868656814098358,
|
| 1196 |
+
-0.26822707056999207,
|
| 1197 |
+
-0.3400660753250122,
|
| 1198 |
+
-0.02838587388396263,
|
| 1199 |
+
0.004168674349784851,
|
| 1200 |
+
-0.17664480209350586,
|
| 1201 |
+
0.020639866590499878,
|
| 1202 |
+
0.14682283997535706,
|
| 1203 |
+
-0.2350459098815918,
|
| 1204 |
+
-0.19191408157348633,
|
| 1205 |
+
-0.1417776346206665,
|
| 1206 |
+
-0.15922360122203827,
|
| 1207 |
+
-0.2131480872631073,
|
| 1208 |
+
-0.07812295854091644,
|
| 1209 |
+
-0.22641682624816895,
|
| 1210 |
+
-0.08451198041439056,
|
| 1211 |
+
-0.27697646617889404,
|
| 1212 |
+
-0.16417096555233002,
|
| 1213 |
+
0.17140953242778778,
|
| 1214 |
+
-0.014865081757307053,
|
| 1215 |
+
0.1978265941143036,
|
| 1216 |
+
0.17148619890213013,
|
| 1217 |
+
0.051121003925800323,
|
| 1218 |
+
-0.0503043532371521,
|
| 1219 |
+
0.4206354022026062,
|
| 1220 |
+
-0.6276400089263916,
|
| 1221 |
+
0.19541236758232117,
|
| 1222 |
+
-0.05150662735104561,
|
| 1223 |
+
0.20107480883598328,
|
| 1224 |
+
0.30449116230010986,
|
| 1225 |
+
-0.2169422060251236,
|
| 1226 |
+
0.07420805841684341,
|
| 1227 |
+
0.19388242065906525,
|
| 1228 |
+
-0.09795433282852173,
|
| 1229 |
+
-0.3506614565849304,
|
| 1230 |
+
0.29341161251068115,
|
| 1231 |
+
0.036286331713199615,
|
| 1232 |
+
0.2008945643901825,
|
| 1233 |
+
-0.13470220565795898,
|
| 1234 |
+
-0.3342384099960327,
|
| 1235 |
+
0.049659550189971924,
|
| 1236 |
+
-0.23403503000736237,
|
| 1237 |
+
-0.2438443899154663,
|
| 1238 |
+
-0.0661768913269043,
|
| 1239 |
+
-0.15710312128067017,
|
| 1240 |
+
0.06331466138362885,
|
| 1241 |
+
0.1287412941455841,
|
| 1242 |
+
0.2185135930776596,
|
| 1243 |
+
0.2592580318450928,
|
| 1244 |
+
-0.25041234493255615,
|
| 1245 |
+
0.04421650990843773,
|
| 1246 |
+
0.031913772225379944,
|
| 1247 |
+
0.1675594300031662,
|
| 1248 |
+
0.1488073468208313,
|
| 1249 |
+
-0.14290811121463776,
|
| 1250 |
+
0.3285759687423706,
|
| 1251 |
+
0.22858765721321106,
|
| 1252 |
+
0.3819029927253723,
|
| 1253 |
+
-0.04735409840941429,
|
| 1254 |
+
-0.18470162153244019,
|
| 1255 |
+
0.2156306505203247,
|
| 1256 |
+
-0.262035995721817,
|
| 1257 |
+
0.1106458529829979,
|
| 1258 |
+
-0.33096078038215637,
|
| 1259 |
+
-0.40564554929733276,
|
| 1260 |
+
-0.1130962148308754,
|
| 1261 |
+
-0.4035260081291199,
|
| 1262 |
+
0.009994406253099442,
|
| 1263 |
+
0.19823773205280304,
|
| 1264 |
+
0.09995241463184357,
|
| 1265 |
+
0.10737255960702896,
|
| 1266 |
+
0.16501155495643616,
|
| 1267 |
+
-0.21067723631858826,
|
| 1268 |
+
-0.011145517230033875,
|
| 1269 |
+
0.013040252029895782,
|
| 1270 |
+
-0.3106451630592346,
|
| 1271 |
+
-0.048852063715457916,
|
| 1272 |
+
-0.2291208952665329,
|
| 1273 |
+
0.28707051277160645,
|
| 1274 |
+
0.11026108264923096,
|
| 1275 |
+
0.5360386967658997,
|
| 1276 |
+
-0.1761239767074585,
|
| 1277 |
+
0.07656016945838928,
|
| 1278 |
+
-0.07331065833568573,
|
| 1279 |
+
-0.47247397899627686,
|
| 1280 |
+
-0.21432432532310486,
|
| 1281 |
+
-0.21592572331428528,
|
| 1282 |
+
0.6710861921310425,
|
| 1283 |
+
0.11024707555770874,
|
| 1284 |
+
0.19684234261512756,
|
| 1285 |
+
0.2528229355812073,
|
| 1286 |
+
0.21830880641937256,
|
| 1287 |
+
0.1830369234085083,
|
| 1288 |
+
0.07172520458698273,
|
| 1289 |
+
0.24994215369224548,
|
| 1290 |
+
-0.14005254209041595
|
| 1291 |
+
],
|
| 1292 |
+
"Samuel_Male_EN_US": [
|
| 1293 |
+
-0.12619435787200928,
|
| 1294 |
+
-0.11846257001161575,
|
| 1295 |
+
0.04108911007642746,
|
| 1296 |
+
-0.10919006168842316,
|
| 1297 |
+
-0.18582119047641754,
|
| 1298 |
+
0.3603861629962921,
|
| 1299 |
+
-0.08595605194568634,
|
| 1300 |
+
-0.02000698447227478,
|
| 1301 |
+
0.19657589495182037,
|
| 1302 |
+
0.1481103152036667,
|
| 1303 |
+
0.15841630101203918,
|
| 1304 |
+
0.13725560903549194,
|
| 1305 |
+
-0.023550238460302353,
|
| 1306 |
+
0.11064086854457855,
|
| 1307 |
+
0.0004522055387496948,
|
| 1308 |
+
0.039599962532520294,
|
| 1309 |
+
0.03390733152627945,
|
| 1310 |
+
-0.0010563544929027557,
|
| 1311 |
+
-0.06491883099079132,
|
| 1312 |
+
0.21764393150806427,
|
| 1313 |
+
0.16938678920269012,
|
| 1314 |
+
0.11513420194387436,
|
| 1315 |
+
0.08827359974384308,
|
| 1316 |
+
-0.0926792100071907,
|
| 1317 |
+
0.14648687839508057,
|
| 1318 |
+
-0.21553286910057068,
|
| 1319 |
+
0.023113107308745384,
|
| 1320 |
+
-0.121593177318573,
|
| 1321 |
+
0.11240999400615692,
|
| 1322 |
+
-0.12347493320703506,
|
| 1323 |
+
-0.18039049208164215,
|
| 1324 |
+
0.1588599681854248,
|
| 1325 |
+
-0.17081257700920105,
|
| 1326 |
+
-0.2037820667028427,
|
| 1327 |
+
-0.1563880443572998,
|
| 1328 |
+
-0.0917324647307396,
|
| 1329 |
+
0.03558758646249771,
|
| 1330 |
+
-0.11815845966339111,
|
| 1331 |
+
-0.20688572525978088,
|
| 1332 |
+
-0.0739545151591301,
|
| 1333 |
+
-0.0853046327829361,
|
| 1334 |
+
-0.21343617141246796,
|
| 1335 |
+
0.04951489716768265,
|
| 1336 |
+
-0.44510698318481445,
|
| 1337 |
+
-0.09933532774448395,
|
| 1338 |
+
-0.8458589911460876,
|
| 1339 |
+
-0.16738075017929077,
|
| 1340 |
+
0.16498824954032898,
|
| 1341 |
+
0.01717434823513031,
|
| 1342 |
+
-0.06231179088354111,
|
| 1343 |
+
0.16252321004867554,
|
| 1344 |
+
0.04281383752822876,
|
| 1345 |
+
-0.12609757483005524,
|
| 1346 |
+
0.05567052215337753,
|
| 1347 |
+
-0.027309387922286987,
|
| 1348 |
+
-0.3515397310256958,
|
| 1349 |
+
0.04615774750709534,
|
| 1350 |
+
-0.6998573541641235,
|
| 1351 |
+
0.06659585237503052,
|
| 1352 |
+
-0.13769188523292542,
|
| 1353 |
+
0.6031708717346191,
|
| 1354 |
+
0.011859655380249023,
|
| 1355 |
+
-0.33847033977508545,
|
| 1356 |
+
-0.12553080916404724,
|
| 1357 |
+
-0.18536464869976044,
|
| 1358 |
+
-0.007513280957937241,
|
| 1359 |
+
0.519316554069519,
|
| 1360 |
+
0.23655596375465393,
|
| 1361 |
+
0.24828562140464783,
|
| 1362 |
+
0.13927540183067322,
|
| 1363 |
+
0.14041166007518768,
|
| 1364 |
+
-0.09467436373233795,
|
| 1365 |
+
0.11043473333120346,
|
| 1366 |
+
-0.06588282436132431,
|
| 1367 |
+
-0.11430786550045013,
|
| 1368 |
+
0.026140939444303513,
|
| 1369 |
+
-0.2597509026527405,
|
| 1370 |
+
0.24612551927566528,
|
| 1371 |
+
0.10610029101371765,
|
| 1372 |
+
-0.23051029443740845,
|
| 1373 |
+
-0.2547153830528259,
|
| 1374 |
+
-0.002995643764734268,
|
| 1375 |
+
0.17297737300395966,
|
| 1376 |
+
0.03597598150372505,
|
| 1377 |
+
0.15152215957641602,
|
| 1378 |
+
-0.06193822994828224,
|
| 1379 |
+
-0.07088689506053925,
|
| 1380 |
+
0.03826475143432617,
|
| 1381 |
+
0.08488129824399948,
|
| 1382 |
+
0.2690422534942627,
|
| 1383 |
+
-0.5332049131393433,
|
| 1384 |
+
-0.2220773696899414,
|
| 1385 |
+
-0.5455571413040161,
|
| 1386 |
+
-0.09902779757976532,
|
| 1387 |
+
0.21370843052864075,
|
| 1388 |
+
-0.14772546291351318,
|
| 1389 |
+
0.17388656735420227,
|
| 1390 |
+
-0.12971428036689758,
|
| 1391 |
+
0.019031524658203125,
|
| 1392 |
+
-0.03160820156335831,
|
| 1393 |
+
0.002624817192554474,
|
| 1394 |
+
0.023578234016895294,
|
| 1395 |
+
0.12251117080450058,
|
| 1396 |
+
-0.0782250463962555,
|
| 1397 |
+
0.03130299225449562,
|
| 1398 |
+
0.11962416768074036,
|
| 1399 |
+
0.23477508127689362,
|
| 1400 |
+
0.07299475371837616,
|
| 1401 |
+
-0.0542200468480587,
|
| 1402 |
+
-0.4101184606552124,
|
| 1403 |
+
0.08486519753932953,
|
| 1404 |
+
-0.04950159043073654,
|
| 1405 |
+
0.44324159622192383,
|
| 1406 |
+
-0.20634889602661133,
|
| 1407 |
+
0.059250980615615845,
|
| 1408 |
+
-0.016344502568244934,
|
| 1409 |
+
-0.10346954315900803,
|
| 1410 |
+
0.05175183713436127,
|
| 1411 |
+
0.10785773396492004,
|
| 1412 |
+
-0.13179540634155273,
|
| 1413 |
+
-0.21312423050403595,
|
| 1414 |
+
0.08348912745714188,
|
| 1415 |
+
-0.1100846529006958,
|
| 1416 |
+
-0.0912843644618988,
|
| 1417 |
+
0.16458404064178467,
|
| 1418 |
+
-0.22458869218826294,
|
| 1419 |
+
0.057109322398900986,
|
| 1420 |
+
-0.14130070805549622,
|
| 1421 |
+
-0.27792462706565857,
|
| 1422 |
+
0.2201579511165619,
|
| 1423 |
+
0.14192339777946472,
|
| 1424 |
+
0.370261013507843,
|
| 1425 |
+
-0.1133350059390068,
|
| 1426 |
+
0.5210106372833252,
|
| 1427 |
+
-0.2802170515060425,
|
| 1428 |
+
0.2284509539604187,
|
| 1429 |
+
0.08346766233444214,
|
| 1430 |
+
0.2824746072292328,
|
| 1431 |
+
-0.2277216911315918,
|
| 1432 |
+
0.28492996096611023,
|
| 1433 |
+
0.13533133268356323,
|
| 1434 |
+
0.17641571164131165,
|
| 1435 |
+
0.055212635546922684,
|
| 1436 |
+
-0.1420554518699646,
|
| 1437 |
+
-0.3370305895805359,
|
| 1438 |
+
-0.05939646065235138,
|
| 1439 |
+
-0.012498218566179276,
|
| 1440 |
+
0.3336101472377777,
|
| 1441 |
+
-0.009854704141616821,
|
| 1442 |
+
-0.21461555361747742,
|
| 1443 |
+
-0.06897716224193573,
|
| 1444 |
+
0.42768532037734985,
|
| 1445 |
+
0.2918033301830292,
|
| 1446 |
+
0.17972910404205322,
|
| 1447 |
+
0.08387543261051178,
|
| 1448 |
+
-0.3834030032157898,
|
| 1449 |
+
0.04259374737739563,
|
| 1450 |
+
-0.24948984384536743,
|
| 1451 |
+
-0.4711057245731354,
|
| 1452 |
+
0.23269453644752502,
|
| 1453 |
+
-0.11432869732379913,
|
| 1454 |
+
-0.3319881558418274,
|
| 1455 |
+
-0.5810990333557129,
|
| 1456 |
+
-0.16500617563724518,
|
| 1457 |
+
-0.513327419757843,
|
| 1458 |
+
-0.22280623018741608,
|
| 1459 |
+
-0.06446528434753418,
|
| 1460 |
+
0.053828924894332886,
|
| 1461 |
+
-0.3869067430496216,
|
| 1462 |
+
-0.18398475646972656,
|
| 1463 |
+
-0.39183861017227173,
|
| 1464 |
+
-0.1645130217075348,
|
| 1465 |
+
-0.10562220215797424,
|
| 1466 |
+
0.09369634836912155,
|
| 1467 |
+
-0.10099713504314423,
|
| 1468 |
+
-0.2670536935329437,
|
| 1469 |
+
-0.3405263423919678,
|
| 1470 |
+
-0.4056051969528198,
|
| 1471 |
+
0.4251013398170471,
|
| 1472 |
+
-0.06249173730611801,
|
| 1473 |
+
0.045685671269893646,
|
| 1474 |
+
0.4523245692253113,
|
| 1475 |
+
0.03759829327464104,
|
| 1476 |
+
-0.17996317148208618,
|
| 1477 |
+
0.4454271197319031,
|
| 1478 |
+
-0.9131506681442261,
|
| 1479 |
+
0.12587328255176544,
|
| 1480 |
+
0.03575079143047333,
|
| 1481 |
+
0.1569804549217224,
|
| 1482 |
+
-0.005473516881465912,
|
| 1483 |
+
-0.20985543727874756,
|
| 1484 |
+
0.02623889595270157,
|
| 1485 |
+
0.27007320523262024,
|
| 1486 |
+
-0.10873401910066605,
|
| 1487 |
+
0.05130569636821747,
|
| 1488 |
+
-0.0011592544615268707,
|
| 1489 |
+
-0.0032558459788560867,
|
| 1490 |
+
0.3350878059864044,
|
| 1491 |
+
0.14362351596355438,
|
| 1492 |
+
-0.046291008591651917,
|
| 1493 |
+
0.1339847445487976,
|
| 1494 |
+
0.054939839988946915,
|
| 1495 |
+
-0.20351824164390564,
|
| 1496 |
+
0.13673129677772522,
|
| 1497 |
+
-0.5390269160270691,
|
| 1498 |
+
0.20881281793117523,
|
| 1499 |
+
-0.12060403823852539,
|
| 1500 |
+
0.08859001100063324,
|
| 1501 |
+
-0.025972001254558563,
|
| 1502 |
+
-0.4430112838745117,
|
| 1503 |
+
-0.004151973873376846,
|
| 1504 |
+
0.18464192748069763,
|
| 1505 |
+
0.3526911437511444,
|
| 1506 |
+
-0.09955041110515594,
|
| 1507 |
+
0.10740470886230469,
|
| 1508 |
+
0.35204750299453735,
|
| 1509 |
+
0.013931604102253914,
|
| 1510 |
+
0.5496764183044434,
|
| 1511 |
+
0.004158753901720047,
|
| 1512 |
+
0.2092914879322052,
|
| 1513 |
+
0.09148923307657242,
|
| 1514 |
+
-0.2677595019340515,
|
| 1515 |
+
0.044244516640901566,
|
| 1516 |
+
0.25607749819755554,
|
| 1517 |
+
-0.3345734179019928,
|
| 1518 |
+
-0.251026451587677,
|
| 1519 |
+
-0.5243716239929199,
|
| 1520 |
+
-0.07589935511350632,
|
| 1521 |
+
0.2236466407775879,
|
| 1522 |
+
0.692629337310791,
|
| 1523 |
+
0.30974945425987244,
|
| 1524 |
+
-0.05844153091311455,
|
| 1525 |
+
0.03120841458439827,
|
| 1526 |
+
0.06444196403026581,
|
| 1527 |
+
-0.04019276052713394,
|
| 1528 |
+
0.20844346284866333,
|
| 1529 |
+
0.02490842342376709,
|
| 1530 |
+
-0.4918057918548584,
|
| 1531 |
+
0.17454466223716736,
|
| 1532 |
+
0.008414536714553833,
|
| 1533 |
+
0.3902796804904938,
|
| 1534 |
+
-0.358223557472229,
|
| 1535 |
+
0.03861651197075844,
|
| 1536 |
+
0.18186673521995544,
|
| 1537 |
+
-0.527253270149231,
|
| 1538 |
+
-0.13051800429821014,
|
| 1539 |
+
0.05706249922513962,
|
| 1540 |
+
0.6442924737930298,
|
| 1541 |
+
0.1802804172039032,
|
| 1542 |
+
0.41333693265914917,
|
| 1543 |
+
0.23335036635398865,
|
| 1544 |
+
0.1602075695991516,
|
| 1545 |
+
0.05822325870394707,
|
| 1546 |
+
0.07076271623373032,
|
| 1547 |
+
0.1175406351685524,
|
| 1548 |
+
-0.11005706340074539
|
| 1549 |
+
],
|
| 1550 |
+
"Peter_Male_EN_US": [
|
| 1551 |
+
-0.02671806514263153,
|
| 1552 |
+
-0.1403174251317978,
|
| 1553 |
+
0.05001065880060196,
|
| 1554 |
+
-0.1078786849975586,
|
| 1555 |
+
-0.11178930848836899,
|
| 1556 |
+
0.35923928022384644,
|
| 1557 |
+
-0.10216598212718964,
|
| 1558 |
+
-0.0744534507393837,
|
| 1559 |
+
0.1513819694519043,
|
| 1560 |
+
0.033666566014289856,
|
| 1561 |
+
0.18034929037094116,
|
| 1562 |
+
0.17279928922653198,
|
| 1563 |
+
0.025053754448890686,
|
| 1564 |
+
-0.041277479380369186,
|
| 1565 |
+
-0.017297936603426933,
|
| 1566 |
+
0.089497409760952,
|
| 1567 |
+
0.09309914708137512,
|
| 1568 |
+
-0.013885125517845154,
|
| 1569 |
+
0.006094053387641907,
|
| 1570 |
+
0.17924150824546814,
|
| 1571 |
+
0.24564367532730103,
|
| 1572 |
+
0.0279664546251297,
|
| 1573 |
+
-0.0281650610268116,
|
| 1574 |
+
-0.21447591483592987,
|
| 1575 |
+
0.05961482226848602,
|
| 1576 |
+
-0.24900272488594055,
|
| 1577 |
+
0.08882076293230057,
|
| 1578 |
+
-0.08165736496448517,
|
| 1579 |
+
0.10724847763776779,
|
| 1580 |
+
-0.12638989090919495,
|
| 1581 |
+
-0.17386965453624725,
|
| 1582 |
+
0.13405269384384155,
|
| 1583 |
+
-0.34381765127182007,
|
| 1584 |
+
-0.14751896262168884,
|
| 1585 |
+
-0.22588366270065308,
|
| 1586 |
+
-0.1478700041770935,
|
| 1587 |
+
0.17554007470607758,
|
| 1588 |
+
-0.06141895055770874,
|
| 1589 |
+
-0.08225107192993164,
|
| 1590 |
+
-0.11144131422042847,
|
| 1591 |
+
-0.06510056555271149,
|
| 1592 |
+
-0.28190499544143677,
|
| 1593 |
+
0.038482390344142914,
|
| 1594 |
+
-0.27125123143196106,
|
| 1595 |
+
-0.18446698784828186,
|
| 1596 |
+
-0.9286922812461853,
|
| 1597 |
+
-0.22221821546554565,
|
| 1598 |
+
0.1890208125114441,
|
| 1599 |
+
-0.019690819084644318,
|
| 1600 |
+
-0.0410115122795105,
|
| 1601 |
+
0.020294375717639923,
|
| 1602 |
+
0.027921512722969055,
|
| 1603 |
+
-0.1279190480709076,
|
| 1604 |
+
0.147661954164505,
|
| 1605 |
+
-0.06851989030838013,
|
| 1606 |
+
-0.3743244409561157,
|
| 1607 |
+
0.16605032980442047,
|
| 1608 |
+
-0.6898317337036133,
|
| 1609 |
+
0.1322338581085205,
|
| 1610 |
+
-0.24458415806293488,
|
| 1611 |
+
0.8091621398925781,
|
| 1612 |
+
-0.0020183511078357697,
|
| 1613 |
+
-0.2860056161880493,
|
| 1614 |
+
-0.101268470287323,
|
| 1615 |
+
-0.12195206433534622,
|
| 1616 |
+
-0.0030680038034915924,
|
| 1617 |
+
0.35305753350257874,
|
| 1618 |
+
0.18254509568214417,
|
| 1619 |
+
0.15022733807563782,
|
| 1620 |
+
0.05763908848166466,
|
| 1621 |
+
0.05388329550623894,
|
| 1622 |
+
-0.1870671808719635,
|
| 1623 |
+
0.16868555545806885,
|
| 1624 |
+
-0.005561813712120056,
|
| 1625 |
+
-0.038571834564208984,
|
| 1626 |
+
0.04676483944058418,
|
| 1627 |
+
-0.30886393785476685,
|
| 1628 |
+
0.167225182056427,
|
| 1629 |
+
0.09490098804235458,
|
| 1630 |
+
-0.1838131844997406,
|
| 1631 |
+
-0.16072562336921692,
|
| 1632 |
+
-0.07846863567829132,
|
| 1633 |
+
-0.02979177236557007,
|
| 1634 |
+
0.11231174319982529,
|
| 1635 |
+
0.12191181629896164,
|
| 1636 |
+
0.0011293292045593262,
|
| 1637 |
+
0.00034183263778686523,
|
| 1638 |
+
0.03643456846475601,
|
| 1639 |
+
-0.004104208201169968,
|
| 1640 |
+
0.0210350900888443,
|
| 1641 |
+
-0.5258797407150269,
|
| 1642 |
+
-0.28434744477272034,
|
| 1643 |
+
-0.3846287727355957,
|
| 1644 |
+
0.028454381972551346,
|
| 1645 |
+
0.268708735704422,
|
| 1646 |
+
-0.1812271922826767,
|
| 1647 |
+
0.14686831831932068,
|
| 1648 |
+
-0.19878965616226196,
|
| 1649 |
+
0.014050750061869621,
|
| 1650 |
+
-0.08926080912351608,
|
| 1651 |
+
0.005555577576160431,
|
| 1652 |
+
0.031308822333812714,
|
| 1653 |
+
0.06296883523464203,
|
| 1654 |
+
-0.030255869030952454,
|
| 1655 |
+
0.014618240296840668,
|
| 1656 |
+
0.15111848711967468,
|
| 1657 |
+
0.08761651813983917,
|
| 1658 |
+
0.017063427716493607,
|
| 1659 |
+
-0.10042140632867813,
|
| 1660 |
+
-0.5389280915260315,
|
| 1661 |
+
0.01812286674976349,
|
| 1662 |
+
-0.05892270803451538,
|
| 1663 |
+
0.6147855520248413,
|
| 1664 |
+
-0.2805640995502472,
|
| 1665 |
+
0.04736167937517166,
|
| 1666 |
+
0.08966498076915741,
|
| 1667 |
+
-0.21231184899806976,
|
| 1668 |
+
0.029807910323143005,
|
| 1669 |
+
0.09918596595525742,
|
| 1670 |
+
-0.030193090438842773,
|
| 1671 |
+
-0.18508130311965942,
|
| 1672 |
+
0.03303778916597366,
|
| 1673 |
+
-0.04084295034408569,
|
| 1674 |
+
-0.09405478835105896,
|
| 1675 |
+
0.08350837975740433,
|
| 1676 |
+
-0.2915036678314209,
|
| 1677 |
+
-0.029322421178221703,
|
| 1678 |
+
-0.2637880742549896,
|
| 1679 |
+
-0.30284351110458374,
|
| 1680 |
+
0.25083762407302856,
|
| 1681 |
+
-0.05462878942489624,
|
| 1682 |
+
0.437039852142334,
|
| 1683 |
+
0.19965985417366028,
|
| 1684 |
+
0.10523413866758347,
|
| 1685 |
+
-0.10033008456230164,
|
| 1686 |
+
0.08067487925291061,
|
| 1687 |
+
0.4820234775543213,
|
| 1688 |
+
0.572240948677063,
|
| 1689 |
+
0.013404153287410736,
|
| 1690 |
+
-0.18431192636489868,
|
| 1691 |
+
0.049913421273231506,
|
| 1692 |
+
0.14440348744392395,
|
| 1693 |
+
0.010796692222356796,
|
| 1694 |
+
-0.04425942152738571,
|
| 1695 |
+
-0.034714244306087494,
|
| 1696 |
+
0.09812092781066895,
|
| 1697 |
+
0.22658464312553406,
|
| 1698 |
+
0.5398628115653992,
|
| 1699 |
+
0.14926102757453918,
|
| 1700 |
+
-0.09294281154870987,
|
| 1701 |
+
-0.29379820823669434,
|
| 1702 |
+
0.2622401714324951,
|
| 1703 |
+
-0.09194155037403107,
|
| 1704 |
+
-0.007996812462806702,
|
| 1705 |
+
0.16660672426223755,
|
| 1706 |
+
-0.4457249045372009,
|
| 1707 |
+
-0.1516806185245514,
|
| 1708 |
+
-0.270463764667511,
|
| 1709 |
+
-0.39716261625289917,
|
| 1710 |
+
-0.1890673041343689,
|
| 1711 |
+
-0.21207217872142792,
|
| 1712 |
+
-0.24664843082427979,
|
| 1713 |
+
-0.284817099571228,
|
| 1714 |
+
-0.16662172973155975,
|
| 1715 |
+
-0.1995084583759308,
|
| 1716 |
+
0.07401363551616669,
|
| 1717 |
+
0.006268583238124847,
|
| 1718 |
+
-0.1385871022939682,
|
| 1719 |
+
-0.24141649901866913,
|
| 1720 |
+
-0.1358436644077301,
|
| 1721 |
+
-0.268524706363678,
|
| 1722 |
+
-0.13288292288780212,
|
| 1723 |
+
-0.09328028559684753,
|
| 1724 |
+
-0.037290073931217194,
|
| 1725 |
+
-0.05488095059990883,
|
| 1726 |
+
-0.03209332749247551,
|
| 1727 |
+
-0.7609561085700989,
|
| 1728 |
+
-0.2482100874185562,
|
| 1729 |
+
0.23829908668994904,
|
| 1730 |
+
-0.03605654835700989,
|
| 1731 |
+
0.26974982023239136,
|
| 1732 |
+
0.4465060234069824,
|
| 1733 |
+
-0.1619127094745636,
|
| 1734 |
+
-0.08157207816839218,
|
| 1735 |
+
0.6551785469055176,
|
| 1736 |
+
-0.6885366439819336,
|
| 1737 |
+
0.26440972089767456,
|
| 1738 |
+
-0.21962705254554749,
|
| 1739 |
+
0.009923815727233887,
|
| 1740 |
+
-0.02745674178004265,
|
| 1741 |
+
-0.25602495670318604,
|
| 1742 |
+
0.16939014196395874,
|
| 1743 |
+
0.22960194945335388,
|
| 1744 |
+
-0.113400399684906,
|
| 1745 |
+
0.1810494065284729,
|
| 1746 |
+
0.09377805143594742,
|
| 1747 |
+
0.24526025354862213,
|
| 1748 |
+
0.5957650542259216,
|
| 1749 |
+
-0.1350148618221283,
|
| 1750 |
+
-0.17307522892951965,
|
| 1751 |
+
0.4434152841567993,
|
| 1752 |
+
-0.06832988560199738,
|
| 1753 |
+
-0.07215136289596558,
|
| 1754 |
+
-0.18067269027233124,
|
| 1755 |
+
-0.2654397487640381,
|
| 1756 |
+
0.22328779101371765,
|
| 1757 |
+
-0.1092233955860138,
|
| 1758 |
+
0.001668304204940796,
|
| 1759 |
+
0.05992841348052025,
|
| 1760 |
+
-0.2866281270980835,
|
| 1761 |
+
-0.0010518133640289307,
|
| 1762 |
+
0.3629896640777588,
|
| 1763 |
+
0.026638980954885483,
|
| 1764 |
+
-0.3393930196762085,
|
| 1765 |
+
0.162781223654747,
|
| 1766 |
+
-0.21661463379859924,
|
| 1767 |
+
-0.12741011381149292,
|
| 1768 |
+
0.21406680345535278,
|
| 1769 |
+
-0.16890040040016174,
|
| 1770 |
+
0.014303475618362427,
|
| 1771 |
+
0.1664152592420578,
|
| 1772 |
+
-0.1924239546060562,
|
| 1773 |
+
0.42883533239364624,
|
| 1774 |
+
0.04888498783111572,
|
| 1775 |
+
-0.5888325572013855,
|
| 1776 |
+
-0.21445952355861664,
|
| 1777 |
+
-0.2693358361721039,
|
| 1778 |
+
-0.2160845249891281,
|
| 1779 |
+
-0.18929903209209442,
|
| 1780 |
+
0.29195863008499146,
|
| 1781 |
+
0.08952829986810684,
|
| 1782 |
+
-0.1636795699596405,
|
| 1783 |
+
0.24474045634269714,
|
| 1784 |
+
-0.28684142231941223,
|
| 1785 |
+
-0.17337173223495483,
|
| 1786 |
+
0.004411667585372925,
|
| 1787 |
+
0.01754007488489151,
|
| 1788 |
+
-0.5038971304893494,
|
| 1789 |
+
0.2621816396713257,
|
| 1790 |
+
-0.01969096064567566,
|
| 1791 |
+
0.31702128052711487,
|
| 1792 |
+
-0.40279054641723633,
|
| 1793 |
+
-0.11601737886667252,
|
| 1794 |
+
-0.014087185263633728,
|
| 1795 |
+
-0.7800108194351196,
|
| 1796 |
+
-0.11777613312005997,
|
| 1797 |
+
-0.08311420679092407,
|
| 1798 |
+
0.38773632049560547,
|
| 1799 |
+
0.14981284737586975,
|
| 1800 |
+
0.2543047368526459,
|
| 1801 |
+
0.44576597213745117,
|
| 1802 |
+
0.14574092626571655,
|
| 1803 |
+
0.17641997337341309,
|
| 1804 |
+
0.1667698472738266,
|
| 1805 |
+
0.04656987264752388,
|
| 1806 |
+
-0.36774906516075134
|
| 1807 |
+
],
|
| 1808 |
+
"Jack_Male_EN_US": [
|
| 1809 |
+
-0.04046084274887107,
|
| 1810 |
+
-0.15095742102712392,
|
| 1811 |
+
-0.006839682068675756,
|
| 1812 |
+
-0.05994556490331888,
|
| 1813 |
+
0.006684107612818471,
|
| 1814 |
+
0.21780437231063843,
|
| 1815 |
+
-0.05186830650782213,
|
| 1816 |
+
0.045858974114526066,
|
| 1817 |
+
0.18578437742544338,
|
| 1818 |
+
0.23851692618336529,
|
| 1819 |
+
0.25875567211769523,
|
| 1820 |
+
0.01337982285767794,
|
| 1821 |
+
0.0575837992830202,
|
| 1822 |
+
0.010126538737677035,
|
| 1823 |
+
-0.11069863769225777,
|
| 1824 |
+
0.10501059270463883,
|
| 1825 |
+
-0.038009885698556914,
|
| 1826 |
+
0.09259203597903251,
|
| 1827 |
+
0.006737061683088536,
|
| 1828 |
+
0.033672554418444633,
|
| 1829 |
+
0.12799083036952652,
|
| 1830 |
+
-0.021536123100668186,
|
| 1831 |
+
0.03342777863144876,
|
| 1832 |
+
-0.17997418325394393,
|
| 1833 |
+
0.017667141649872063,
|
| 1834 |
+
-0.0656133412849158,
|
| 1835 |
+
0.07788868229836225,
|
| 1836 |
+
-0.20092849116772413,
|
| 1837 |
+
-0.013813202735036612,
|
| 1838 |
+
-0.15624882429838183,
|
| 1839 |
+
-0.02039524572901428,
|
| 1840 |
+
0.06695615525532048,
|
| 1841 |
+
-0.03102828292176127,
|
| 1842 |
+
-0.003229711949825284,
|
| 1843 |
+
-0.16995424311608076,
|
| 1844 |
+
0.021083407942205673,
|
| 1845 |
+
0.0890236813283991,
|
| 1846 |
+
-0.00943179002497345,
|
| 1847 |
+
-0.016149783227592696,
|
| 1848 |
+
0.09971937909722328,
|
| 1849 |
+
-0.09221453487407416,
|
| 1850 |
+
-0.15833347449079158,
|
| 1851 |
+
-0.16861484068795107,
|
| 1852 |
+
-0.19585764929652213,
|
| 1853 |
+
0.019861079845577473,
|
| 1854 |
+
-0.5355675680562854,
|
| 1855 |
+
-0.03166075125336647,
|
| 1856 |
+
0.27058335933834315,
|
| 1857 |
+
-0.015265139937400807,
|
| 1858 |
+
-0.014771698974072935,
|
| 1859 |
+
0.0019185470417142012,
|
| 1860 |
+
0.05587198091670871,
|
| 1861 |
+
-0.09576068501919509,
|
| 1862 |
+
-0.021184422494843605,
|
| 1863 |
+
-0.17917617466300725,
|
| 1864 |
+
-0.17127673390787096,
|
| 1865 |
+
0.20629609785974026,
|
| 1866 |
+
-0.18852811860851945,
|
| 1867 |
+
0.012637676135636867,
|
| 1868 |
+
-0.05553631568327547,
|
| 1869 |
+
0.446656902320683,
|
| 1870 |
+
-0.08865800648927688,
|
| 1871 |
+
-0.0358334188349545,
|
| 1872 |
+
-0.010281644179485738,
|
| 1873 |
+
-0.07811169922351838,
|
| 1874 |
+
0.109587676031515,
|
| 1875 |
+
0.2809453630819917,
|
| 1876 |
+
0.11856715977191926,
|
| 1877 |
+
0.05583547845017166,
|
| 1878 |
+
-0.12626958163455126,
|
| 1879 |
+
0.1281449523754418,
|
| 1880 |
+
-0.06413849201053382,
|
| 1881 |
+
0.15792119931429624,
|
| 1882 |
+
0.03743950969073922,
|
| 1883 |
+
0.039248654276161685,
|
| 1884 |
+
0.025773864006623626,
|
| 1885 |
+
-0.11292729973793031,
|
| 1886 |
+
0.20113790165632964,
|
| 1887 |
+
-0.16639176942408085,
|
| 1888 |
+
-0.08434787057340147,
|
| 1889 |
+
-0.09793199738487603,
|
| 1890 |
+
0.006178376311436293,
|
| 1891 |
+
-0.013375372998416409,
|
| 1892 |
+
0.0542846780270338,
|
| 1893 |
+
0.10225461367517709,
|
| 1894 |
+
0.039542005566181614,
|
| 1895 |
+
0.039125220011919745,
|
| 1896 |
+
-0.026181252760579806,
|
| 1897 |
+
0.033635431178845474,
|
| 1898 |
+
0.0862573640421033,
|
| 1899 |
+
-0.16706872563809155,
|
| 1900 |
+
-0.17828714922070504,
|
| 1901 |
+
-0.12449762681499123,
|
| 1902 |
+
-0.03108778726309538,
|
| 1903 |
+
0.34800285045057533,
|
| 1904 |
+
-0.09101906679570675,
|
| 1905 |
+
0.10009890785440802,
|
| 1906 |
+
-0.09514827439561487,
|
| 1907 |
+
-0.034053249843418586,
|
| 1908 |
+
-0.1105702156201005,
|
| 1909 |
+
0.044860146183054894,
|
| 1910 |
+
0.1358713038265705,
|
| 1911 |
+
0.08085576379671693,
|
| 1912 |
+
-0.08721686480566859,
|
| 1913 |
+
0.0573709562420845,
|
| 1914 |
+
0.11415926301851868,
|
| 1915 |
+
0.245212434977293,
|
| 1916 |
+
0.10061340439133346,
|
| 1917 |
+
-0.14243060679873454,
|
| 1918 |
+
-0.29007883500307796,
|
| 1919 |
+
0.2037310192361474,
|
| 1920 |
+
-0.07627206621691585,
|
| 1921 |
+
0.39687543553300203,
|
| 1922 |
+
-0.05620414759032429,
|
| 1923 |
+
0.09882601262070238,
|
| 1924 |
+
-0.0677183491177857,
|
| 1925 |
+
-0.006265022698789827,
|
| 1926 |
+
0.023330946313217284,
|
| 1927 |
+
0.165302169136703,
|
| 1928 |
+
0.02257582815364003,
|
| 1929 |
+
-0.12311515075853095,
|
| 1930 |
+
-0.1469769559800625,
|
| 1931 |
+
0.012314948812127115,
|
| 1932 |
+
-0.021668313816189756,
|
| 1933 |
+
0.34593041818588977,
|
| 1934 |
+
-0.04288801420480014,
|
| 1935 |
+
-0.16514885276556016,
|
| 1936 |
+
-0.18242249870672822,
|
| 1937 |
+
-0.0026492349803447918,
|
| 1938 |
+
-0.07602755706757307,
|
| 1939 |
+
0.3050278574228287,
|
| 1940 |
+
0.05592154124751687,
|
| 1941 |
+
0.23462600968778133,
|
| 1942 |
+
0.04983584135770798,
|
| 1943 |
+
-0.278392353374511,
|
| 1944 |
+
0.22432250184938313,
|
| 1945 |
+
0.2686607390176505,
|
| 1946 |
+
0.09875037595629692,
|
| 1947 |
+
0.1183511849027127,
|
| 1948 |
+
-0.054236005432903786,
|
| 1949 |
+
0.08722816870140376,
|
| 1950 |
+
0.03687728531658649,
|
| 1951 |
+
0.02554770354181528,
|
| 1952 |
+
0.12954192645847795,
|
| 1953 |
+
-0.17979382164776325,
|
| 1954 |
+
0.3348038989119232,
|
| 1955 |
+
0.4423634188249707,
|
| 1956 |
+
0.4926473870873451,
|
| 1957 |
+
0.20223852992057798,
|
| 1958 |
+
0.025749067217111565,
|
| 1959 |
+
0.17501560486853124,
|
| 1960 |
+
0.38072580406442286,
|
| 1961 |
+
-0.2901147920638323,
|
| 1962 |
+
0.20979762431234122,
|
| 1963 |
+
0.2653069855645299,
|
| 1964 |
+
-0.3772167260758579,
|
| 1965 |
+
-0.09222150184214115,
|
| 1966 |
+
-0.39089010236784816,
|
| 1967 |
+
0.20441576987504956,
|
| 1968 |
+
-0.23905933797359466,
|
| 1969 |
+
-0.10717785591259599,
|
| 1970 |
+
-0.16813391000032427,
|
| 1971 |
+
-0.3918773714452982,
|
| 1972 |
+
0.22002617083489895,
|
| 1973 |
+
-0.07564694900065663,
|
| 1974 |
+
0.07937551865907153,
|
| 1975 |
+
0.08824989823624493,
|
| 1976 |
+
0.29479082534089684,
|
| 1977 |
+
-0.36032405607402324,
|
| 1978 |
+
-0.2603407606482506,
|
| 1979 |
+
-0.6042231546249242,
|
| 1980 |
+
-0.28955514542758465,
|
| 1981 |
+
-0.03436102028936147,
|
| 1982 |
+
-0.04779914440587163,
|
| 1983 |
+
-0.009762127837166193,
|
| 1984 |
+
-0.10187441464513541,
|
| 1985 |
+
-0.7215779416263104,
|
| 1986 |
+
-0.27634545378386977,
|
| 1987 |
+
0.17830019462853672,
|
| 1988 |
+
-0.09875116832554341,
|
| 1989 |
+
0.09090687595307827,
|
| 1990 |
+
0.13431233698502182,
|
| 1991 |
+
-0.2642242418602109,
|
| 1992 |
+
-0.04540154328569772,
|
| 1993 |
+
0.4095670249313116,
|
| 1994 |
+
-0.35262783467769626,
|
| 1995 |
+
0.16893002432771026,
|
| 1996 |
+
0.08783781807869673,
|
| 1997 |
+
0.25395081788301466,
|
| 1998 |
+
-0.28145490009337665,
|
| 1999 |
+
-0.326755971997045,
|
| 2000 |
+
0.15969305289909244,
|
| 2001 |
+
0.028953553736209857,
|
| 2002 |
+
-0.21651662606745958,
|
| 2003 |
+
0.4146030018106103,
|
| 2004 |
+
-0.03423323482275009,
|
| 2005 |
+
-0.16287488527595997,
|
| 2006 |
+
0.39450788777321577,
|
| 2007 |
+
0.12951190834864976,
|
| 2008 |
+
0.1056388876902929,
|
| 2009 |
+
0.08080296535044909,
|
| 2010 |
+
0.3574946537613869,
|
| 2011 |
+
0.019849372282624234,
|
| 2012 |
+
0.040822872455464676,
|
| 2013 |
+
-0.2921319276094437,
|
| 2014 |
+
0.2146362524013966,
|
| 2015 |
+
-0.134716684371233,
|
| 2016 |
+
0.07487714374437929,
|
| 2017 |
+
0.009296230599284167,
|
| 2018 |
+
-0.04380686506628992,
|
| 2019 |
+
-0.19373088590800763,
|
| 2020 |
+
0.2639585494995117,
|
| 2021 |
+
0.18104018196463584,
|
| 2022 |
+
-0.16598513473290952,
|
| 2023 |
+
0.04853666033595801,
|
| 2024 |
+
-0.14947416950017212,
|
| 2025 |
+
-0.21553540676832197,
|
| 2026 |
+
0.08810192588716745,
|
| 2027 |
+
-0.2630701248068362,
|
| 2028 |
+
0.20122109837830066,
|
| 2029 |
+
0.12282457035034895,
|
| 2030 |
+
-0.37653126297518613,
|
| 2031 |
+
0.23556544631719586,
|
| 2032 |
+
0.10754718948155645,
|
| 2033 |
+
-0.19623969851527362,
|
| 2034 |
+
-0.37442944198846817,
|
| 2035 |
+
-0.24549162713810802,
|
| 2036 |
+
-0.12071249298751355,
|
| 2037 |
+
0.07532338486053047,
|
| 2038 |
+
0.4720609566196799,
|
| 2039 |
+
0.33625265657901765,
|
| 2040 |
+
0.09440774954855442,
|
| 2041 |
+
0.08528476338833571,
|
| 2042 |
+
-0.1694023549556732,
|
| 2043 |
+
-0.07463834583759302,
|
| 2044 |
+
0.11786841377615931,
|
| 2045 |
+
-0.09039792915573344,
|
| 2046 |
+
-0.5210130661725998,
|
| 2047 |
+
0.24727064482867717,
|
| 2048 |
+
-0.16189097724854945,
|
| 2049 |
+
0.4837450442370027,
|
| 2050 |
+
-0.1521998167037964,
|
| 2051 |
+
-0.06750598764047028,
|
| 2052 |
+
-0.004553849250078207,
|
| 2053 |
+
-0.22957104928791522,
|
| 2054 |
+
-0.017605035123415283,
|
| 2055 |
+
0.2760094117373228,
|
| 2056 |
+
0.05957211840432136,
|
| 2057 |
+
-0.0009269976260838989,
|
| 2058 |
+
0.1953226298559457,
|
| 2059 |
+
0.223721924982965,
|
| 2060 |
+
0.051529260072857144,
|
| 2061 |
+
0.07620697033125907,
|
| 2062 |
+
0.3487104419618845,
|
| 2063 |
+
-0.29083244649809786,
|
| 2064 |
+
-0.2311014744453132
|
| 2065 |
+
],
|
| 2066 |
+
"Henry_Male_EN_US": [
|
| 2067 |
+
0.03231465221033432,
|
| 2068 |
+
-0.17197506912052632,
|
| 2069 |
+
-0.15499479230493307,
|
| 2070 |
+
-0.1250289712101221,
|
| 2071 |
+
-0.16165112853050234,
|
| 2072 |
+
0.11880796402692793,
|
| 2073 |
+
-0.026341438165400174,
|
| 2074 |
+
0.02843754307832569,
|
| 2075 |
+
0.15634612458525227,
|
| 2076 |
+
0.10595979747595265,
|
| 2077 |
+
0.039114803401753315,
|
| 2078 |
+
0.010465619154274462,
|
| 2079 |
+
0.05449719361495225,
|
| 2080 |
+
0.16031873143510894,
|
| 2081 |
+
-0.1695658477488905,
|
| 2082 |
+
-0.0018680405337363482,
|
| 2083 |
+
-0.08171003330498933,
|
| 2084 |
+
0.023001285642385474,
|
| 2085 |
+
-0.1536627289839089,
|
| 2086 |
+
0.011052230559289444,
|
| 2087 |
+
0.11655736799002625,
|
| 2088 |
+
-0.15112714925780893,
|
| 2089 |
+
-0.010360681824386115,
|
| 2090 |
+
-0.11909673623740674,
|
| 2091 |
+
-0.21134809795767068,
|
| 2092 |
+
0.20729044654872264,
|
| 2093 |
+
0.19189890939742327,
|
| 2094 |
+
0.034412209317088105,
|
| 2095 |
+
0.07652324698865413,
|
| 2096 |
+
-0.09826281983405351,
|
| 2097 |
+
-0.03507392066530883,
|
| 2098 |
+
0.05623610065958929,
|
| 2099 |
+
0.023545358702540417,
|
| 2100 |
+
0.1944381920620799,
|
| 2101 |
+
-0.18579835649579762,
|
| 2102 |
+
0.13530588764697313,
|
| 2103 |
+
0.047002217611589,
|
| 2104 |
+
-0.03857994754798711,
|
| 2105 |
+
0.21279680896550413,
|
| 2106 |
+
-0.0011355822905898053,
|
| 2107 |
+
-0.11157526604365556,
|
| 2108 |
+
-0.2419595753774047,
|
| 2109 |
+
-0.25546876950538716,
|
| 2110 |
+
0.03623581342399121,
|
| 2111 |
+
-0.2026651309803128,
|
| 2112 |
+
-0.5091725187376142,
|
| 2113 |
+
0.11082670092582703,
|
| 2114 |
+
0.1577077390626073,
|
| 2115 |
+
-0.3597980797290802,
|
| 2116 |
+
-0.011146663455292584,
|
| 2117 |
+
0.08107478127349169,
|
| 2118 |
+
0.22176175282802432,
|
| 2119 |
+
-0.1103294763015583,
|
| 2120 |
+
-0.15145504621323197,
|
| 2121 |
+
-0.2445066723972559,
|
| 2122 |
+
-0.1946099933935329,
|
| 2123 |
+
0.256573729775846,
|
| 2124 |
+
0.079415076575242,
|
| 2125 |
+
0.07555773077765479,
|
| 2126 |
+
-0.1760544968303293,
|
| 2127 |
+
0.45968954982236027,
|
| 2128 |
+
-0.2993650084361434,
|
| 2129 |
+
0.23150971811264753,
|
| 2130 |
+
-0.007668233546428378,
|
| 2131 |
+
0.014109187014400976,
|
| 2132 |
+
0.10277328002266586,
|
| 2133 |
+
0.06715730596333742,
|
| 2134 |
+
-0.1751516081392765,
|
| 2135 |
+
0.13003269975306464,
|
| 2136 |
+
-0.01215957077220084,
|
| 2137 |
+
-0.10042227925732733,
|
| 2138 |
+
0.13036054857075213,
|
| 2139 |
+
0.008775722794234747,
|
| 2140 |
+
0.07856735654640942,
|
| 2141 |
+
-0.0694429306051461,
|
| 2142 |
+
-0.04239498968236148,
|
| 2143 |
+
-0.04804698210209607,
|
| 2144 |
+
0.25152273084968324,
|
| 2145 |
+
-0.1492430506274104,
|
| 2146 |
+
0.16119943596422673,
|
| 2147 |
+
0.33940611872822046,
|
| 2148 |
+
0.08957686950452626,
|
| 2149 |
+
-0.0576036872342229,
|
| 2150 |
+
-0.08172749504446983,
|
| 2151 |
+
-0.1345309724099934,
|
| 2152 |
+
0.2364609685027972,
|
| 2153 |
+
0.10072718104347586,
|
| 2154 |
+
0.003340821829624467,
|
| 2155 |
+
-0.04597767407540229,
|
| 2156 |
+
0.018918244726955885,
|
| 2157 |
+
-0.11239160280674693,
|
| 2158 |
+
-0.07376309838145972,
|
| 2159 |
+
0.12267176546156411,
|
| 2160 |
+
-0.07140531631885097,
|
| 2161 |
+
0.06295341402292251,
|
| 2162 |
+
0.14427131954580547,
|
| 2163 |
+
0.06250183843076229,
|
| 2164 |
+
-0.1606520629953593,
|
| 2165 |
+
-0.027804251573979866,
|
| 2166 |
+
-0.14481351664289832,
|
| 2167 |
+
0.11379512277198955,
|
| 2168 |
+
0.4806660775095224,
|
| 2169 |
+
-0.08994001736864446,
|
| 2170 |
+
0.00915752639994026,
|
| 2171 |
+
-0.11584404325112699,
|
| 2172 |
+
0.14220867762342096,
|
| 2173 |
+
0.2804017297923565,
|
| 2174 |
+
0.18867827099747958,
|
| 2175 |
+
-0.3128292956738733,
|
| 2176 |
+
-0.06684039272367953,
|
| 2177 |
+
0.21606469061225653,
|
| 2178 |
+
-0.1878887706901878,
|
| 2179 |
+
0.32509690122678875,
|
| 2180 |
+
0.1665364772081375,
|
| 2181 |
+
0.05110035295365378,
|
| 2182 |
+
-0.24309139875695107,
|
| 2183 |
+
-0.14905344853177668,
|
| 2184 |
+
0.014429311221465464,
|
| 2185 |
+
-0.04873416791670025,
|
| 2186 |
+
0.14548272781539706,
|
| 2187 |
+
-0.08988374508335253,
|
| 2188 |
+
-0.21444802945479752,
|
| 2189 |
+
0.058564639464020726,
|
| 2190 |
+
0.2721280400641262,
|
| 2191 |
+
0.205003977753222,
|
| 2192 |
+
-0.010262779332697397,
|
| 2193 |
+
-0.0029813522472977617,
|
| 2194 |
+
-0.15529807284474373,
|
| 2195 |
+
0.26777649037539963,
|
| 2196 |
+
-0.0713763989508152,
|
| 2197 |
+
0.3913366436958313,
|
| 2198 |
+
0.24202184118330478,
|
| 2199 |
+
0.07944705467671154,
|
| 2200 |
+
0.4742859028279781,
|
| 2201 |
+
-0.024598410213366118,
|
| 2202 |
+
-0.18506417192984376,
|
| 2203 |
+
0.4029238263145089,
|
| 2204 |
+
0.08335387408733368,
|
| 2205 |
+
0.10739199253730473,
|
| 2206 |
+
-0.13465733248740436,
|
| 2207 |
+
-0.01804239540069829,
|
| 2208 |
+
-0.0791158242151141,
|
| 2209 |
+
0.19488584250211716,
|
| 2210 |
+
0.02578564528375863,
|
| 2211 |
+
-0.5237501479685307,
|
| 2212 |
+
-0.07989736758172511,
|
| 2213 |
+
0.5030703557655215,
|
| 2214 |
+
0.10675456821918486,
|
| 2215 |
+
0.2127919055521488,
|
| 2216 |
+
0.09851150363683697,
|
| 2217 |
+
-0.08418610896915199,
|
| 2218 |
+
0.1229889305308461,
|
| 2219 |
+
-0.43523957654833795,
|
| 2220 |
+
0.4120137566700578,
|
| 2221 |
+
0.4287545826286077,
|
| 2222 |
+
0.2022662471514195,
|
| 2223 |
+
-0.20844841264188288,
|
| 2224 |
+
-0.35773375257849693,
|
| 2225 |
+
0.08517274558544158,
|
| 2226 |
+
-0.1674375392496586,
|
| 2227 |
+
-0.014676835667341941,
|
| 2228 |
+
-0.05585243180394173,
|
| 2229 |
+
-0.5275113929063082,
|
| 2230 |
+
0.630928717367351,
|
| 2231 |
+
-0.01564715448766945,
|
| 2232 |
+
-0.23996227737661685,
|
| 2233 |
+
0.45196260644588615,
|
| 2234 |
+
0.5890609898604452,
|
| 2235 |
+
-0.6399751238524913,
|
| 2236 |
+
-0.15936621921136973,
|
| 2237 |
+
-0.7311209061648697,
|
| 2238 |
+
0.2599357020109892,
|
| 2239 |
+
-0.31862640250474217,
|
| 2240 |
+
-0.04317740127444269,
|
| 2241 |
+
-0.11731456399429589,
|
| 2242 |
+
-0.25942440861836075,
|
| 2243 |
+
-0.2941827371716499,
|
| 2244 |
+
0.23730804622173307,
|
| 2245 |
+
0.46029331209138036,
|
| 2246 |
+
0.38680253662168984,
|
| 2247 |
+
-0.047635487094521534,
|
| 2248 |
+
0.09478947315365074,
|
| 2249 |
+
-0.3081191055476665,
|
| 2250 |
+
-0.1648157351184636,
|
| 2251 |
+
0.6156397035345436,
|
| 2252 |
+
-0.13436328768730166,
|
| 2253 |
+
0.2214298250619322,
|
| 2254 |
+
-0.13365367855876686,
|
| 2255 |
+
0.5899101013317705,
|
| 2256 |
+
-0.43101135436445476,
|
| 2257 |
+
0.1790693347575143,
|
| 2258 |
+
-0.07457639621570705,
|
| 2259 |
+
-0.20997890923172235,
|
| 2260 |
+
-0.12710947534069417,
|
| 2261 |
+
0.6243484194390476,
|
| 2262 |
+
-0.7802158012986182,
|
| 2263 |
+
-0.2108477063477039,
|
| 2264 |
+
0.26811757814139126,
|
| 2265 |
+
0.06200872911140322,
|
| 2266 |
+
0.41312811655006954,
|
| 2267 |
+
-0.03243043515831233,
|
| 2268 |
+
0.2404710978269577,
|
| 2269 |
+
-0.2426718469709158,
|
| 2270 |
+
0.18551481867325492,
|
| 2271 |
+
-0.1008815299719572,
|
| 2272 |
+
0.30738673652522264,
|
| 2273 |
+
0.04650051929056642,
|
| 2274 |
+
0.04460244094952941,
|
| 2275 |
+
0.23529892023652793,
|
| 2276 |
+
-0.10654573403298855,
|
| 2277 |
+
-0.24890044219791893,
|
| 2278 |
+
-0.20255712829530237,
|
| 2279 |
+
-0.02652014940977096,
|
| 2280 |
+
-0.09871285315603015,
|
| 2281 |
+
0.2915390910580754,
|
| 2282 |
+
0.27769559375010433,
|
| 2283 |
+
-0.14592748656868934,
|
| 2284 |
+
0.29195716343820094,
|
| 2285 |
+
-0.07187115289270878,
|
| 2286 |
+
0.1771868597716093,
|
| 2287 |
+
0.041152336634695516,
|
| 2288 |
+
-0.1439833148382604,
|
| 2289 |
+
0.30823934525251384,
|
| 2290 |
+
0.3235661891289055,
|
| 2291 |
+
0.1609754763310775,
|
| 2292 |
+
-0.34351673722267145,
|
| 2293 |
+
-0.022873798222281028,
|
| 2294 |
+
0.09521509874612094,
|
| 2295 |
+
0.32318700947798795,
|
| 2296 |
+
0.8087762531824411,
|
| 2297 |
+
0.3908264026977122,
|
| 2298 |
+
0.002011305466294286,
|
| 2299 |
+
0.043111137486994265,
|
| 2300 |
+
0.07222179947420956,
|
| 2301 |
+
-0.16160998903214935,
|
| 2302 |
+
0.9778514429926872,
|
| 2303 |
+
-0.1190133649390191,
|
| 2304 |
+
-0.06515133678913118,
|
| 2305 |
+
0.07287682355381547,
|
| 2306 |
+
-0.5366707997396588,
|
| 2307 |
+
0.3294163831975311,
|
| 2308 |
+
0.4730239138007164,
|
| 2309 |
+
0.14623114340938625,
|
| 2310 |
+
-0.04914769362658263,
|
| 2311 |
+
0.19938274882733825,
|
| 2312 |
+
-0.042190209974069144,
|
| 2313 |
+
0.5218729123473167,
|
| 2314 |
+
-0.09630445644725116,
|
| 2315 |
+
-0.05060101728595327,
|
| 2316 |
+
0.003836261900141802,
|
| 2317 |
+
0.23963055023923516,
|
| 2318 |
+
0.34797419500537213,
|
| 2319 |
+
-0.24325519371777776,
|
| 2320 |
+
0.2133896093349904,
|
| 2321 |
+
-0.5972239149094094,
|
| 2322 |
+
-0.5162009912542999
|
| 2323 |
+
],
|
| 2324 |
+
"Lisa_Female_EN_US": [
|
| 2325 |
+
0.098259643453639,
|
| 2326 |
+
-0.16734164860099554,
|
| 2327 |
+
0.06323453821241856,
|
| 2328 |
+
-0.11800012588500977,
|
| 2329 |
+
-0.11747334823012351,
|
| 2330 |
+
0.1664506748318672,
|
| 2331 |
+
-0.11684786230325699,
|
| 2332 |
+
0.05554657885804772,
|
| 2333 |
+
0.18881248405668885,
|
| 2334 |
+
0.02363725304603577,
|
| 2335 |
+
0.13073167139664293,
|
| 2336 |
+
0.099481688067317,
|
| 2337 |
+
-0.05592308223713189,
|
| 2338 |
+
0.06073833145201206,
|
| 2339 |
+
-0.06404643282294273,
|
| 2340 |
+
0.03512822799384594,
|
| 2341 |
+
0.08353134356439113,
|
| 2342 |
+
-0.041701164841651914,
|
| 2343 |
+
0.027301983349025248,
|
| 2344 |
+
0.20779836773872373,
|
| 2345 |
+
0.18608229857636616,
|
| 2346 |
+
-0.18563928958028555,
|
| 2347 |
+
-0.07058929353952408,
|
| 2348 |
+
-0.0963012244552374,
|
| 2349 |
+
0.07196986377239227,
|
| 2350 |
+
-0.36310549527406694,
|
| 2351 |
+
0.02321777753531933,
|
| 2352 |
+
-0.08520180359482765,
|
| 2353 |
+
0.1750676281750202,
|
| 2354 |
+
-0.1034254938364029,
|
| 2355 |
+
-0.10941653922200203,
|
| 2356 |
+
0.10243654051446356,
|
| 2357 |
+
-0.047365300357341766,
|
| 2358 |
+
-0.13165730237960815,
|
| 2359 |
+
-0.16502732019871474,
|
| 2360 |
+
0.041227119415998464,
|
| 2361 |
+
0.13208873476833105,
|
| 2362 |
+
-0.1005905382335186,
|
| 2363 |
+
-0.134281662479043,
|
| 2364 |
+
-0.03663246519863605,
|
| 2365 |
+
0.019146875315345823,
|
| 2366 |
+
-0.17250166907906533,
|
| 2367 |
+
-0.10810867324471474,
|
| 2368 |
+
-0.1385631315410137,
|
| 2369 |
+
-0.07121777702122926,
|
| 2370 |
+
-0.8006405025720597,
|
| 2371 |
+
-0.1598912551999092,
|
| 2372 |
+
0.1796777807176113,
|
| 2373 |
+
0.1533122271299362,
|
| 2374 |
+
-0.013358959695324302,
|
| 2375 |
+
0.12085846066474915,
|
| 2376 |
+
0.08968418501317502,
|
| 2377 |
+
-0.1647926703095436,
|
| 2378 |
+
-0.03534330911934376,
|
| 2379 |
+
0.018276208639144892,
|
| 2380 |
+
-0.31622386574745176,
|
| 2381 |
+
0.044433788210153584,
|
| 2382 |
+
-0.3835114762187004,
|
| 2383 |
+
0.06946051493287086,
|
| 2384 |
+
-0.14754583239555358,
|
| 2385 |
+
0.7700884103775024,
|
| 2386 |
+
0.05088452622294426,
|
| 2387 |
+
-0.10631981901824475,
|
| 2388 |
+
-0.03452881909906864,
|
| 2389 |
+
-0.18428492173552513,
|
| 2390 |
+
0.01940714865922928,
|
| 2391 |
+
0.15734580717980862,
|
| 2392 |
+
0.24781300947070123,
|
| 2393 |
+
0.11008071005344391,
|
| 2394 |
+
-0.037437029182910926,
|
| 2395 |
+
-0.02237723711878061,
|
| 2396 |
+
-0.05610082112252712,
|
| 2397 |
+
0.17097073495388032,
|
| 2398 |
+
-0.029630468040704724,
|
| 2399 |
+
-0.14090186282992362,
|
| 2400 |
+
0.05233948081731796,
|
| 2401 |
+
-0.11303650513291358,
|
| 2402 |
+
0.09975283332169056,
|
| 2403 |
+
0.07712901234626768,
|
| 2404 |
+
-0.10158926621079445,
|
| 2405 |
+
-0.006173290871083734,
|
| 2406 |
+
-0.05509051866829395,
|
| 2407 |
+
-0.02421657182276249,
|
| 2408 |
+
0.12725706659257413,
|
| 2409 |
+
0.0459196088835597,
|
| 2410 |
+
0.024673170596361163,
|
| 2411 |
+
-0.021687139011919498,
|
| 2412 |
+
-0.0033121073618531255,
|
| 2413 |
+
0.16617082729935645,
|
| 2414 |
+
0.1039574097841978,
|
| 2415 |
+
-0.48374021649360655,
|
| 2416 |
+
-0.27473467141389846,
|
| 2417 |
+
-0.2696342796087265,
|
| 2418 |
+
-0.0147636947222054,
|
| 2419 |
+
0.07800779491662979,
|
| 2420 |
+
-0.17835728526115419,
|
| 2421 |
+
0.07246882431209087,
|
| 2422 |
+
-0.10726579539477825,
|
| 2423 |
+
-0.04813114702701569,
|
| 2424 |
+
-0.05245459228754044,
|
| 2425 |
+
0.021175800473429263,
|
| 2426 |
+
-0.028440106660127633,
|
| 2427 |
+
0.09296442177146673,
|
| 2428 |
+
0.06005613040179014,
|
| 2429 |
+
-0.024471254087984562,
|
| 2430 |
+
0.034369273111224174,
|
| 2431 |
+
0.21559504568576812,
|
| 2432 |
+
-0.06217287853360176,
|
| 2433 |
+
0.020450182259082794,
|
| 2434 |
+
-0.42201632708311076,
|
| 2435 |
+
0.18088365010917187,
|
| 2436 |
+
0.06422147378325462,
|
| 2437 |
+
0.42920178174972534,
|
| 2438 |
+
-0.15756667256355283,
|
| 2439 |
+
0.07944225370883942,
|
| 2440 |
+
0.07854075198993087,
|
| 2441 |
+
-0.08394828196614981,
|
| 2442 |
+
-0.02590339761227369,
|
| 2443 |
+
0.0945357296615839,
|
| 2444 |
+
0.013894812762737276,
|
| 2445 |
+
-0.0668190572410822,
|
| 2446 |
+
0.03327381014823913,
|
| 2447 |
+
0.017544799577444793,
|
| 2448 |
+
0.03966145385056734,
|
| 2449 |
+
0.185294571146369,
|
| 2450 |
+
-0.30561336129903793,
|
| 2451 |
+
0.05225303545594215,
|
| 2452 |
+
-0.20599330589175224,
|
| 2453 |
+
-0.0247444950044155,
|
| 2454 |
+
0.0681127518415451,
|
| 2455 |
+
0.04429299384355545,
|
| 2456 |
+
0.1615323081612587,
|
| 2457 |
+
-0.11333180218935013,
|
| 2458 |
+
0.05444136634469032,
|
| 2459 |
+
-0.32481844425201417,
|
| 2460 |
+
0.18828704990446568,
|
| 2461 |
+
0.2872520424425602,
|
| 2462 |
+
0.13895429372787474,
|
| 2463 |
+
-0.08756729066371917,
|
| 2464 |
+
0.24525217991322276,
|
| 2465 |
+
0.03871614711242728,
|
| 2466 |
+
0.11254438832402229,
|
| 2467 |
+
-0.06629508603364229,
|
| 2468 |
+
-0.10699533671140671,
|
| 2469 |
+
-0.049380650371313096,
|
| 2470 |
+
0.06740754097700119,
|
| 2471 |
+
0.16857104301452636,
|
| 2472 |
+
0.30641851425170896,
|
| 2473 |
+
-0.0305225610733032,
|
| 2474 |
+
-0.4179070383310318,
|
| 2475 |
+
-0.10720842555165291,
|
| 2476 |
+
0.2560294335708022,
|
| 2477 |
+
-0.019710254669189464,
|
| 2478 |
+
-0.17763112932443617,
|
| 2479 |
+
-0.0029114261269569397,
|
| 2480 |
+
-0.31358570866286756,
|
| 2481 |
+
0.041973935812711714,
|
| 2482 |
+
-0.29000549390912056,
|
| 2483 |
+
-0.35404677540063856,
|
| 2484 |
+
-0.007181685417890549,
|
| 2485 |
+
0.05955917574465275,
|
| 2486 |
+
-0.1936878278851509,
|
| 2487 |
+
-0.4633562132716179,
|
| 2488 |
+
0.021091651916503917,
|
| 2489 |
+
-0.19877577703446148,
|
| 2490 |
+
-0.035990026939543895,
|
| 2491 |
+
-0.13621442914009094,
|
| 2492 |
+
0.14864262491464614,
|
| 2493 |
+
-0.32244770638644693,
|
| 2494 |
+
-0.20621291697025299,
|
| 2495 |
+
-0.34765296103432775,
|
| 2496 |
+
-0.24935359358787537,
|
| 2497 |
+
-0.14733021520078182,
|
| 2498 |
+
-0.1826939433813095,
|
| 2499 |
+
-0.12082219868898392,
|
| 2500 |
+
-0.2630250319838524,
|
| 2501 |
+
-0.25408093333244325,
|
| 2502 |
+
-0.23697019964456556,
|
| 2503 |
+
0.3174678087234497,
|
| 2504 |
+
-0.13980808593332766,
|
| 2505 |
+
0.15056745186448098,
|
| 2506 |
+
0.19160462617874144,
|
| 2507 |
+
0.05726437717676161,
|
| 2508 |
+
-0.010723254084587096,
|
| 2509 |
+
0.3363094590604305,
|
| 2510 |
+
-0.5907457679510116,
|
| 2511 |
+
0.2439893047325313,
|
| 2512 |
+
-0.08692961037158967,
|
| 2513 |
+
0.06740072220563889,
|
| 2514 |
+
0.024416530132293696,
|
| 2515 |
+
-0.2389059288892895,
|
| 2516 |
+
0.04350413922220468,
|
| 2517 |
+
0.1647874414920807,
|
| 2518 |
+
-0.22662141621112825,
|
| 2519 |
+
-0.22065756656229496,
|
| 2520 |
+
0.2145439937710762,
|
| 2521 |
+
-0.17922353893518447,
|
| 2522 |
+
0.12061219662427902,
|
| 2523 |
+
0.03737899707630277,
|
| 2524 |
+
-0.021762318909168236,
|
| 2525 |
+
0.05909155458211899,
|
| 2526 |
+
0.11406668499112128,
|
| 2527 |
+
-0.33404846489429474,
|
| 2528 |
+
-0.006388737261295324,
|
| 2529 |
+
-0.30795534551143644,
|
| 2530 |
+
0.12133514666929841,
|
| 2531 |
+
0.004110211133956904,
|
| 2532 |
+
0.13224451523274183,
|
| 2533 |
+
0.3036839559674263,
|
| 2534 |
+
-0.21054075136780737,
|
| 2535 |
+
0.0030692771077156025,
|
| 2536 |
+
0.0035036206245422363,
|
| 2537 |
+
0.011927027255296707,
|
| 2538 |
+
0.08805800816044211,
|
| 2539 |
+
0.0661589827388525,
|
| 2540 |
+
0.17130252979695795,
|
| 2541 |
+
0.09395805150270461,
|
| 2542 |
+
0.26391741409897806,
|
| 2543 |
+
-0.05089263916015625,
|
| 2544 |
+
-0.11061666905879974,
|
| 2545 |
+
0.13363431245088578,
|
| 2546 |
+
-0.30518253389745953,
|
| 2547 |
+
-0.04395102113485336,
|
| 2548 |
+
-0.03574146777391435,
|
| 2549 |
+
-0.23613579357042908,
|
| 2550 |
+
-0.16882284134626388,
|
| 2551 |
+
-0.30275803729891776,
|
| 2552 |
+
-0.04444010443985462,
|
| 2553 |
+
0.2190699848346412,
|
| 2554 |
+
0.27886907644569875,
|
| 2555 |
+
0.20610505752265454,
|
| 2556 |
+
0.03134636655449867,
|
| 2557 |
+
-0.06447610408067703,
|
| 2558 |
+
-0.0005596891045570457,
|
| 2559 |
+
0.26649302095174787,
|
| 2560 |
+
-0.2057398557662964,
|
| 2561 |
+
0.0030920282006263733,
|
| 2562 |
+
-0.4122629433870315,
|
| 2563 |
+
0.3565848290920257,
|
| 2564 |
+
0.20677504390478132,
|
| 2565 |
+
0.3942677197046578,
|
| 2566 |
+
-0.3252736687660217,
|
| 2567 |
+
0.0967718569561839,
|
| 2568 |
+
0.03678370863199233,
|
| 2569 |
+
-0.3206644430756569,
|
| 2570 |
+
-0.10442807674407958,
|
| 2571 |
+
0.09797048419713975,
|
| 2572 |
+
0.5563426822423935,
|
| 2573 |
+
0.04038007035851478,
|
| 2574 |
+
0.41352313160896303,
|
| 2575 |
+
0.3068622753024101,
|
| 2576 |
+
0.11289987117052078,
|
| 2577 |
+
0.19880020171403884,
|
| 2578 |
+
0.0596605807542801,
|
| 2579 |
+
0.11166647523641585,
|
| 2580 |
+
-0.09573411736637354
|
| 2581 |
+
],
|
| 2582 |
+
"Anne_Female_EN_US": [
|
| 2583 |
+
0.17940405994304454,
|
| 2584 |
+
-0.1644238923676312,
|
| 2585 |
+
0.09324024524539709,
|
| 2586 |
+
-0.12510012816637756,
|
| 2587 |
+
-0.06630658619105817,
|
| 2588 |
+
0.11119609288871288,
|
| 2589 |
+
-0.16596424281597139,
|
| 2590 |
+
0.08907460342161358,
|
| 2591 |
+
0.19401996767846869,
|
| 2592 |
+
0.01849436295451596,
|
| 2593 |
+
0.14532765592448413,
|
| 2594 |
+
0.08469446934759615,
|
| 2595 |
+
-0.023078771238215272,
|
| 2596 |
+
0.07181636142777278,
|
| 2597 |
+
-0.15694392705336213,
|
| 2598 |
+
0.026453089481219653,
|
| 2599 |
+
0.14835394602268934,
|
| 2600 |
+
-0.050624337047338486,
|
| 2601 |
+
0.08605103651061653,
|
| 2602 |
+
0.25574559848755596,
|
| 2603 |
+
0.18944694046513177,
|
| 2604 |
+
-0.335114658344537,
|
| 2605 |
+
-0.10531004574149846,
|
| 2606 |
+
-0.13781959619373083,
|
| 2607 |
+
0.06695765908807516,
|
| 2608 |
+
-0.43373020405415447,
|
| 2609 |
+
-0.00021649692207574567,
|
| 2610 |
+
-0.06944741196930408,
|
| 2611 |
+
0.18373148031532766,
|
| 2612 |
+
-0.18261400833725927,
|
| 2613 |
+
-0.07242659293115139,
|
| 2614 |
+
0.07962212040729355,
|
| 2615 |
+
-0.054722306877374643,
|
| 2616 |
+
-0.08814518945291638,
|
| 2617 |
+
-0.18172899140045046,
|
| 2618 |
+
0.07253306582570077,
|
| 2619 |
+
0.12834971025440609,
|
| 2620 |
+
-0.07147813141345978,
|
| 2621 |
+
-0.03303390946239235,
|
| 2622 |
+
-0.020850191079080108,
|
| 2623 |
+
0.03093239173758775,
|
| 2624 |
+
-0.17062115278095008,
|
| 2625 |
+
-0.2042961787432432,
|
| 2626 |
+
0.0001160103827714809,
|
| 2627 |
+
-0.05252801310271025,
|
| 2628 |
+
-0.7858508661389351,
|
| 2629 |
+
-0.2091302715241909,
|
| 2630 |
+
0.215912102162838,
|
| 2631 |
+
0.1682404987514019,
|
| 2632 |
+
-0.004957896983250976,
|
| 2633 |
+
0.08353579475078732,
|
| 2634 |
+
0.07429065436590462,
|
| 2635 |
+
-0.2838975650956854,
|
| 2636 |
+
-0.060729915578849616,
|
| 2637 |
+
0.015331120043992993,
|
| 2638 |
+
-0.3538943402469158,
|
| 2639 |
+
0.06603590287268161,
|
| 2640 |
+
-0.3598479990148917,
|
| 2641 |
+
0.04949475321918727,
|
| 2642 |
+
-0.1802994295954704,
|
| 2643 |
+
0.8948932841420174,
|
| 2644 |
+
0.06269775629043578,
|
| 2645 |
+
0.14551597367972133,
|
| 2646 |
+
-0.024429614841938015,
|
| 2647 |
+
-0.18672503978013993,
|
| 2648 |
+
0.0038162305951118525,
|
| 2649 |
+
0.06440221983939409,
|
| 2650 |
+
0.22779810093343258,
|
| 2651 |
+
0.0648292437195778,
|
| 2652 |
+
-0.06520362980663777,
|
| 2653 |
+
-0.1480596019886434,
|
| 2654 |
+
-0.07716014515608549,
|
| 2655 |
+
0.19149241223931313,
|
| 2656 |
+
-0.00472725033760071,
|
| 2657 |
+
-0.15999614455504343,
|
| 2658 |
+
0.05745576778426767,
|
| 2659 |
+
-0.1102717611938715,
|
| 2660 |
+
0.10388381499797106,
|
| 2661 |
+
0.060168941505253315,
|
| 2662 |
+
-0.059192010387778285,
|
| 2663 |
+
0.16045401743613183,
|
| 2664 |
+
-0.08206549435853958,
|
| 2665 |
+
-0.00931916926056147,
|
| 2666 |
+
0.07603645194321872,
|
| 2667 |
+
-0.015994349215179678,
|
| 2668 |
+
0.06288723759353161,
|
| 2669 |
+
0.035409542825073,
|
| 2670 |
+
-0.02822249522432685,
|
| 2671 |
+
0.1511568885296583,
|
| 2672 |
+
0.025192760489881047,
|
| 2673 |
+
-0.45415958352386954,
|
| 2674 |
+
-0.2641012085601687,
|
| 2675 |
+
-0.09631151705980302,
|
| 2676 |
+
0.05240553788607939,
|
| 2677 |
+
-0.038502784445881844,
|
| 2678 |
+
-0.1828939441591501,
|
| 2679 |
+
0.08149223010987043,
|
| 2680 |
+
-0.16405740920454265,
|
| 2681 |
+
-0.0005170568823814475,
|
| 2682 |
+
-0.02928877165541053,
|
| 2683 |
+
0.04517688824562356,
|
| 2684 |
+
0.006311735883355152,
|
| 2685 |
+
0.07976922886446118,
|
| 2686 |
+
0.10996842151507735,
|
| 2687 |
+
-0.08294843146577477,
|
| 2688 |
+
-0.04048346038907766,
|
| 2689 |
+
0.20001366436481477,
|
| 2690 |
+
-0.17603044249117372,
|
| 2691 |
+
0.030919674783945097,
|
| 2692 |
+
-0.45755103826522825,
|
| 2693 |
+
0.27328743394464255,
|
| 2694 |
+
0.14530749581754207,
|
| 2695 |
+
0.37551659494638445,
|
| 2696 |
+
-0.08780852369964123,
|
| 2697 |
+
0.0881434208364226,
|
| 2698 |
+
0.1102366984821856,
|
| 2699 |
+
-0.10324715869501233,
|
| 2700 |
+
-0.0326073732227087,
|
| 2701 |
+
0.11423155306838453,
|
| 2702 |
+
0.08385749866720289,
|
| 2703 |
+
-0.044914178038015964,
|
| 2704 |
+
0.03559637144207953,
|
| 2705 |
+
0.15771918892860412,
|
| 2706 |
+
0.1590451302938163,
|
| 2707 |
+
0.2501667616888881,
|
| 2708 |
+
-0.4137455578893423,
|
| 2709 |
+
0.0505435885861516,
|
| 2710 |
+
-0.23191697373986245,
|
| 2711 |
+
0.0287872213870287,
|
| 2712 |
+
0.003149333596229556,
|
| 2713 |
+
0.10368789061903953,
|
| 2714 |
+
-0.010588538646697995,
|
| 2715 |
+
-0.0879323348402977,
|
| 2716 |
+
-0.07506629079580307,
|
| 2717 |
+
-0.5269412443041801,
|
| 2718 |
+
0.22431598380208015,
|
| 2719 |
+
0.3359779428690672,
|
| 2720 |
+
0.0032832570374011962,
|
| 2721 |
+
-0.050378158874809745,
|
| 2722 |
+
0.3839163174852729,
|
| 2723 |
+
0.028349736475502138,
|
| 2724 |
+
-0.10097187757492063,
|
| 2725 |
+
-0.11896620839834213,
|
| 2726 |
+
-0.1368182884529233,
|
| 2727 |
+
0.04117071777582168,
|
| 2728 |
+
0.09757037162780761,
|
| 2729 |
+
0.30170601047575474,
|
| 2730 |
+
0.42509459182620046,
|
| 2731 |
+
-0.031749222427606555,
|
| 2732 |
+
-0.450509675219655,
|
| 2733 |
+
-0.10203840397298336,
|
| 2734 |
+
0.11731623336672783,
|
| 2735 |
+
-0.14807355552911758,
|
| 2736 |
+
-0.3516409188508987,
|
| 2737 |
+
-0.014435897022485725,
|
| 2738 |
+
-0.2427325451746583,
|
| 2739 |
+
0.06217130366712809,
|
| 2740 |
+
-0.38942934162914755,
|
| 2741 |
+
-0.23018259108066563,
|
| 2742 |
+
-0.046737963333725915,
|
| 2743 |
+
0.21478279903531072,
|
| 2744 |
+
-0.15159097351133824,
|
| 2745 |
+
-0.6199001990258693,
|
| 2746 |
+
0.11925626099109649,
|
| 2747 |
+
-0.11402976419776678,
|
| 2748 |
+
0.007391047988494388,
|
| 2749 |
+
-0.00794237181544305,
|
| 2750 |
+
0.3376276850700378,
|
| 2751 |
+
-0.469353917054832,
|
| 2752 |
+
-0.39055002434179187,
|
| 2753 |
+
-0.5357521926518529,
|
| 2754 |
+
-0.2898576606065035,
|
| 2755 |
+
-0.07800486553460359,
|
| 2756 |
+
-0.3499526508152485,
|
| 2757 |
+
-0.09789482404012233,
|
| 2758 |
+
-0.29802559399977324,
|
| 2759 |
+
-0.0005799770355224831,
|
| 2760 |
+
-0.16338682733476162,
|
| 2761 |
+
0.3528595224022865,
|
| 2762 |
+
-0.43563686497509474,
|
| 2763 |
+
0.09255755357444287,
|
| 2764 |
+
0.14223229270428417,
|
| 2765 |
+
0.0687978647649288,
|
| 2766 |
+
9.937696158886233e-05,
|
| 2767 |
+
0.370262223854661,
|
| 2768 |
+
-0.6324451595544816,
|
| 2769 |
+
0.2665458579082042,
|
| 2770 |
+
-0.1399991037324071,
|
| 2771 |
+
0.12931404411792755,
|
| 2772 |
+
0.16657713875174524,
|
| 2773 |
+
-0.12588859747629613,
|
| 2774 |
+
0.11505986778065562,
|
| 2775 |
+
0.04677194319665433,
|
| 2776 |
+
-0.3566686304286122,
|
| 2777 |
+
-0.24695453979074955,
|
| 2778 |
+
0.2476239986717701,
|
| 2779 |
+
-0.5334096863865851,
|
| 2780 |
+
-0.07400115504860877,
|
| 2781 |
+
0.12062631538137794,
|
| 2782 |
+
0.04516074173152446,
|
| 2783 |
+
-0.052435807511210436,
|
| 2784 |
+
0.3395687915384769,
|
| 2785 |
+
-0.35318856965750456,
|
| 2786 |
+
0.09023026153445243,
|
| 2787 |
+
-0.33012407943606376,
|
| 2788 |
+
0.1426998670678586,
|
| 2789 |
+
0.16262518018484115,
|
| 2790 |
+
0.1251251042820513,
|
| 2791 |
+
0.46874684616923334,
|
| 2792 |
+
-0.15137760601937772,
|
| 2793 |
+
0.068039158731699,
|
| 2794 |
+
-0.30281599573791024,
|
| 2795 |
+
-0.2254273697733879,
|
| 2796 |
+
0.27405579378828404,
|
| 2797 |
+
0.17136543877422808,
|
| 2798 |
+
0.10630016443319619,
|
| 2799 |
+
0.057858095318079,
|
| 2800 |
+
0.11517375223338605,
|
| 2801 |
+
-0.15762499999254942,
|
| 2802 |
+
-0.29063242860138416,
|
| 2803 |
+
0.20158795565366744,
|
| 2804 |
+
-0.29120013369247316,
|
| 2805 |
+
-0.24734700098633766,
|
| 2806 |
+
-0.11135954931378364,
|
| 2807 |
+
0.0172116317320615,
|
| 2808 |
+
-0.31362133994698527,
|
| 2809 |
+
-0.22704790353309365,
|
| 2810 |
+
0.04125624597072601,
|
| 2811 |
+
0.2366799856070429,
|
| 2812 |
+
0.1992180491797626,
|
| 2813 |
+
0.2684565844014287,
|
| 2814 |
+
0.2055516693741083,
|
| 2815 |
+
-0.33117692880332467,
|
| 2816 |
+
-0.031874293368309735,
|
| 2817 |
+
0.38305166363716125,
|
| 2818 |
+
-0.29617225378751755,
|
| 2819 |
+
-0.04308449327945709,
|
| 2820 |
+
-0.5536482103168965,
|
| 2821 |
+
0.5467873688321561,
|
| 2822 |
+
0.17487224414944647,
|
| 2823 |
+
0.4601214074995369,
|
| 2824 |
+
-0.21070712432265282,
|
| 2825 |
+
0.14032430904917417,
|
| 2826 |
+
0.04221225241199136,
|
| 2827 |
+
-0.1693667344748974,
|
| 2828 |
+
-0.05280606932938099,
|
| 2829 |
+
0.19504989907145498,
|
| 2830 |
+
0.5787762992084027,
|
| 2831 |
+
-0.0508410669863224,
|
| 2832 |
+
0.3892222262918949,
|
| 2833 |
+
0.3818872168660164,
|
| 2834 |
+
0.1461108922958374,
|
| 2835 |
+
0.2555951376445591,
|
| 2836 |
+
-0.23311877846717832,
|
| 2837 |
+
0.03256144672632219,
|
| 2838 |
+
0.08528051348403096
|
| 2839 |
+
]
|
| 2840 |
+
}
|
voices_.json.example
ADDED
|
@@ -0,0 +1,2840 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"Richard_Male_EN_US": [
|
| 3 |
+
0.0838528722524643,
|
| 4 |
+
-0.20531457662582397,
|
| 5 |
+
-0.10166072100400925,
|
| 6 |
+
-0.08704791963100433,
|
| 7 |
+
-0.16887575387954712,
|
| 8 |
+
0.07563386857509613,
|
| 9 |
+
-0.11252004653215408,
|
| 10 |
+
0.0405205562710762,
|
| 11 |
+
0.17604444921016693,
|
| 12 |
+
-0.0022975243628025055,
|
| 13 |
+
0.07261361181735992,
|
| 14 |
+
0.01948651298880577,
|
| 15 |
+
0.03549861162900925,
|
| 16 |
+
0.10135026276111603,
|
| 17 |
+
-0.028263121843338013,
|
| 18 |
+
0.002969518303871155,
|
| 19 |
+
0.0983193963766098,
|
| 20 |
+
-0.0498846136033535,
|
| 21 |
+
-0.059726495295763016,
|
| 22 |
+
0.14428836107254028,
|
| 23 |
+
0.22363322973251343,
|
| 24 |
+
-0.18453018367290497,
|
| 25 |
+
-0.02805022895336151,
|
| 26 |
+
-0.04543690383434296,
|
| 27 |
+
-0.11356891691684723,
|
| 28 |
+
-0.13455606997013092,
|
| 29 |
+
0.09829540550708771,
|
| 30 |
+
-0.08688592910766602,
|
| 31 |
+
0.07672901451587677,
|
| 32 |
+
-0.18105418980121613,
|
| 33 |
+
-0.18634817004203796,
|
| 34 |
+
0.12421728670597076,
|
| 35 |
+
-0.007412530481815338,
|
| 36 |
+
-0.05725667625665665,
|
| 37 |
+
-0.1923050880432129,
|
| 38 |
+
0.12631717324256897,
|
| 39 |
+
0.19541586935520172,
|
| 40 |
+
-0.07617154717445374,
|
| 41 |
+
-0.08994933217763901,
|
| 42 |
+
-0.046437621116638184,
|
| 43 |
+
-0.043646734207868576,
|
| 44 |
+
-0.14466425776481628,
|
| 45 |
+
-0.10671895742416382,
|
| 46 |
+
-0.013705611228942871,
|
| 47 |
+
-0.207138791680336,
|
| 48 |
+
-0.752566933631897,
|
| 49 |
+
-0.1562556028366089,
|
| 50 |
+
0.15995296835899353,
|
| 51 |
+
-0.17764419317245483,
|
| 52 |
+
0.016572676599025726,
|
| 53 |
+
0.10811036825180054,
|
| 54 |
+
0.08399468660354614,
|
| 55 |
+
-0.08008511364459991,
|
| 56 |
+
-0.03857298195362091,
|
| 57 |
+
-0.0649266391992569,
|
| 58 |
+
-0.22515754401683807,
|
| 59 |
+
0.11427924036979675,
|
| 60 |
+
-0.24663931131362915,
|
| 61 |
+
0.1547779142856598,
|
| 62 |
+
-0.14620377123355865,
|
| 63 |
+
0.5633630752563477,
|
| 64 |
+
-0.1662401258945465,
|
| 65 |
+
-0.09044578671455383,
|
| 66 |
+
0.004183262586593628,
|
| 67 |
+
-0.0022140033543109894,
|
| 68 |
+
-0.04644201323390007,
|
| 69 |
+
0.09777267277240753,
|
| 70 |
+
0.007478602230548859,
|
| 71 |
+
0.09729039669036865,
|
| 72 |
+
0.014121796935796738,
|
| 73 |
+
-0.1283886432647705,
|
| 74 |
+
0.016886277124285698,
|
| 75 |
+
0.14353325963020325,
|
| 76 |
+
-0.019632495939731598,
|
| 77 |
+
-0.08626653999090195,
|
| 78 |
+
-0.13174456357955933,
|
| 79 |
+
-0.07509270310401917,
|
| 80 |
+
0.13293522596359253,
|
| 81 |
+
-0.006963282823562622,
|
| 82 |
+
0.04489506036043167,
|
| 83 |
+
0.1364283263683319,
|
| 84 |
+
-0.023780206218361855,
|
| 85 |
+
-0.13672304153442383,
|
| 86 |
+
0.0834212377667427,
|
| 87 |
+
-0.0881689265370369,
|
| 88 |
+
0.12765783071517944,
|
| 89 |
+
-0.04777761548757553,
|
| 90 |
+
0.006771944463253021,
|
| 91 |
+
0.10008896142244339,
|
| 92 |
+
-0.0004957094788551331,
|
| 93 |
+
-0.3792557418346405,
|
| 94 |
+
-0.2995077669620514,
|
| 95 |
+
-0.18048475682735443,
|
| 96 |
+
-0.05329251289367676,
|
| 97 |
+
0.15887054800987244,
|
| 98 |
+
-0.05502178147435188,
|
| 99 |
+
-0.002659738063812256,
|
| 100 |
+
-0.1500413417816162,
|
| 101 |
+
0.02029288560152054,
|
| 102 |
+
-0.13041751086711884,
|
| 103 |
+
-0.02238699235022068,
|
| 104 |
+
0.13223209977149963,
|
| 105 |
+
0.008205652236938477,
|
| 106 |
+
0.09628777951002121,
|
| 107 |
+
-0.005202248692512512,
|
| 108 |
+
0.06322506815195084,
|
| 109 |
+
0.2893131375312805,
|
| 110 |
+
0.13000035285949707,
|
| 111 |
+
-0.12980809807777405,
|
| 112 |
+
-0.19357866048812866,
|
| 113 |
+
0.010631434619426727,
|
| 114 |
+
-0.09848842024803162,
|
| 115 |
+
0.43145453929901123,
|
| 116 |
+
-0.07535015791654587,
|
| 117 |
+
0.030972477048635483,
|
| 118 |
+
-0.005491979420185089,
|
| 119 |
+
-0.23411263525485992,
|
| 120 |
+
0.0034233778715133667,
|
| 121 |
+
-0.03615764528512955,
|
| 122 |
+
0.11543036997318268,
|
| 123 |
+
-0.04371267557144165,
|
| 124 |
+
-0.11525161564350128,
|
| 125 |
+
0.023816093802452087,
|
| 126 |
+
0.028308294713497162,
|
| 127 |
+
-0.0039406418800354,
|
| 128 |
+
-0.13210836052894592,
|
| 129 |
+
0.06155262142419815,
|
| 130 |
+
-0.17223545908927917,
|
| 131 |
+
-0.07812541723251343,
|
| 132 |
+
-0.04739491268992424,
|
| 133 |
+
0.012321650981903076,
|
| 134 |
+
0.2732156217098236,
|
| 135 |
+
-0.006376683712005615,
|
| 136 |
+
0.2102227807044983,
|
| 137 |
+
-0.026796162128448486,
|
| 138 |
+
0.023160047829151154,
|
| 139 |
+
0.4432758688926697,
|
| 140 |
+
0.05461269989609718,
|
| 141 |
+
-0.05827128142118454,
|
| 142 |
+
-0.23424984514713287,
|
| 143 |
+
0.004663914442062378,
|
| 144 |
+
0.22082097828388214,
|
| 145 |
+
0.28713545203208923,
|
| 146 |
+
-0.08923299610614777,
|
| 147 |
+
-0.11788474768400192,
|
| 148 |
+
-0.14981813728809357,
|
| 149 |
+
0.008348524570465088,
|
| 150 |
+
0.15658962726593018,
|
| 151 |
+
0.2602955102920532,
|
| 152 |
+
-0.32679831981658936,
|
| 153 |
+
-0.38099929690361023,
|
| 154 |
+
0.22179332375526428,
|
| 155 |
+
-0.18678224086761475,
|
| 156 |
+
0.1026342585682869,
|
| 157 |
+
0.03508329764008522,
|
| 158 |
+
-0.0821741446852684,
|
| 159 |
+
-0.08279386162757874,
|
| 160 |
+
-0.2976434528827667,
|
| 161 |
+
-0.4842967391014099,
|
| 162 |
+
-0.22528287768363953,
|
| 163 |
+
0.05699944496154785,
|
| 164 |
+
-0.16488179564476013,
|
| 165 |
+
-0.15537670254707336,
|
| 166 |
+
0.17949746549129486,
|
| 167 |
+
-0.0883849710226059,
|
| 168 |
+
-0.07729420065879822,
|
| 169 |
+
-0.011546742171049118,
|
| 170 |
+
0.055838439613580704,
|
| 171 |
+
-0.2754920423030853,
|
| 172 |
+
0.24266156554222107,
|
| 173 |
+
-0.25005173683166504,
|
| 174 |
+
0.15594978630542755,
|
| 175 |
+
-0.2281457483768463,
|
| 176 |
+
-0.022545501589775085,
|
| 177 |
+
-0.18430665135383606,
|
| 178 |
+
-0.09129363298416138,
|
| 179 |
+
-0.46234992146492004,
|
| 180 |
+
0.18292169272899628,
|
| 181 |
+
0.3553994596004486,
|
| 182 |
+
0.18489143252372742,
|
| 183 |
+
0.16369718313217163,
|
| 184 |
+
0.06524109095335007,
|
| 185 |
+
-0.13083520531654358,
|
| 186 |
+
-0.004223830997943878,
|
| 187 |
+
0.5248246192932129,
|
| 188 |
+
-0.4541511535644531,
|
| 189 |
+
0.33416515588760376,
|
| 190 |
+
-0.23953655362129211,
|
| 191 |
+
0.039670318365097046,
|
| 192 |
+
-0.2775384485721588,
|
| 193 |
+
-0.06698162853717804,
|
| 194 |
+
-0.04875987395644188,
|
| 195 |
+
0.095211923122406,
|
| 196 |
+
-0.2521704435348511,
|
| 197 |
+
-0.1613994985818863,
|
| 198 |
+
-0.11273781210184097,
|
| 199 |
+
0.089663565158844,
|
| 200 |
+
0.4533567726612091,
|
| 201 |
+
-0.12889298796653748,
|
| 202 |
+
0.04630730301141739,
|
| 203 |
+
0.3440477252006531,
|
| 204 |
+
-0.29735368490219116,
|
| 205 |
+
-0.16942940652370453,
|
| 206 |
+
-0.30063536763191223,
|
| 207 |
+
-0.04887039214372635,
|
| 208 |
+
0.07650876045227051,
|
| 209 |
+
-0.24708417057991028,
|
| 210 |
+
0.11167217791080475,
|
| 211 |
+
0.41300496459007263,
|
| 212 |
+
-0.1990889608860016,
|
| 213 |
+
-0.03628714382648468,
|
| 214 |
+
0.1947430670261383,
|
| 215 |
+
0.002185918390750885,
|
| 216 |
+
-0.1734754890203476,
|
| 217 |
+
0.007325600832700729,
|
| 218 |
+
0.0758146345615387,
|
| 219 |
+
0.14343833923339844,
|
| 220 |
+
0.16034956276416779,
|
| 221 |
+
0.09238007664680481,
|
| 222 |
+
-0.14523102343082428,
|
| 223 |
+
0.07370740175247192,
|
| 224 |
+
-0.05756370723247528,
|
| 225 |
+
0.3471793532371521,
|
| 226 |
+
-0.09545806050300598,
|
| 227 |
+
-0.32518574595451355,
|
| 228 |
+
0.01974405348300934,
|
| 229 |
+
-0.07413671910762787,
|
| 230 |
+
-0.07332949340343475,
|
| 231 |
+
0.09689724445343018,
|
| 232 |
+
0.33527132868766785,
|
| 233 |
+
0.07647977769374847,
|
| 234 |
+
-0.07537016272544861,
|
| 235 |
+
0.19729986786842346,
|
| 236 |
+
-0.054191842675209045,
|
| 237 |
+
0.019159607589244843,
|
| 238 |
+
0.28645795583724976,
|
| 239 |
+
-0.0029614195227622986,
|
| 240 |
+
0.050225719809532166,
|
| 241 |
+
0.058712102472782135,
|
| 242 |
+
-0.020884737372398376,
|
| 243 |
+
0.32063227891921997,
|
| 244 |
+
0.13905727863311768,
|
| 245 |
+
-0.08830951899290085,
|
| 246 |
+
-0.2068493664264679,
|
| 247 |
+
-0.5085070133209229,
|
| 248 |
+
-0.19245725870132446,
|
| 249 |
+
0.07536047697067261,
|
| 250 |
+
0.3520141541957855,
|
| 251 |
+
-0.004317941144108772,
|
| 252 |
+
0.11286243796348572,
|
| 253 |
+
0.4874182343482971,
|
| 254 |
+
0.197415292263031,
|
| 255 |
+
-0.11710592359304428,
|
| 256 |
+
0.41149505972862244,
|
| 257 |
+
-0.024338984861969948,
|
| 258 |
+
-0.3128387928009033
|
| 259 |
+
],
|
| 260 |
+
"Chuck_Male_EN_US": [
|
| 261 |
+
-0.080739326775074,
|
| 262 |
+
-0.05186597257852554,
|
| 263 |
+
-0.04643955081701279,
|
| 264 |
+
-0.16995930671691895,
|
| 265 |
+
-0.08520634472370148,
|
| 266 |
+
0.26354464888572693,
|
| 267 |
+
-0.16335150599479675,
|
| 268 |
+
0.03762347623705864,
|
| 269 |
+
0.12310560047626495,
|
| 270 |
+
0.11882100999355316,
|
| 271 |
+
0.25169509649276733,
|
| 272 |
+
0.16642478108406067,
|
| 273 |
+
0.04346868768334389,
|
| 274 |
+
0.05879981815814972,
|
| 275 |
+
-0.10555227845907211,
|
| 276 |
+
0.098129041492939,
|
| 277 |
+
0.07805588096380234,
|
| 278 |
+
0.07993364334106445,
|
| 279 |
+
0.02878241240978241,
|
| 280 |
+
0.10626713931560516,
|
| 281 |
+
0.18884220719337463,
|
| 282 |
+
-0.15791675448417664,
|
| 283 |
+
-0.046336084604263306,
|
| 284 |
+
-0.06054564565420151,
|
| 285 |
+
0.14667274057865143,
|
| 286 |
+
-0.1686663031578064,
|
| 287 |
+
0.13676004111766815,
|
| 288 |
+
0.017875753343105316,
|
| 289 |
+
0.034988172352313995,
|
| 290 |
+
-0.15061573684215546,
|
| 291 |
+
-0.06622567772865295,
|
| 292 |
+
-0.018525442108511925,
|
| 293 |
+
-0.0815289169549942,
|
| 294 |
+
-0.11815841495990753,
|
| 295 |
+
-0.2079353630542755,
|
| 296 |
+
-0.12242597341537476,
|
| 297 |
+
0.1685279756784439,
|
| 298 |
+
0.005029462277889252,
|
| 299 |
+
-0.04868243634700775,
|
| 300 |
+
-0.006423652172088623,
|
| 301 |
+
-0.03062119334936142,
|
| 302 |
+
-0.10892745107412338,
|
| 303 |
+
-0.029393166303634644,
|
| 304 |
+
-0.14687927067279816,
|
| 305 |
+
-0.10593554377555847,
|
| 306 |
+
-0.7461926937103271,
|
| 307 |
+
-0.1311473250389099,
|
| 308 |
+
0.19617816805839539,
|
| 309 |
+
0.0034797536209225655,
|
| 310 |
+
0.017870396375656128,
|
| 311 |
+
0.1417236328125,
|
| 312 |
+
0.14160263538360596,
|
| 313 |
+
-0.13305433094501495,
|
| 314 |
+
-0.019239917397499084,
|
| 315 |
+
0.0768553614616394,
|
| 316 |
+
-0.2461501657962799,
|
| 317 |
+
0.11662117391824722,
|
| 318 |
+
-0.3004859685897827,
|
| 319 |
+
0.07660801708698273,
|
| 320 |
+
-0.08291581273078918,
|
| 321 |
+
0.646587610244751,
|
| 322 |
+
0.05630920082330704,
|
| 323 |
+
0.018290594220161438,
|
| 324 |
+
-0.076407790184021,
|
| 325 |
+
-0.022635802626609802,
|
| 326 |
+
-0.033361952751874924,
|
| 327 |
+
0.13813386857509613,
|
| 328 |
+
0.23338472843170166,
|
| 329 |
+
0.1526336669921875,
|
| 330 |
+
-0.010544595308601856,
|
| 331 |
+
0.0645538792014122,
|
| 332 |
+
-0.12352045625448227,
|
| 333 |
+
0.23500092327594757,
|
| 334 |
+
0.023993253707885742,
|
| 335 |
+
-0.18476025760173798,
|
| 336 |
+
0.08681316673755646,
|
| 337 |
+
-0.24495398998260498,
|
| 338 |
+
0.1805841475725174,
|
| 339 |
+
0.019407637417316437,
|
| 340 |
+
-0.1164683923125267,
|
| 341 |
+
0.04219061881303787,
|
| 342 |
+
-0.05617094039916992,
|
| 343 |
+
-0.06486696004867554,
|
| 344 |
+
0.11154982447624207,
|
| 345 |
+
0.1624276340007782,
|
| 346 |
+
0.037209782749414444,
|
| 347 |
+
0.024621259421110153,
|
| 348 |
+
-0.011263281106948853,
|
| 349 |
+
0.07437050342559814,
|
| 350 |
+
-0.027852090075612068,
|
| 351 |
+
-0.38197386264801025,
|
| 352 |
+
-0.12534263730049133,
|
| 353 |
+
-0.15090727806091309,
|
| 354 |
+
-0.016294121742248535,
|
| 355 |
+
0.20195062458515167,
|
| 356 |
+
-0.10578630119562149,
|
| 357 |
+
0.0834207683801651,
|
| 358 |
+
-0.2002831995487213,
|
| 359 |
+
0.08801543712615967,
|
| 360 |
+
-0.1744777411222458,
|
| 361 |
+
-0.019703160971403122,
|
| 362 |
+
0.18256394565105438,
|
| 363 |
+
0.019218653440475464,
|
| 364 |
+
-0.06123323366045952,
|
| 365 |
+
0.03127707168459892,
|
| 366 |
+
0.1301468461751938,
|
| 367 |
+
0.2009834200143814,
|
| 368 |
+
0.07228143513202667,
|
| 369 |
+
-0.05553338676691055,
|
| 370 |
+
-0.44165605306625366,
|
| 371 |
+
0.27527377009391785,
|
| 372 |
+
-0.08356539905071259,
|
| 373 |
+
0.5484572649002075,
|
| 374 |
+
-0.22545355558395386,
|
| 375 |
+
0.10192038118839264,
|
| 376 |
+
0.13001194596290588,
|
| 377 |
+
-0.1598789542913437,
|
| 378 |
+
0.03745634853839874,
|
| 379 |
+
0.1973172128200531,
|
| 380 |
+
0.10266508162021637,
|
| 381 |
+
-0.10606272518634796,
|
| 382 |
+
-0.043102242052555084,
|
| 383 |
+
0.023647010326385498,
|
| 384 |
+
0.0016689617186784744,
|
| 385 |
+
0.35201117396354675,
|
| 386 |
+
-0.24116483330726624,
|
| 387 |
+
0.022700302302837372,
|
| 388 |
+
-0.29655206203460693,
|
| 389 |
+
-0.11883702874183655,
|
| 390 |
+
0.06606853753328323,
|
| 391 |
+
-0.09965553879737854,
|
| 392 |
+
0.3298850655555725,
|
| 393 |
+
-0.10845916718244553,
|
| 394 |
+
0.12123875319957733,
|
| 395 |
+
-0.2904745042324066,
|
| 396 |
+
0.16466909646987915,
|
| 397 |
+
0.5250499844551086,
|
| 398 |
+
0.26844123005867004,
|
| 399 |
+
-0.1581430584192276,
|
| 400 |
+
-0.01679089665412903,
|
| 401 |
+
0.10683909058570862,
|
| 402 |
+
0.13829728960990906,
|
| 403 |
+
-0.0774451196193695,
|
| 404 |
+
-0.09715490788221359,
|
| 405 |
+
-0.15488898754119873,
|
| 406 |
+
0.09843119978904724,
|
| 407 |
+
0.18665491044521332,
|
| 408 |
+
0.499192476272583,
|
| 409 |
+
0.25495558977127075,
|
| 410 |
+
-0.3385838270187378,
|
| 411 |
+
-0.11540469527244568,
|
| 412 |
+
0.3943556845188141,
|
| 413 |
+
-0.028287045657634735,
|
| 414 |
+
0.10370328277349472,
|
| 415 |
+
0.3033093214035034,
|
| 416 |
+
-0.13608571887016296,
|
| 417 |
+
-0.07120000571012497,
|
| 418 |
+
-0.14757874608039856,
|
| 419 |
+
-0.2092522382736206,
|
| 420 |
+
-0.349817156791687,
|
| 421 |
+
-0.042082756757736206,
|
| 422 |
+
-0.28092268109321594,
|
| 423 |
+
-0.3474852740764618,
|
| 424 |
+
-0.1188138797879219,
|
| 425 |
+
-0.3396819233894348,
|
| 426 |
+
0.16733011603355408,
|
| 427 |
+
0.09606117755174637,
|
| 428 |
+
0.10766048729419708,
|
| 429 |
+
-0.19903156161308289,
|
| 430 |
+
-0.30723923444747925,
|
| 431 |
+
-0.3617871105670929,
|
| 432 |
+
-0.24389447271823883,
|
| 433 |
+
-0.33159559965133667,
|
| 434 |
+
-0.0794874057173729,
|
| 435 |
+
-0.17680421471595764,
|
| 436 |
+
-0.09732476621866226,
|
| 437 |
+
-0.6020764708518982,
|
| 438 |
+
-0.23046669363975525,
|
| 439 |
+
0.4663076400756836,
|
| 440 |
+
-0.03177022933959961,
|
| 441 |
+
0.31536608934402466,
|
| 442 |
+
0.17449232935905457,
|
| 443 |
+
0.19207462668418884,
|
| 444 |
+
-0.20476028323173523,
|
| 445 |
+
0.3841668367385864,
|
| 446 |
+
-0.46485692262649536,
|
| 447 |
+
0.07715408504009247,
|
| 448 |
+
-0.0481671467423439,
|
| 449 |
+
0.06056290864944458,
|
| 450 |
+
0.23023973405361176,
|
| 451 |
+
-0.44577276706695557,
|
| 452 |
+
0.08608794212341309,
|
| 453 |
+
0.174083411693573,
|
| 454 |
+
-0.20057682693004608,
|
| 455 |
+
0.0015126615762710571,
|
| 456 |
+
0.30561572313308716,
|
| 457 |
+
-0.0823325663805008,
|
| 458 |
+
0.6210863590240479,
|
| 459 |
+
0.12966740131378174,
|
| 460 |
+
-0.27340665459632874,
|
| 461 |
+
0.31147849559783936,
|
| 462 |
+
0.17376896739006042,
|
| 463 |
+
-0.28636378049850464,
|
| 464 |
+
0.1761811077594757,
|
| 465 |
+
-0.3044331669807434,
|
| 466 |
+
0.0771920382976532,
|
| 467 |
+
-0.04131172597408295,
|
| 468 |
+
0.17433065176010132,
|
| 469 |
+
0.11375144124031067,
|
| 470 |
+
-0.06075088679790497,
|
| 471 |
+
-0.21101467311382294,
|
| 472 |
+
0.23215331137180328,
|
| 473 |
+
0.3220982849597931,
|
| 474 |
+
-0.08772740513086319,
|
| 475 |
+
-0.1110156923532486,
|
| 476 |
+
0.150890052318573,
|
| 477 |
+
0.0899096205830574,
|
| 478 |
+
-0.11286906898021698,
|
| 479 |
+
-0.18477720022201538,
|
| 480 |
+
0.12096066772937775,
|
| 481 |
+
0.33322685956954956,
|
| 482 |
+
-0.2950510084629059,
|
| 483 |
+
0.2563823163509369,
|
| 484 |
+
0.11760752648115158,
|
| 485 |
+
-0.3458101749420166,
|
| 486 |
+
-0.4250616133213043,
|
| 487 |
+
-0.25533783435821533,
|
| 488 |
+
-0.2633964717388153,
|
| 489 |
+
-0.026663780212402344,
|
| 490 |
+
0.4655682444572449,
|
| 491 |
+
0.3740382790565491,
|
| 492 |
+
-0.05553853511810303,
|
| 493 |
+
0.024137284606695175,
|
| 494 |
+
-0.044697582721710205,
|
| 495 |
+
0.03481140360236168,
|
| 496 |
+
0.01849237084388733,
|
| 497 |
+
-0.15648233890533447,
|
| 498 |
+
-0.719332218170166,
|
| 499 |
+
0.5206979513168335,
|
| 500 |
+
-0.022456303238868713,
|
| 501 |
+
0.6854866743087769,
|
| 502 |
+
-0.32744836807250977,
|
| 503 |
+
-0.08906684815883636,
|
| 504 |
+
-0.02081950753927231,
|
| 505 |
+
-0.8612825870513916,
|
| 506 |
+
-0.1892240047454834,
|
| 507 |
+
0.07316698133945465,
|
| 508 |
+
0.4908924400806427,
|
| 509 |
+
0.30862411856651306,
|
| 510 |
+
0.3830990791320801,
|
| 511 |
+
0.38602370023727417,
|
| 512 |
+
0.25254443287849426,
|
| 513 |
+
0.26230084896087646,
|
| 514 |
+
0.12000225484371185,
|
| 515 |
+
0.0641913115978241,
|
| 516 |
+
-0.5113836526870728
|
| 517 |
+
],
|
| 518 |
+
"Sol_Female_EN_US": [
|
| 519 |
+
0.1268293261528015,
|
| 520 |
+
-0.24892280995845795,
|
| 521 |
+
0.03928159922361374,
|
| 522 |
+
-0.08916330337524414,
|
| 523 |
+
-0.08921554684638977,
|
| 524 |
+
0.018120769411325455,
|
| 525 |
+
0.009445525705814362,
|
| 526 |
+
0.09456969052553177,
|
| 527 |
+
0.23499509692192078,
|
| 528 |
+
0.12589207291603088,
|
| 529 |
+
0.0817081481218338,
|
| 530 |
+
-0.05610091611742973,
|
| 531 |
+
-0.11433179676532745,
|
| 532 |
+
0.031890347599983215,
|
| 533 |
+
0.01497705653309822,
|
| 534 |
+
0.10599376261234283,
|
| 535 |
+
0.03902814909815788,
|
| 536 |
+
0.01317581906914711,
|
| 537 |
+
0.008249595761299133,
|
| 538 |
+
0.010834900662302971,
|
| 539 |
+
0.1323947310447693,
|
| 540 |
+
-0.14897435903549194,
|
| 541 |
+
-0.044409990310668945,
|
| 542 |
+
-0.004388481378555298,
|
| 543 |
+
-0.02122711017727852,
|
| 544 |
+
-0.21078309416770935,
|
| 545 |
+
0.05238814279437065,
|
| 546 |
+
-0.24263539910316467,
|
| 547 |
+
0.10478609800338745,
|
| 548 |
+
-0.046628206968307495,
|
| 549 |
+
-0.061156079173088074,
|
| 550 |
+
0.04726453870534897,
|
| 551 |
+
0.19356507062911987,
|
| 552 |
+
-0.10425321012735367,
|
| 553 |
+
-0.1245705783367157,
|
| 554 |
+
0.2371465265750885,
|
| 555 |
+
0.15406547486782074,
|
| 556 |
+
-0.11537078022956848,
|
| 557 |
+
-0.2574460506439209,
|
| 558 |
+
0.11589224636554718,
|
| 559 |
+
0.04982087016105652,
|
| 560 |
+
-0.0768856406211853,
|
| 561 |
+
-0.11789155006408691,
|
| 562 |
+
-0.13019400835037231,
|
| 563 |
+
0.03559808060526848,
|
| 564 |
+
-0.47099581360816956,
|
| 565 |
+
0.06938941776752472,
|
| 566 |
+
0.19138163328170776,
|
| 567 |
+
0.17706745862960815,
|
| 568 |
+
0.035381563007831573,
|
| 569 |
+
0.09636449813842773,
|
| 570 |
+
0.07912801951169968,
|
| 571 |
+
0.06765618175268173,
|
| 572 |
+
-0.1303500384092331,
|
| 573 |
+
-0.039963360875844955,
|
| 574 |
+
-0.04088369756937027,
|
| 575 |
+
0.02034657448530197,
|
| 576 |
+
0.008391611278057098,
|
| 577 |
+
0.02184874564409256,
|
| 578 |
+
-0.03052680939435959,
|
| 579 |
+
0.3498419225215912,
|
| 580 |
+
-0.07705945521593094,
|
| 581 |
+
-0.2935195565223694,
|
| 582 |
+
0.034476667642593384,
|
| 583 |
+
-0.1314329355955124,
|
| 584 |
+
0.20076632499694824,
|
| 585 |
+
0.016021449118852615,
|
| 586 |
+
0.23033341765403748,
|
| 587 |
+
-0.03349122032523155,
|
| 588 |
+
-0.18335162103176117,
|
| 589 |
+
0.029580311849713326,
|
| 590 |
+
0.018869629129767418,
|
| 591 |
+
0.10253989696502686,
|
| 592 |
+
-0.09266053140163422,
|
| 593 |
+
-0.03108178824186325,
|
| 594 |
+
-0.03976592794060707,
|
| 595 |
+
0.13201536238193512,
|
| 596 |
+
-0.028312936425209045,
|
| 597 |
+
-0.09032510221004486,
|
| 598 |
+
0.05712374672293663,
|
| 599 |
+
-0.17886731028556824,
|
| 600 |
+
-0.00012268498539924622,
|
| 601 |
+
-0.17655304074287415,
|
| 602 |
+
0.21560686826705933,
|
| 603 |
+
0.07977418601512909,
|
| 604 |
+
0.09157729148864746,
|
| 605 |
+
-0.08235643059015274,
|
| 606 |
+
-0.034677520394325256,
|
| 607 |
+
0.2231934666633606,
|
| 608 |
+
0.1851099133491516,
|
| 609 |
+
-0.2730552554130554,
|
| 610 |
+
-0.2409580945968628,
|
| 611 |
+
-0.273377925157547,
|
| 612 |
+
-0.11498671770095825,
|
| 613 |
+
0.29265373945236206,
|
| 614 |
+
-0.10599346458911896,
|
| 615 |
+
-0.05672678351402283,
|
| 616 |
+
0.026578396558761597,
|
| 617 |
+
-0.22945210337638855,
|
| 618 |
+
-0.08645745366811752,
|
| 619 |
+
0.028000690042972565,
|
| 620 |
+
-0.13934218883514404,
|
| 621 |
+
0.11353091895580292,
|
| 622 |
+
0.060757409781217575,
|
| 623 |
+
0.11343018710613251,
|
| 624 |
+
0.053218141198158264,
|
| 625 |
+
0.3181232810020447,
|
| 626 |
+
0.10948897153139114,
|
| 627 |
+
0.0357043594121933,
|
| 628 |
+
-0.1203552708029747,
|
| 629 |
+
0.11475016921758652,
|
| 630 |
+
-0.005062885582447052,
|
| 631 |
+
0.3342074751853943,
|
| 632 |
+
-0.1266603022813797,
|
| 633 |
+
0.07479999959468842,
|
| 634 |
+
-0.008454116061329842,
|
| 635 |
+
0.12023192644119263,
|
| 636 |
+
-0.03595118224620819,
|
| 637 |
+
0.02898475155234337,
|
| 638 |
+
-0.020386993885040283,
|
| 639 |
+
0.006668185815215111,
|
| 640 |
+
-0.15364103019237518,
|
| 641 |
+
-0.11951534450054169,
|
| 642 |
+
-0.0910012498497963,
|
| 643 |
+
0.19956853985786438,
|
| 644 |
+
0.04014497250318527,
|
| 645 |
+
-0.09457655251026154,
|
| 646 |
+
-0.12396776676177979,
|
| 647 |
+
0.23229674994945526,
|
| 648 |
+
-0.15745335817337036,
|
| 649 |
+
0.17193259298801422,
|
| 650 |
+
0.040711648762226105,
|
| 651 |
+
-0.12352880835533142,
|
| 652 |
+
0.018167633563280106,
|
| 653 |
+
-0.08081409335136414,
|
| 654 |
+
0.23432570695877075,
|
| 655 |
+
0.17171189188957214,
|
| 656 |
+
-0.03221336752176285,
|
| 657 |
+
0.03773265331983566,
|
| 658 |
+
-0.06490489095449448,
|
| 659 |
+
-0.030414387583732605,
|
| 660 |
+
0.4086611866950989,
|
| 661 |
+
0.07678371667861938,
|
| 662 |
+
0.15471185743808746,
|
| 663 |
+
0.009691998362541199,
|
| 664 |
+
0.21592354774475098,
|
| 665 |
+
0.16220787167549133,
|
| 666 |
+
0.13170170783996582,
|
| 667 |
+
0.11527039110660553,
|
| 668 |
+
-0.3844143748283386,
|
| 669 |
+
0.0421525314450264,
|
| 670 |
+
0.4349702298641205,
|
| 671 |
+
-0.1686660647392273,
|
| 672 |
+
0.005835492163896561,
|
| 673 |
+
-0.05163434147834778,
|
| 674 |
+
-0.38664859533309937,
|
| 675 |
+
0.09356559813022614,
|
| 676 |
+
-0.2766155004501343,
|
| 677 |
+
-0.13494873046875,
|
| 678 |
+
-0.07143319398164749,
|
| 679 |
+
-0.0797828882932663,
|
| 680 |
+
-0.10624134540557861,
|
| 681 |
+
-0.05675575137138367,
|
| 682 |
+
0.2754574418067932,
|
| 683 |
+
0.11232379078865051,
|
| 684 |
+
-0.026216700673103333,
|
| 685 |
+
-0.37042930722236633,
|
| 686 |
+
0.04595255106687546,
|
| 687 |
+
-0.08378663659095764,
|
| 688 |
+
0.113258957862854,
|
| 689 |
+
-0.10497808456420898,
|
| 690 |
+
-0.3882599174976349,
|
| 691 |
+
-0.09268787503242493,
|
| 692 |
+
-0.009513184428215027,
|
| 693 |
+
-0.03547880798578262,
|
| 694 |
+
-0.11325360834598541,
|
| 695 |
+
-0.4920811951160431,
|
| 696 |
+
-0.2420617938041687,
|
| 697 |
+
0.004631944000720978,
|
| 698 |
+
0.3054035007953644,
|
| 699 |
+
0.12272718548774719,
|
| 700 |
+
-0.1861076056957245,
|
| 701 |
+
-0.1328718364238739,
|
| 702 |
+
0.22628089785575867,
|
| 703 |
+
0.1674436330795288,
|
| 704 |
+
-0.2189907729625702,
|
| 705 |
+
0.25414198637008667,
|
| 706 |
+
0.08179888129234314,
|
| 707 |
+
0.014794200658798218,
|
| 708 |
+
-0.45081019401550293,
|
| 709 |
+
-0.4995046854019165,
|
| 710 |
+
-0.0721922218799591,
|
| 711 |
+
0.20731398463249207,
|
| 712 |
+
-0.07364560663700104,
|
| 713 |
+
-0.17112991213798523,
|
| 714 |
+
0.20308616757392883,
|
| 715 |
+
0.0781199038028717,
|
| 716 |
+
0.20510229468345642,
|
| 717 |
+
-0.18790192902088165,
|
| 718 |
+
0.08215056359767914,
|
| 719 |
+
0.05191810801625252,
|
| 720 |
+
-0.15418048202991486,
|
| 721 |
+
-0.1164349764585495,
|
| 722 |
+
-0.30107319355010986,
|
| 723 |
+
-0.07877662777900696,
|
| 724 |
+
0.006951943039894104,
|
| 725 |
+
-0.2136976420879364,
|
| 726 |
+
0.18753382563591003,
|
| 727 |
+
0.1558315008878708,
|
| 728 |
+
0.03319445252418518,
|
| 729 |
+
-0.20069114863872528,
|
| 730 |
+
0.5186187028884888,
|
| 731 |
+
0.29910457134246826,
|
| 732 |
+
-0.022099845111370087,
|
| 733 |
+
-0.2004503756761551,
|
| 734 |
+
0.11575216799974442,
|
| 735 |
+
0.06575708091259003,
|
| 736 |
+
0.29491111636161804,
|
| 737 |
+
0.042733918875455856,
|
| 738 |
+
0.13065889477729797,
|
| 739 |
+
-0.025842148810625076,
|
| 740 |
+
-0.48179322481155396,
|
| 741 |
+
0.12712322175502777,
|
| 742 |
+
-0.22928954660892487,
|
| 743 |
+
-0.4731486141681671,
|
| 744 |
+
0.2035326510667801,
|
| 745 |
+
-0.33841538429260254,
|
| 746 |
+
-0.09808406233787537,
|
| 747 |
+
0.30838146805763245,
|
| 748 |
+
0.06581465899944305,
|
| 749 |
+
0.047930970788002014,
|
| 750 |
+
0.01692097634077072,
|
| 751 |
+
0.22469750046730042,
|
| 752 |
+
-0.05486059561371803,
|
| 753 |
+
0.35013893246650696,
|
| 754 |
+
-0.283150851726532,
|
| 755 |
+
0.05401553213596344,
|
| 756 |
+
-0.04293721914291382,
|
| 757 |
+
0.03238523006439209,
|
| 758 |
+
0.30903106927871704,
|
| 759 |
+
0.318570613861084,
|
| 760 |
+
-0.36268168687820435,
|
| 761 |
+
0.01699633151292801,
|
| 762 |
+
-0.122194804251194,
|
| 763 |
+
-0.08210300654172897,
|
| 764 |
+
-0.08749544620513916,
|
| 765 |
+
0.04085458070039749,
|
| 766 |
+
0.26824674010276794,
|
| 767 |
+
-0.20407041907310486,
|
| 768 |
+
0.3028109669685364,
|
| 769 |
+
0.11649337410926819,
|
| 770 |
+
-0.06361576169729233,
|
| 771 |
+
0.022716812789440155,
|
| 772 |
+
0.8145036101341248,
|
| 773 |
+
-0.001978829503059387,
|
| 774 |
+
-0.19634583592414856
|
| 775 |
+
],
|
| 776 |
+
"Georgia_Female_EN_US": [
|
| 777 |
+
0.14149390161037445,
|
| 778 |
+
-0.19759099185466766,
|
| 779 |
+
0.029538815841078758,
|
| 780 |
+
-0.1644008457660675,
|
| 781 |
+
-0.16974563896656036,
|
| 782 |
+
0.15899056196212769,
|
| 783 |
+
-0.08187974989414215,
|
| 784 |
+
0.06346520036458969,
|
| 785 |
+
0.171818345785141,
|
| 786 |
+
-0.03900427371263504,
|
| 787 |
+
0.08924897015094757,
|
| 788 |
+
0.11517727375030518,
|
| 789 |
+
-0.09470553696155548,
|
| 790 |
+
0.039182037115097046,
|
| 791 |
+
-0.0800875872373581,
|
| 792 |
+
0.027626454830169678,
|
| 793 |
+
0.057931605726480484,
|
| 794 |
+
-0.05594071373343468,
|
| 795 |
+
-0.01764649897813797,
|
| 796 |
+
0.1859845221042633,
|
| 797 |
+
0.19512777030467987,
|
| 798 |
+
-0.2715531587600708,
|
| 799 |
+
-0.15435153245925903,
|
| 800 |
+
-0.07994608581066132,
|
| 801 |
+
0.0034161433577537537,
|
| 802 |
+
-0.27405399084091187,
|
| 803 |
+
0.06616479158401489,
|
| 804 |
+
0.028649676591157913,
|
| 805 |
+
0.24419546127319336,
|
| 806 |
+
-0.053172968327999115,
|
| 807 |
+
-0.06803376972675323,
|
| 808 |
+
0.08285264670848846,
|
| 809 |
+
-0.03827327489852905,
|
| 810 |
+
-0.05404618754982948,
|
| 811 |
+
-0.1717120110988617,
|
| 812 |
+
0.0565122552216053,
|
| 813 |
+
0.12560471892356873,
|
| 814 |
+
-0.07519722729921341,
|
| 815 |
+
-0.005836378782987595,
|
| 816 |
+
-0.049631841480731964,
|
| 817 |
+
0.035924024879932404,
|
| 818 |
+
-0.20555508136749268,
|
| 819 |
+
-0.16342787444591522,
|
| 820 |
+
-0.011107422411441803,
|
| 821 |
+
-0.09510314464569092,
|
| 822 |
+
-0.8373715877532959,
|
| 823 |
+
-0.056464750319719315,
|
| 824 |
+
0.15504246950149536,
|
| 825 |
+
0.12261460721492767,
|
| 826 |
+
-0.002536684274673462,
|
| 827 |
+
0.14500755071640015,
|
| 828 |
+
0.17729829251766205,
|
| 829 |
+
-0.16478273272514343,
|
| 830 |
+
-0.07822693139314651,
|
| 831 |
+
0.03328864276409149,
|
| 832 |
+
-0.3484482765197754,
|
| 833 |
+
0.07604808360338211,
|
| 834 |
+
-0.22294224798679352,
|
| 835 |
+
0.06523670256137848,
|
| 836 |
+
-0.22709456086158752,
|
| 837 |
+
0.8876799941062927,
|
| 838 |
+
0.0027947500348091125,
|
| 839 |
+
0.0007318109273910522,
|
| 840 |
+
0.002863973379135132,
|
| 841 |
+
-0.21034874022006989,
|
| 842 |
+
0.051948100328445435,
|
| 843 |
+
-0.004550091922283173,
|
| 844 |
+
0.17473770678043365,
|
| 845 |
+
0.1153031662106514,
|
| 846 |
+
-0.09051527082920074,
|
| 847 |
+
-0.07489325851202011,
|
| 848 |
+
0.03644700348377228,
|
| 849 |
+
0.1395515352487564,
|
| 850 |
+
-0.010498672723770142,
|
| 851 |
+
-0.16194367408752441,
|
| 852 |
+
0.11820540577173233,
|
| 853 |
+
-0.1125202625989914,
|
| 854 |
+
0.07222796976566315,
|
| 855 |
+
0.0924602597951889,
|
| 856 |
+
0.009883157908916473,
|
| 857 |
+
0.14233753085136414,
|
| 858 |
+
-0.04211493209004402,
|
| 859 |
+
-0.09790381044149399,
|
| 860 |
+
0.1432836949825287,
|
| 861 |
+
-0.0207438375800848,
|
| 862 |
+
0.09433138370513916,
|
| 863 |
+
0.03480076417326927,
|
| 864 |
+
0.014073198661208153,
|
| 865 |
+
0.1459684669971466,
|
| 866 |
+
0.06838452816009521,
|
| 867 |
+
-0.4587509036064148,
|
| 868 |
+
-0.24484041333198547,
|
| 869 |
+
-0.13059453666210175,
|
| 870 |
+
-0.014020655304193497,
|
| 871 |
+
-0.04615045711398125,
|
| 872 |
+
-0.10020460933446884,
|
| 873 |
+
0.05875978618860245,
|
| 874 |
+
-0.11167144775390625,
|
| 875 |
+
-0.08788008987903595,
|
| 876 |
+
-0.06586126983165741,
|
| 877 |
+
0.0656682550907135,
|
| 878 |
+
0.06709162890911102,
|
| 879 |
+
0.02795044332742691,
|
| 880 |
+
0.11588016897439957,
|
| 881 |
+
-0.09147179126739502,
|
| 882 |
+
0.08282454311847687,
|
| 883 |
+
0.19108889997005463,
|
| 884 |
+
-0.09372390806674957,
|
| 885 |
+
-0.0004408508539199829,
|
| 886 |
+
-0.40825721621513367,
|
| 887 |
+
0.24378983676433563,
|
| 888 |
+
0.06450286507606506,
|
| 889 |
+
0.40147995948791504,
|
| 890 |
+
-0.12383461743593216,
|
| 891 |
+
0.09264419227838516,
|
| 892 |
+
0.04705287888646126,
|
| 893 |
+
-0.0979108139872551,
|
| 894 |
+
-0.04610448330640793,
|
| 895 |
+
0.06577446311712265,
|
| 896 |
+
0.06107745319604874,
|
| 897 |
+
-0.0739186629652977,
|
| 898 |
+
0.03969721123576164,
|
| 899 |
+
0.0321660116314888,
|
| 900 |
+
0.2023421972990036,
|
| 901 |
+
0.22365602850914001,
|
| 902 |
+
-0.33337128162384033,
|
| 903 |
+
0.10086256265640259,
|
| 904 |
+
-0.23017814755439758,
|
| 905 |
+
0.15227298438549042,
|
| 906 |
+
0.08262811601161957,
|
| 907 |
+
0.028533905744552612,
|
| 908 |
+
0.16887661814689636,
|
| 909 |
+
-0.1553392857313156,
|
| 910 |
+
0.04320569336414337,
|
| 911 |
+
-0.18707242608070374,
|
| 912 |
+
0.021115079522132874,
|
| 913 |
+
0.3647507131099701,
|
| 914 |
+
0.2119525820016861,
|
| 915 |
+
-0.02559354156255722,
|
| 916 |
+
0.268862247467041,
|
| 917 |
+
-0.03270912170410156,
|
| 918 |
+
0.01871364563703537,
|
| 919 |
+
-0.0919923335313797,
|
| 920 |
+
-0.13874371349811554,
|
| 921 |
+
-0.092261902987957,
|
| 922 |
+
0.0468045249581337,
|
| 923 |
+
0.29371997714042664,
|
| 924 |
+
0.21063821017742157,
|
| 925 |
+
-0.12585729360580444,
|
| 926 |
+
-0.4214266538619995,
|
| 927 |
+
-0.17777106165885925,
|
| 928 |
+
0.14042110741138458,
|
| 929 |
+
-0.1407075822353363,
|
| 930 |
+
-0.1934659481048584,
|
| 931 |
+
0.015365049242973328,
|
| 932 |
+
-0.12806877493858337,
|
| 933 |
+
-0.01690494269132614,
|
| 934 |
+
-0.2808881402015686,
|
| 935 |
+
-0.32276445627212524,
|
| 936 |
+
-0.04267498850822449,
|
| 937 |
+
0.04772596061229706,
|
| 938 |
+
-0.13011249899864197,
|
| 939 |
+
-0.4758068323135376,
|
| 940 |
+
0.21355567872524261,
|
| 941 |
+
-0.12164445221424103,
|
| 942 |
+
-0.10112264752388,
|
| 943 |
+
-0.0498490147292614,
|
| 944 |
+
0.2474687546491623,
|
| 945 |
+
-0.40088728070259094,
|
| 946 |
+
-0.21887987852096558,
|
| 947 |
+
-0.4579368829727173,
|
| 948 |
+
-0.21036852896213531,
|
| 949 |
+
-0.18377023935317993,
|
| 950 |
+
-0.23978865146636963,
|
| 951 |
+
-0.15847837924957275,
|
| 952 |
+
-0.36417555809020996,
|
| 953 |
+
-0.1878042072057724,
|
| 954 |
+
-0.12206757068634033,
|
| 955 |
+
0.4226543605327606,
|
| 956 |
+
-0.00703008845448494,
|
| 957 |
+
0.17988801002502441,
|
| 958 |
+
0.235824853181839,
|
| 959 |
+
0.0072716958820819855,
|
| 960 |
+
-0.022622771561145782,
|
| 961 |
+
0.4673866033554077,
|
| 962 |
+
-0.4320169687271118,
|
| 963 |
+
0.27932173013687134,
|
| 964 |
+
-0.1372895985841751,
|
| 965 |
+
0.13946086168289185,
|
| 966 |
+
-0.011557169258594513,
|
| 967 |
+
-0.11092820018529892,
|
| 968 |
+
-0.0025858357548713684,
|
| 969 |
+
0.06566678732633591,
|
| 970 |
+
-0.25665807723999023,
|
| 971 |
+
-0.2400297075510025,
|
| 972 |
+
0.055859118700027466,
|
| 973 |
+
-0.24934203922748566,
|
| 974 |
+
-0.05649476498365402,
|
| 975 |
+
-0.021823860704898834,
|
| 976 |
+
0.07491856813430786,
|
| 977 |
+
0.028743356466293335,
|
| 978 |
+
0.21002137660980225,
|
| 979 |
+
-0.5215728282928467,
|
| 980 |
+
0.05622958019375801,
|
| 981 |
+
-0.2222532033920288,
|
| 982 |
+
0.1794230341911316,
|
| 983 |
+
0.11855436116456985,
|
| 984 |
+
0.14668777585029602,
|
| 985 |
+
0.45487338304519653,
|
| 986 |
+
-0.1859143078327179,
|
| 987 |
+
-0.05654382333159447,
|
| 988 |
+
-0.16731679439544678,
|
| 989 |
+
-0.1562391221523285,
|
| 990 |
+
0.16424456238746643,
|
| 991 |
+
0.2154158502817154,
|
| 992 |
+
0.3380601406097412,
|
| 993 |
+
0.12264357507228851,
|
| 994 |
+
0.3392817974090576,
|
| 995 |
+
-0.060549046844244,
|
| 996 |
+
-0.14765986800193787,
|
| 997 |
+
0.11267101764678955,
|
| 998 |
+
-0.24056652188301086,
|
| 999 |
+
0.03510596603155136,
|
| 1000 |
+
0.10618807375431061,
|
| 1001 |
+
-0.15641556680202484,
|
| 1002 |
+
-0.24543322622776031,
|
| 1003 |
+
-0.19173413515090942,
|
| 1004 |
+
-0.011205855756998062,
|
| 1005 |
+
0.24790503084659576,
|
| 1006 |
+
0.32398396730422974,
|
| 1007 |
+
0.22276073694229126,
|
| 1008 |
+
0.018482085317373276,
|
| 1009 |
+
-0.03579630330204964,
|
| 1010 |
+
0.05034150183200836,
|
| 1011 |
+
0.29536929726600647,
|
| 1012 |
+
-0.050280749797821045,
|
| 1013 |
+
-0.014656215906143188,
|
| 1014 |
+
-0.3677038550376892,
|
| 1015 |
+
0.41170692443847656,
|
| 1016 |
+
0.15874658524990082,
|
| 1017 |
+
0.34870871901512146,
|
| 1018 |
+
-0.23689004778862,
|
| 1019 |
+
0.2970763146877289,
|
| 1020 |
+
0.0950806587934494,
|
| 1021 |
+
-0.1269141584634781,
|
| 1022 |
+
-0.11931035667657852,
|
| 1023 |
+
0.13633345067501068,
|
| 1024 |
+
0.42843636870384216,
|
| 1025 |
+
0.03449300676584244,
|
| 1026 |
+
0.4283212721347809,
|
| 1027 |
+
0.2762477397918701,
|
| 1028 |
+
0.1679811179637909,
|
| 1029 |
+
0.2898493707180023,
|
| 1030 |
+
-0.04722334071993828,
|
| 1031 |
+
-0.047664619982242584,
|
| 1032 |
+
-0.22933121025562286
|
| 1033 |
+
],
|
| 1034 |
+
"Marry_Female_EN_US": [
|
| 1035 |
+
0.10095467418432236,
|
| 1036 |
+
0.046844299882650375,
|
| 1037 |
+
0.05421638488769531,
|
| 1038 |
+
-0.09417131543159485,
|
| 1039 |
+
-0.18054454028606415,
|
| 1040 |
+
0.0935884565114975,
|
| 1041 |
+
-0.11312611401081085,
|
| 1042 |
+
0.02784895896911621,
|
| 1043 |
+
0.13980317115783691,
|
| 1044 |
+
-0.08165936917066574,
|
| 1045 |
+
0.10532249510288239,
|
| 1046 |
+
0.09783805906772614,
|
| 1047 |
+
0.01645722985267639,
|
| 1048 |
+
0.04216833412647247,
|
| 1049 |
+
-0.1025347113609314,
|
| 1050 |
+
0.09854228794574738,
|
| 1051 |
+
0.22359934449195862,
|
| 1052 |
+
0.08323220163583755,
|
| 1053 |
+
0.003406684845685959,
|
| 1054 |
+
0.30394530296325684,
|
| 1055 |
+
0.3451034426689148,
|
| 1056 |
+
-0.29881906509399414,
|
| 1057 |
+
-0.08311712741851807,
|
| 1058 |
+
-0.109955795109272,
|
| 1059 |
+
0.07522188872098923,
|
| 1060 |
+
-0.38127946853637695,
|
| 1061 |
+
0.029290571808815002,
|
| 1062 |
+
-0.012949233874678612,
|
| 1063 |
+
0.22986799478530884,
|
| 1064 |
+
-0.22929272055625916,
|
| 1065 |
+
-0.11333343386650085,
|
| 1066 |
+
0.1066955029964447,
|
| 1067 |
+
-0.03432668745517731,
|
| 1068 |
+
-0.10237376391887665,
|
| 1069 |
+
-0.11407271027565002,
|
| 1070 |
+
-0.01221979409456253,
|
| 1071 |
+
0.19828736782073975,
|
| 1072 |
+
-0.08432801812887192,
|
| 1073 |
+
-0.07885870337486267,
|
| 1074 |
+
-0.09633795917034149,
|
| 1075 |
+
0.07740725576877594,
|
| 1076 |
+
-0.14024686813354492,
|
| 1077 |
+
0.007659006863832474,
|
| 1078 |
+
-0.061528440564870834,
|
| 1079 |
+
-0.15116117894649506,
|
| 1080 |
+
-0.9346913695335388,
|
| 1081 |
+
-0.19321316480636597,
|
| 1082 |
+
0.09346023201942444,
|
| 1083 |
+
0.008720653131604195,
|
| 1084 |
+
0.00935569778084755,
|
| 1085 |
+
0.059522844851017,
|
| 1086 |
+
-0.0004963874816894531,
|
| 1087 |
+
-0.11127720773220062,
|
| 1088 |
+
-0.015941940248012543,
|
| 1089 |
+
0.11759459227323532,
|
| 1090 |
+
-0.38565748929977417,
|
| 1091 |
+
0.014210086315870285,
|
| 1092 |
+
-0.4402802586555481,
|
| 1093 |
+
-0.03058554232120514,
|
| 1094 |
+
-0.15320685505867004,
|
| 1095 |
+
0.925262451171875,
|
| 1096 |
+
0.05237797647714615,
|
| 1097 |
+
-0.06457516551017761,
|
| 1098 |
+
0.04277027025818825,
|
| 1099 |
+
-0.09071764349937439,
|
| 1100 |
+
-0.023430675268173218,
|
| 1101 |
+
0.018660694360733032,
|
| 1102 |
+
0.28416356444358826,
|
| 1103 |
+
0.15927383303642273,
|
| 1104 |
+
-0.036094918847084045,
|
| 1105 |
+
-0.18289241194725037,
|
| 1106 |
+
-0.16174408793449402,
|
| 1107 |
+
0.1352432817220688,
|
| 1108 |
+
-0.11155793070793152,
|
| 1109 |
+
-0.21458107233047485,
|
| 1110 |
+
-0.007756996899843216,
|
| 1111 |
+
-0.17188167572021484,
|
| 1112 |
+
-0.014599844813346863,
|
| 1113 |
+
0.03282542526721954,
|
| 1114 |
+
0.10045303404331207,
|
| 1115 |
+
0.11301460862159729,
|
| 1116 |
+
-0.04795491322875023,
|
| 1117 |
+
-0.05172593891620636,
|
| 1118 |
+
0.11332973837852478,
|
| 1119 |
+
0.07555423676967621,
|
| 1120 |
+
0.10994540899991989,
|
| 1121 |
+
-0.07060486078262329,
|
| 1122 |
+
0.004575258120894432,
|
| 1123 |
+
0.11668689548969269,
|
| 1124 |
+
0.10401762276887894,
|
| 1125 |
+
-0.6524990797042847,
|
| 1126 |
+
-0.2616415023803711,
|
| 1127 |
+
-0.2577282190322876,
|
| 1128 |
+
0.013369720429182053,
|
| 1129 |
+
0.015914201736450195,
|
| 1130 |
+
-0.1528300940990448,
|
| 1131 |
+
0.06751468777656555,
|
| 1132 |
+
-0.2593517601490021,
|
| 1133 |
+
-0.04114726930856705,
|
| 1134 |
+
-0.12167482078075409,
|
| 1135 |
+
-0.016297057271003723,
|
| 1136 |
+
0.050480689853429794,
|
| 1137 |
+
0.08136023581027985,
|
| 1138 |
+
0.10589707642793655,
|
| 1139 |
+
0.0009140158072113991,
|
| 1140 |
+
0.09637215733528137,
|
| 1141 |
+
0.13627931475639343,
|
| 1142 |
+
-0.08097885549068451,
|
| 1143 |
+
-0.04615870863199234,
|
| 1144 |
+
-0.3712182939052582,
|
| 1145 |
+
0.17477694153785706,
|
| 1146 |
+
-0.03713107109069824,
|
| 1147 |
+
0.3938117027282715,
|
| 1148 |
+
-0.16526120901107788,
|
| 1149 |
+
0.046960875391960144,
|
| 1150 |
+
0.13634932041168213,
|
| 1151 |
+
-0.2535812258720398,
|
| 1152 |
+
-0.004662476480007172,
|
| 1153 |
+
-0.1287195086479187,
|
| 1154 |
+
0.04682536423206329,
|
| 1155 |
+
-0.0553663894534111,
|
| 1156 |
+
-0.007208423689007759,
|
| 1157 |
+
-0.03398251533508301,
|
| 1158 |
+
0.04032691568136215,
|
| 1159 |
+
0.10826413333415985,
|
| 1160 |
+
-0.3297663927078247,
|
| 1161 |
+
0.12369295954704285,
|
| 1162 |
+
-0.22297564148902893,
|
| 1163 |
+
0.016204068437218666,
|
| 1164 |
+
0.22467367351055145,
|
| 1165 |
+
0.06251698732376099,
|
| 1166 |
+
0.25536197423934937,
|
| 1167 |
+
-0.0313156396150589,
|
| 1168 |
+
0.23897168040275574,
|
| 1169 |
+
-0.125069260597229,
|
| 1170 |
+
0.05682749301195145,
|
| 1171 |
+
0.2709246873855591,
|
| 1172 |
+
0.11623440682888031,
|
| 1173 |
+
-0.08916947990655899,
|
| 1174 |
+
-0.0015965849161148071,
|
| 1175 |
+
0.021189596503973007,
|
| 1176 |
+
0.1729092001914978,
|
| 1177 |
+
-0.20169132947921753,
|
| 1178 |
+
-0.010327596217393875,
|
| 1179 |
+
-0.036886122077703476,
|
| 1180 |
+
0.01917070895433426,
|
| 1181 |
+
0.18902111053466797,
|
| 1182 |
+
0.5179728269577026,
|
| 1183 |
+
0.31896597146987915,
|
| 1184 |
+
-0.7427007555961609,
|
| 1185 |
+
-0.4137954115867615,
|
| 1186 |
+
0.06960596889257431,
|
| 1187 |
+
0.06620097160339355,
|
| 1188 |
+
-0.1536514014005661,
|
| 1189 |
+
0.1503698229789734,
|
| 1190 |
+
-0.14556577801704407,
|
| 1191 |
+
0.14588545262813568,
|
| 1192 |
+
-0.18597960472106934,
|
| 1193 |
+
-0.342746764421463,
|
| 1194 |
+
0.05013357102870941,
|
| 1195 |
+
-0.02868656814098358,
|
| 1196 |
+
-0.26822707056999207,
|
| 1197 |
+
-0.3400660753250122,
|
| 1198 |
+
-0.02838587388396263,
|
| 1199 |
+
0.004168674349784851,
|
| 1200 |
+
-0.17664480209350586,
|
| 1201 |
+
0.020639866590499878,
|
| 1202 |
+
0.14682283997535706,
|
| 1203 |
+
-0.2350459098815918,
|
| 1204 |
+
-0.19191408157348633,
|
| 1205 |
+
-0.1417776346206665,
|
| 1206 |
+
-0.15922360122203827,
|
| 1207 |
+
-0.2131480872631073,
|
| 1208 |
+
-0.07812295854091644,
|
| 1209 |
+
-0.22641682624816895,
|
| 1210 |
+
-0.08451198041439056,
|
| 1211 |
+
-0.27697646617889404,
|
| 1212 |
+
-0.16417096555233002,
|
| 1213 |
+
0.17140953242778778,
|
| 1214 |
+
-0.014865081757307053,
|
| 1215 |
+
0.1978265941143036,
|
| 1216 |
+
0.17148619890213013,
|
| 1217 |
+
0.051121003925800323,
|
| 1218 |
+
-0.0503043532371521,
|
| 1219 |
+
0.4206354022026062,
|
| 1220 |
+
-0.6276400089263916,
|
| 1221 |
+
0.19541236758232117,
|
| 1222 |
+
-0.05150662735104561,
|
| 1223 |
+
0.20107480883598328,
|
| 1224 |
+
0.30449116230010986,
|
| 1225 |
+
-0.2169422060251236,
|
| 1226 |
+
0.07420805841684341,
|
| 1227 |
+
0.19388242065906525,
|
| 1228 |
+
-0.09795433282852173,
|
| 1229 |
+
-0.3506614565849304,
|
| 1230 |
+
0.29341161251068115,
|
| 1231 |
+
0.036286331713199615,
|
| 1232 |
+
0.2008945643901825,
|
| 1233 |
+
-0.13470220565795898,
|
| 1234 |
+
-0.3342384099960327,
|
| 1235 |
+
0.049659550189971924,
|
| 1236 |
+
-0.23403503000736237,
|
| 1237 |
+
-0.2438443899154663,
|
| 1238 |
+
-0.0661768913269043,
|
| 1239 |
+
-0.15710312128067017,
|
| 1240 |
+
0.06331466138362885,
|
| 1241 |
+
0.1287412941455841,
|
| 1242 |
+
0.2185135930776596,
|
| 1243 |
+
0.2592580318450928,
|
| 1244 |
+
-0.25041234493255615,
|
| 1245 |
+
0.04421650990843773,
|
| 1246 |
+
0.031913772225379944,
|
| 1247 |
+
0.1675594300031662,
|
| 1248 |
+
0.1488073468208313,
|
| 1249 |
+
-0.14290811121463776,
|
| 1250 |
+
0.3285759687423706,
|
| 1251 |
+
0.22858765721321106,
|
| 1252 |
+
0.3819029927253723,
|
| 1253 |
+
-0.04735409840941429,
|
| 1254 |
+
-0.18470162153244019,
|
| 1255 |
+
0.2156306505203247,
|
| 1256 |
+
-0.262035995721817,
|
| 1257 |
+
0.1106458529829979,
|
| 1258 |
+
-0.33096078038215637,
|
| 1259 |
+
-0.40564554929733276,
|
| 1260 |
+
-0.1130962148308754,
|
| 1261 |
+
-0.4035260081291199,
|
| 1262 |
+
0.009994406253099442,
|
| 1263 |
+
0.19823773205280304,
|
| 1264 |
+
0.09995241463184357,
|
| 1265 |
+
0.10737255960702896,
|
| 1266 |
+
0.16501155495643616,
|
| 1267 |
+
-0.21067723631858826,
|
| 1268 |
+
-0.011145517230033875,
|
| 1269 |
+
0.013040252029895782,
|
| 1270 |
+
-0.3106451630592346,
|
| 1271 |
+
-0.048852063715457916,
|
| 1272 |
+
-0.2291208952665329,
|
| 1273 |
+
0.28707051277160645,
|
| 1274 |
+
0.11026108264923096,
|
| 1275 |
+
0.5360386967658997,
|
| 1276 |
+
-0.1761239767074585,
|
| 1277 |
+
0.07656016945838928,
|
| 1278 |
+
-0.07331065833568573,
|
| 1279 |
+
-0.47247397899627686,
|
| 1280 |
+
-0.21432432532310486,
|
| 1281 |
+
-0.21592572331428528,
|
| 1282 |
+
0.6710861921310425,
|
| 1283 |
+
0.11024707555770874,
|
| 1284 |
+
0.19684234261512756,
|
| 1285 |
+
0.2528229355812073,
|
| 1286 |
+
0.21830880641937256,
|
| 1287 |
+
0.1830369234085083,
|
| 1288 |
+
0.07172520458698273,
|
| 1289 |
+
0.24994215369224548,
|
| 1290 |
+
-0.14005254209041595
|
| 1291 |
+
],
|
| 1292 |
+
"Samuel_Male_EN_US": [
|
| 1293 |
+
-0.12619435787200928,
|
| 1294 |
+
-0.11846257001161575,
|
| 1295 |
+
0.04108911007642746,
|
| 1296 |
+
-0.10919006168842316,
|
| 1297 |
+
-0.18582119047641754,
|
| 1298 |
+
0.3603861629962921,
|
| 1299 |
+
-0.08595605194568634,
|
| 1300 |
+
-0.02000698447227478,
|
| 1301 |
+
0.19657589495182037,
|
| 1302 |
+
0.1481103152036667,
|
| 1303 |
+
0.15841630101203918,
|
| 1304 |
+
0.13725560903549194,
|
| 1305 |
+
-0.023550238460302353,
|
| 1306 |
+
0.11064086854457855,
|
| 1307 |
+
0.0004522055387496948,
|
| 1308 |
+
0.039599962532520294,
|
| 1309 |
+
0.03390733152627945,
|
| 1310 |
+
-0.0010563544929027557,
|
| 1311 |
+
-0.06491883099079132,
|
| 1312 |
+
0.21764393150806427,
|
| 1313 |
+
0.16938678920269012,
|
| 1314 |
+
0.11513420194387436,
|
| 1315 |
+
0.08827359974384308,
|
| 1316 |
+
-0.0926792100071907,
|
| 1317 |
+
0.14648687839508057,
|
| 1318 |
+
-0.21553286910057068,
|
| 1319 |
+
0.023113107308745384,
|
| 1320 |
+
-0.121593177318573,
|
| 1321 |
+
0.11240999400615692,
|
| 1322 |
+
-0.12347493320703506,
|
| 1323 |
+
-0.18039049208164215,
|
| 1324 |
+
0.1588599681854248,
|
| 1325 |
+
-0.17081257700920105,
|
| 1326 |
+
-0.2037820667028427,
|
| 1327 |
+
-0.1563880443572998,
|
| 1328 |
+
-0.0917324647307396,
|
| 1329 |
+
0.03558758646249771,
|
| 1330 |
+
-0.11815845966339111,
|
| 1331 |
+
-0.20688572525978088,
|
| 1332 |
+
-0.0739545151591301,
|
| 1333 |
+
-0.0853046327829361,
|
| 1334 |
+
-0.21343617141246796,
|
| 1335 |
+
0.04951489716768265,
|
| 1336 |
+
-0.44510698318481445,
|
| 1337 |
+
-0.09933532774448395,
|
| 1338 |
+
-0.8458589911460876,
|
| 1339 |
+
-0.16738075017929077,
|
| 1340 |
+
0.16498824954032898,
|
| 1341 |
+
0.01717434823513031,
|
| 1342 |
+
-0.06231179088354111,
|
| 1343 |
+
0.16252321004867554,
|
| 1344 |
+
0.04281383752822876,
|
| 1345 |
+
-0.12609757483005524,
|
| 1346 |
+
0.05567052215337753,
|
| 1347 |
+
-0.027309387922286987,
|
| 1348 |
+
-0.3515397310256958,
|
| 1349 |
+
0.04615774750709534,
|
| 1350 |
+
-0.6998573541641235,
|
| 1351 |
+
0.06659585237503052,
|
| 1352 |
+
-0.13769188523292542,
|
| 1353 |
+
0.6031708717346191,
|
| 1354 |
+
0.011859655380249023,
|
| 1355 |
+
-0.33847033977508545,
|
| 1356 |
+
-0.12553080916404724,
|
| 1357 |
+
-0.18536464869976044,
|
| 1358 |
+
-0.007513280957937241,
|
| 1359 |
+
0.519316554069519,
|
| 1360 |
+
0.23655596375465393,
|
| 1361 |
+
0.24828562140464783,
|
| 1362 |
+
0.13927540183067322,
|
| 1363 |
+
0.14041166007518768,
|
| 1364 |
+
-0.09467436373233795,
|
| 1365 |
+
0.11043473333120346,
|
| 1366 |
+
-0.06588282436132431,
|
| 1367 |
+
-0.11430786550045013,
|
| 1368 |
+
0.026140939444303513,
|
| 1369 |
+
-0.2597509026527405,
|
| 1370 |
+
0.24612551927566528,
|
| 1371 |
+
0.10610029101371765,
|
| 1372 |
+
-0.23051029443740845,
|
| 1373 |
+
-0.2547153830528259,
|
| 1374 |
+
-0.002995643764734268,
|
| 1375 |
+
0.17297737300395966,
|
| 1376 |
+
0.03597598150372505,
|
| 1377 |
+
0.15152215957641602,
|
| 1378 |
+
-0.06193822994828224,
|
| 1379 |
+
-0.07088689506053925,
|
| 1380 |
+
0.03826475143432617,
|
| 1381 |
+
0.08488129824399948,
|
| 1382 |
+
0.2690422534942627,
|
| 1383 |
+
-0.5332049131393433,
|
| 1384 |
+
-0.2220773696899414,
|
| 1385 |
+
-0.5455571413040161,
|
| 1386 |
+
-0.09902779757976532,
|
| 1387 |
+
0.21370843052864075,
|
| 1388 |
+
-0.14772546291351318,
|
| 1389 |
+
0.17388656735420227,
|
| 1390 |
+
-0.12971428036689758,
|
| 1391 |
+
0.019031524658203125,
|
| 1392 |
+
-0.03160820156335831,
|
| 1393 |
+
0.002624817192554474,
|
| 1394 |
+
0.023578234016895294,
|
| 1395 |
+
0.12251117080450058,
|
| 1396 |
+
-0.0782250463962555,
|
| 1397 |
+
0.03130299225449562,
|
| 1398 |
+
0.11962416768074036,
|
| 1399 |
+
0.23477508127689362,
|
| 1400 |
+
0.07299475371837616,
|
| 1401 |
+
-0.0542200468480587,
|
| 1402 |
+
-0.4101184606552124,
|
| 1403 |
+
0.08486519753932953,
|
| 1404 |
+
-0.04950159043073654,
|
| 1405 |
+
0.44324159622192383,
|
| 1406 |
+
-0.20634889602661133,
|
| 1407 |
+
0.059250980615615845,
|
| 1408 |
+
-0.016344502568244934,
|
| 1409 |
+
-0.10346954315900803,
|
| 1410 |
+
0.05175183713436127,
|
| 1411 |
+
0.10785773396492004,
|
| 1412 |
+
-0.13179540634155273,
|
| 1413 |
+
-0.21312423050403595,
|
| 1414 |
+
0.08348912745714188,
|
| 1415 |
+
-0.1100846529006958,
|
| 1416 |
+
-0.0912843644618988,
|
| 1417 |
+
0.16458404064178467,
|
| 1418 |
+
-0.22458869218826294,
|
| 1419 |
+
0.057109322398900986,
|
| 1420 |
+
-0.14130070805549622,
|
| 1421 |
+
-0.27792462706565857,
|
| 1422 |
+
0.2201579511165619,
|
| 1423 |
+
0.14192339777946472,
|
| 1424 |
+
0.370261013507843,
|
| 1425 |
+
-0.1133350059390068,
|
| 1426 |
+
0.5210106372833252,
|
| 1427 |
+
-0.2802170515060425,
|
| 1428 |
+
0.2284509539604187,
|
| 1429 |
+
0.08346766233444214,
|
| 1430 |
+
0.2824746072292328,
|
| 1431 |
+
-0.2277216911315918,
|
| 1432 |
+
0.28492996096611023,
|
| 1433 |
+
0.13533133268356323,
|
| 1434 |
+
0.17641571164131165,
|
| 1435 |
+
0.055212635546922684,
|
| 1436 |
+
-0.1420554518699646,
|
| 1437 |
+
-0.3370305895805359,
|
| 1438 |
+
-0.05939646065235138,
|
| 1439 |
+
-0.012498218566179276,
|
| 1440 |
+
0.3336101472377777,
|
| 1441 |
+
-0.009854704141616821,
|
| 1442 |
+
-0.21461555361747742,
|
| 1443 |
+
-0.06897716224193573,
|
| 1444 |
+
0.42768532037734985,
|
| 1445 |
+
0.2918033301830292,
|
| 1446 |
+
0.17972910404205322,
|
| 1447 |
+
0.08387543261051178,
|
| 1448 |
+
-0.3834030032157898,
|
| 1449 |
+
0.04259374737739563,
|
| 1450 |
+
-0.24948984384536743,
|
| 1451 |
+
-0.4711057245731354,
|
| 1452 |
+
0.23269453644752502,
|
| 1453 |
+
-0.11432869732379913,
|
| 1454 |
+
-0.3319881558418274,
|
| 1455 |
+
-0.5810990333557129,
|
| 1456 |
+
-0.16500617563724518,
|
| 1457 |
+
-0.513327419757843,
|
| 1458 |
+
-0.22280623018741608,
|
| 1459 |
+
-0.06446528434753418,
|
| 1460 |
+
0.053828924894332886,
|
| 1461 |
+
-0.3869067430496216,
|
| 1462 |
+
-0.18398475646972656,
|
| 1463 |
+
-0.39183861017227173,
|
| 1464 |
+
-0.1645130217075348,
|
| 1465 |
+
-0.10562220215797424,
|
| 1466 |
+
0.09369634836912155,
|
| 1467 |
+
-0.10099713504314423,
|
| 1468 |
+
-0.2670536935329437,
|
| 1469 |
+
-0.3405263423919678,
|
| 1470 |
+
-0.4056051969528198,
|
| 1471 |
+
0.4251013398170471,
|
| 1472 |
+
-0.06249173730611801,
|
| 1473 |
+
0.045685671269893646,
|
| 1474 |
+
0.4523245692253113,
|
| 1475 |
+
0.03759829327464104,
|
| 1476 |
+
-0.17996317148208618,
|
| 1477 |
+
0.4454271197319031,
|
| 1478 |
+
-0.9131506681442261,
|
| 1479 |
+
0.12587328255176544,
|
| 1480 |
+
0.03575079143047333,
|
| 1481 |
+
0.1569804549217224,
|
| 1482 |
+
-0.005473516881465912,
|
| 1483 |
+
-0.20985543727874756,
|
| 1484 |
+
0.02623889595270157,
|
| 1485 |
+
0.27007320523262024,
|
| 1486 |
+
-0.10873401910066605,
|
| 1487 |
+
0.05130569636821747,
|
| 1488 |
+
-0.0011592544615268707,
|
| 1489 |
+
-0.0032558459788560867,
|
| 1490 |
+
0.3350878059864044,
|
| 1491 |
+
0.14362351596355438,
|
| 1492 |
+
-0.046291008591651917,
|
| 1493 |
+
0.1339847445487976,
|
| 1494 |
+
0.054939839988946915,
|
| 1495 |
+
-0.20351824164390564,
|
| 1496 |
+
0.13673129677772522,
|
| 1497 |
+
-0.5390269160270691,
|
| 1498 |
+
0.20881281793117523,
|
| 1499 |
+
-0.12060403823852539,
|
| 1500 |
+
0.08859001100063324,
|
| 1501 |
+
-0.025972001254558563,
|
| 1502 |
+
-0.4430112838745117,
|
| 1503 |
+
-0.004151973873376846,
|
| 1504 |
+
0.18464192748069763,
|
| 1505 |
+
0.3526911437511444,
|
| 1506 |
+
-0.09955041110515594,
|
| 1507 |
+
0.10740470886230469,
|
| 1508 |
+
0.35204750299453735,
|
| 1509 |
+
0.013931604102253914,
|
| 1510 |
+
0.5496764183044434,
|
| 1511 |
+
0.004158753901720047,
|
| 1512 |
+
0.2092914879322052,
|
| 1513 |
+
0.09148923307657242,
|
| 1514 |
+
-0.2677595019340515,
|
| 1515 |
+
0.044244516640901566,
|
| 1516 |
+
0.25607749819755554,
|
| 1517 |
+
-0.3345734179019928,
|
| 1518 |
+
-0.251026451587677,
|
| 1519 |
+
-0.5243716239929199,
|
| 1520 |
+
-0.07589935511350632,
|
| 1521 |
+
0.2236466407775879,
|
| 1522 |
+
0.692629337310791,
|
| 1523 |
+
0.30974945425987244,
|
| 1524 |
+
-0.05844153091311455,
|
| 1525 |
+
0.03120841458439827,
|
| 1526 |
+
0.06444196403026581,
|
| 1527 |
+
-0.04019276052713394,
|
| 1528 |
+
0.20844346284866333,
|
| 1529 |
+
0.02490842342376709,
|
| 1530 |
+
-0.4918057918548584,
|
| 1531 |
+
0.17454466223716736,
|
| 1532 |
+
0.008414536714553833,
|
| 1533 |
+
0.3902796804904938,
|
| 1534 |
+
-0.358223557472229,
|
| 1535 |
+
0.03861651197075844,
|
| 1536 |
+
0.18186673521995544,
|
| 1537 |
+
-0.527253270149231,
|
| 1538 |
+
-0.13051800429821014,
|
| 1539 |
+
0.05706249922513962,
|
| 1540 |
+
0.6442924737930298,
|
| 1541 |
+
0.1802804172039032,
|
| 1542 |
+
0.41333693265914917,
|
| 1543 |
+
0.23335036635398865,
|
| 1544 |
+
0.1602075695991516,
|
| 1545 |
+
0.05822325870394707,
|
| 1546 |
+
0.07076271623373032,
|
| 1547 |
+
0.1175406351685524,
|
| 1548 |
+
-0.11005706340074539
|
| 1549 |
+
],
|
| 1550 |
+
"Peter_Male_EN_US": [
|
| 1551 |
+
-0.02671806514263153,
|
| 1552 |
+
-0.1403174251317978,
|
| 1553 |
+
0.05001065880060196,
|
| 1554 |
+
-0.1078786849975586,
|
| 1555 |
+
-0.11178930848836899,
|
| 1556 |
+
0.35923928022384644,
|
| 1557 |
+
-0.10216598212718964,
|
| 1558 |
+
-0.0744534507393837,
|
| 1559 |
+
0.1513819694519043,
|
| 1560 |
+
0.033666566014289856,
|
| 1561 |
+
0.18034929037094116,
|
| 1562 |
+
0.17279928922653198,
|
| 1563 |
+
0.025053754448890686,
|
| 1564 |
+
-0.041277479380369186,
|
| 1565 |
+
-0.017297936603426933,
|
| 1566 |
+
0.089497409760952,
|
| 1567 |
+
0.09309914708137512,
|
| 1568 |
+
-0.013885125517845154,
|
| 1569 |
+
0.006094053387641907,
|
| 1570 |
+
0.17924150824546814,
|
| 1571 |
+
0.24564367532730103,
|
| 1572 |
+
0.0279664546251297,
|
| 1573 |
+
-0.0281650610268116,
|
| 1574 |
+
-0.21447591483592987,
|
| 1575 |
+
0.05961482226848602,
|
| 1576 |
+
-0.24900272488594055,
|
| 1577 |
+
0.08882076293230057,
|
| 1578 |
+
-0.08165736496448517,
|
| 1579 |
+
0.10724847763776779,
|
| 1580 |
+
-0.12638989090919495,
|
| 1581 |
+
-0.17386965453624725,
|
| 1582 |
+
0.13405269384384155,
|
| 1583 |
+
-0.34381765127182007,
|
| 1584 |
+
-0.14751896262168884,
|
| 1585 |
+
-0.22588366270065308,
|
| 1586 |
+
-0.1478700041770935,
|
| 1587 |
+
0.17554007470607758,
|
| 1588 |
+
-0.06141895055770874,
|
| 1589 |
+
-0.08225107192993164,
|
| 1590 |
+
-0.11144131422042847,
|
| 1591 |
+
-0.06510056555271149,
|
| 1592 |
+
-0.28190499544143677,
|
| 1593 |
+
0.038482390344142914,
|
| 1594 |
+
-0.27125123143196106,
|
| 1595 |
+
-0.18446698784828186,
|
| 1596 |
+
-0.9286922812461853,
|
| 1597 |
+
-0.22221821546554565,
|
| 1598 |
+
0.1890208125114441,
|
| 1599 |
+
-0.019690819084644318,
|
| 1600 |
+
-0.0410115122795105,
|
| 1601 |
+
0.020294375717639923,
|
| 1602 |
+
0.027921512722969055,
|
| 1603 |
+
-0.1279190480709076,
|
| 1604 |
+
0.147661954164505,
|
| 1605 |
+
-0.06851989030838013,
|
| 1606 |
+
-0.3743244409561157,
|
| 1607 |
+
0.16605032980442047,
|
| 1608 |
+
-0.6898317337036133,
|
| 1609 |
+
0.1322338581085205,
|
| 1610 |
+
-0.24458415806293488,
|
| 1611 |
+
0.8091621398925781,
|
| 1612 |
+
-0.0020183511078357697,
|
| 1613 |
+
-0.2860056161880493,
|
| 1614 |
+
-0.101268470287323,
|
| 1615 |
+
-0.12195206433534622,
|
| 1616 |
+
-0.0030680038034915924,
|
| 1617 |
+
0.35305753350257874,
|
| 1618 |
+
0.18254509568214417,
|
| 1619 |
+
0.15022733807563782,
|
| 1620 |
+
0.05763908848166466,
|
| 1621 |
+
0.05388329550623894,
|
| 1622 |
+
-0.1870671808719635,
|
| 1623 |
+
0.16868555545806885,
|
| 1624 |
+
-0.005561813712120056,
|
| 1625 |
+
-0.038571834564208984,
|
| 1626 |
+
0.04676483944058418,
|
| 1627 |
+
-0.30886393785476685,
|
| 1628 |
+
0.167225182056427,
|
| 1629 |
+
0.09490098804235458,
|
| 1630 |
+
-0.1838131844997406,
|
| 1631 |
+
-0.16072562336921692,
|
| 1632 |
+
-0.07846863567829132,
|
| 1633 |
+
-0.02979177236557007,
|
| 1634 |
+
0.11231174319982529,
|
| 1635 |
+
0.12191181629896164,
|
| 1636 |
+
0.0011293292045593262,
|
| 1637 |
+
0.00034183263778686523,
|
| 1638 |
+
0.03643456846475601,
|
| 1639 |
+
-0.004104208201169968,
|
| 1640 |
+
0.0210350900888443,
|
| 1641 |
+
-0.5258797407150269,
|
| 1642 |
+
-0.28434744477272034,
|
| 1643 |
+
-0.3846287727355957,
|
| 1644 |
+
0.028454381972551346,
|
| 1645 |
+
0.268708735704422,
|
| 1646 |
+
-0.1812271922826767,
|
| 1647 |
+
0.14686831831932068,
|
| 1648 |
+
-0.19878965616226196,
|
| 1649 |
+
0.014050750061869621,
|
| 1650 |
+
-0.08926080912351608,
|
| 1651 |
+
0.005555577576160431,
|
| 1652 |
+
0.031308822333812714,
|
| 1653 |
+
0.06296883523464203,
|
| 1654 |
+
-0.030255869030952454,
|
| 1655 |
+
0.014618240296840668,
|
| 1656 |
+
0.15111848711967468,
|
| 1657 |
+
0.08761651813983917,
|
| 1658 |
+
0.017063427716493607,
|
| 1659 |
+
-0.10042140632867813,
|
| 1660 |
+
-0.5389280915260315,
|
| 1661 |
+
0.01812286674976349,
|
| 1662 |
+
-0.05892270803451538,
|
| 1663 |
+
0.6147855520248413,
|
| 1664 |
+
-0.2805640995502472,
|
| 1665 |
+
0.04736167937517166,
|
| 1666 |
+
0.08966498076915741,
|
| 1667 |
+
-0.21231184899806976,
|
| 1668 |
+
0.029807910323143005,
|
| 1669 |
+
0.09918596595525742,
|
| 1670 |
+
-0.030193090438842773,
|
| 1671 |
+
-0.18508130311965942,
|
| 1672 |
+
0.03303778916597366,
|
| 1673 |
+
-0.04084295034408569,
|
| 1674 |
+
-0.09405478835105896,
|
| 1675 |
+
0.08350837975740433,
|
| 1676 |
+
-0.2915036678314209,
|
| 1677 |
+
-0.029322421178221703,
|
| 1678 |
+
-0.2637880742549896,
|
| 1679 |
+
-0.30284351110458374,
|
| 1680 |
+
0.25083762407302856,
|
| 1681 |
+
-0.05462878942489624,
|
| 1682 |
+
0.437039852142334,
|
| 1683 |
+
0.19965985417366028,
|
| 1684 |
+
0.10523413866758347,
|
| 1685 |
+
-0.10033008456230164,
|
| 1686 |
+
0.08067487925291061,
|
| 1687 |
+
0.4820234775543213,
|
| 1688 |
+
0.572240948677063,
|
| 1689 |
+
0.013404153287410736,
|
| 1690 |
+
-0.18431192636489868,
|
| 1691 |
+
0.049913421273231506,
|
| 1692 |
+
0.14440348744392395,
|
| 1693 |
+
0.010796692222356796,
|
| 1694 |
+
-0.04425942152738571,
|
| 1695 |
+
-0.034714244306087494,
|
| 1696 |
+
0.09812092781066895,
|
| 1697 |
+
0.22658464312553406,
|
| 1698 |
+
0.5398628115653992,
|
| 1699 |
+
0.14926102757453918,
|
| 1700 |
+
-0.09294281154870987,
|
| 1701 |
+
-0.29379820823669434,
|
| 1702 |
+
0.2622401714324951,
|
| 1703 |
+
-0.09194155037403107,
|
| 1704 |
+
-0.007996812462806702,
|
| 1705 |
+
0.16660672426223755,
|
| 1706 |
+
-0.4457249045372009,
|
| 1707 |
+
-0.1516806185245514,
|
| 1708 |
+
-0.270463764667511,
|
| 1709 |
+
-0.39716261625289917,
|
| 1710 |
+
-0.1890673041343689,
|
| 1711 |
+
-0.21207217872142792,
|
| 1712 |
+
-0.24664843082427979,
|
| 1713 |
+
-0.284817099571228,
|
| 1714 |
+
-0.16662172973155975,
|
| 1715 |
+
-0.1995084583759308,
|
| 1716 |
+
0.07401363551616669,
|
| 1717 |
+
0.006268583238124847,
|
| 1718 |
+
-0.1385871022939682,
|
| 1719 |
+
-0.24141649901866913,
|
| 1720 |
+
-0.1358436644077301,
|
| 1721 |
+
-0.268524706363678,
|
| 1722 |
+
-0.13288292288780212,
|
| 1723 |
+
-0.09328028559684753,
|
| 1724 |
+
-0.037290073931217194,
|
| 1725 |
+
-0.05488095059990883,
|
| 1726 |
+
-0.03209332749247551,
|
| 1727 |
+
-0.7609561085700989,
|
| 1728 |
+
-0.2482100874185562,
|
| 1729 |
+
0.23829908668994904,
|
| 1730 |
+
-0.03605654835700989,
|
| 1731 |
+
0.26974982023239136,
|
| 1732 |
+
0.4465060234069824,
|
| 1733 |
+
-0.1619127094745636,
|
| 1734 |
+
-0.08157207816839218,
|
| 1735 |
+
0.6551785469055176,
|
| 1736 |
+
-0.6885366439819336,
|
| 1737 |
+
0.26440972089767456,
|
| 1738 |
+
-0.21962705254554749,
|
| 1739 |
+
0.009923815727233887,
|
| 1740 |
+
-0.02745674178004265,
|
| 1741 |
+
-0.25602495670318604,
|
| 1742 |
+
0.16939014196395874,
|
| 1743 |
+
0.22960194945335388,
|
| 1744 |
+
-0.113400399684906,
|
| 1745 |
+
0.1810494065284729,
|
| 1746 |
+
0.09377805143594742,
|
| 1747 |
+
0.24526025354862213,
|
| 1748 |
+
0.5957650542259216,
|
| 1749 |
+
-0.1350148618221283,
|
| 1750 |
+
-0.17307522892951965,
|
| 1751 |
+
0.4434152841567993,
|
| 1752 |
+
-0.06832988560199738,
|
| 1753 |
+
-0.07215136289596558,
|
| 1754 |
+
-0.18067269027233124,
|
| 1755 |
+
-0.2654397487640381,
|
| 1756 |
+
0.22328779101371765,
|
| 1757 |
+
-0.1092233955860138,
|
| 1758 |
+
0.001668304204940796,
|
| 1759 |
+
0.05992841348052025,
|
| 1760 |
+
-0.2866281270980835,
|
| 1761 |
+
-0.0010518133640289307,
|
| 1762 |
+
0.3629896640777588,
|
| 1763 |
+
0.026638980954885483,
|
| 1764 |
+
-0.3393930196762085,
|
| 1765 |
+
0.162781223654747,
|
| 1766 |
+
-0.21661463379859924,
|
| 1767 |
+
-0.12741011381149292,
|
| 1768 |
+
0.21406680345535278,
|
| 1769 |
+
-0.16890040040016174,
|
| 1770 |
+
0.014303475618362427,
|
| 1771 |
+
0.1664152592420578,
|
| 1772 |
+
-0.1924239546060562,
|
| 1773 |
+
0.42883533239364624,
|
| 1774 |
+
0.04888498783111572,
|
| 1775 |
+
-0.5888325572013855,
|
| 1776 |
+
-0.21445952355861664,
|
| 1777 |
+
-0.2693358361721039,
|
| 1778 |
+
-0.2160845249891281,
|
| 1779 |
+
-0.18929903209209442,
|
| 1780 |
+
0.29195863008499146,
|
| 1781 |
+
0.08952829986810684,
|
| 1782 |
+
-0.1636795699596405,
|
| 1783 |
+
0.24474045634269714,
|
| 1784 |
+
-0.28684142231941223,
|
| 1785 |
+
-0.17337173223495483,
|
| 1786 |
+
0.004411667585372925,
|
| 1787 |
+
0.01754007488489151,
|
| 1788 |
+
-0.5038971304893494,
|
| 1789 |
+
0.2621816396713257,
|
| 1790 |
+
-0.01969096064567566,
|
| 1791 |
+
0.31702128052711487,
|
| 1792 |
+
-0.40279054641723633,
|
| 1793 |
+
-0.11601737886667252,
|
| 1794 |
+
-0.014087185263633728,
|
| 1795 |
+
-0.7800108194351196,
|
| 1796 |
+
-0.11777613312005997,
|
| 1797 |
+
-0.08311420679092407,
|
| 1798 |
+
0.38773632049560547,
|
| 1799 |
+
0.14981284737586975,
|
| 1800 |
+
0.2543047368526459,
|
| 1801 |
+
0.44576597213745117,
|
| 1802 |
+
0.14574092626571655,
|
| 1803 |
+
0.17641997337341309,
|
| 1804 |
+
0.1667698472738266,
|
| 1805 |
+
0.04656987264752388,
|
| 1806 |
+
-0.36774906516075134
|
| 1807 |
+
],
|
| 1808 |
+
"Jack_Male_EN_US": [
|
| 1809 |
+
-0.04046084274887107,
|
| 1810 |
+
-0.15095742102712392,
|
| 1811 |
+
-0.006839682068675756,
|
| 1812 |
+
-0.05994556490331888,
|
| 1813 |
+
0.006684107612818471,
|
| 1814 |
+
0.21780437231063843,
|
| 1815 |
+
-0.05186830650782213,
|
| 1816 |
+
0.045858974114526066,
|
| 1817 |
+
0.18578437742544338,
|
| 1818 |
+
0.23851692618336529,
|
| 1819 |
+
0.25875567211769523,
|
| 1820 |
+
0.01337982285767794,
|
| 1821 |
+
0.0575837992830202,
|
| 1822 |
+
0.010126538737677035,
|
| 1823 |
+
-0.11069863769225777,
|
| 1824 |
+
0.10501059270463883,
|
| 1825 |
+
-0.038009885698556914,
|
| 1826 |
+
0.09259203597903251,
|
| 1827 |
+
0.006737061683088536,
|
| 1828 |
+
0.033672554418444633,
|
| 1829 |
+
0.12799083036952652,
|
| 1830 |
+
-0.021536123100668186,
|
| 1831 |
+
0.03342777863144876,
|
| 1832 |
+
-0.17997418325394393,
|
| 1833 |
+
0.017667141649872063,
|
| 1834 |
+
-0.0656133412849158,
|
| 1835 |
+
0.07788868229836225,
|
| 1836 |
+
-0.20092849116772413,
|
| 1837 |
+
-0.013813202735036612,
|
| 1838 |
+
-0.15624882429838183,
|
| 1839 |
+
-0.02039524572901428,
|
| 1840 |
+
0.06695615525532048,
|
| 1841 |
+
-0.03102828292176127,
|
| 1842 |
+
-0.003229711949825284,
|
| 1843 |
+
-0.16995424311608076,
|
| 1844 |
+
0.021083407942205673,
|
| 1845 |
+
0.0890236813283991,
|
| 1846 |
+
-0.00943179002497345,
|
| 1847 |
+
-0.016149783227592696,
|
| 1848 |
+
0.09971937909722328,
|
| 1849 |
+
-0.09221453487407416,
|
| 1850 |
+
-0.15833347449079158,
|
| 1851 |
+
-0.16861484068795107,
|
| 1852 |
+
-0.19585764929652213,
|
| 1853 |
+
0.019861079845577473,
|
| 1854 |
+
-0.5355675680562854,
|
| 1855 |
+
-0.03166075125336647,
|
| 1856 |
+
0.27058335933834315,
|
| 1857 |
+
-0.015265139937400807,
|
| 1858 |
+
-0.014771698974072935,
|
| 1859 |
+
0.0019185470417142012,
|
| 1860 |
+
0.05587198091670871,
|
| 1861 |
+
-0.09576068501919509,
|
| 1862 |
+
-0.021184422494843605,
|
| 1863 |
+
-0.17917617466300725,
|
| 1864 |
+
-0.17127673390787096,
|
| 1865 |
+
0.20629609785974026,
|
| 1866 |
+
-0.18852811860851945,
|
| 1867 |
+
0.012637676135636867,
|
| 1868 |
+
-0.05553631568327547,
|
| 1869 |
+
0.446656902320683,
|
| 1870 |
+
-0.08865800648927688,
|
| 1871 |
+
-0.0358334188349545,
|
| 1872 |
+
-0.010281644179485738,
|
| 1873 |
+
-0.07811169922351838,
|
| 1874 |
+
0.109587676031515,
|
| 1875 |
+
0.2809453630819917,
|
| 1876 |
+
0.11856715977191926,
|
| 1877 |
+
0.05583547845017166,
|
| 1878 |
+
-0.12626958163455126,
|
| 1879 |
+
0.1281449523754418,
|
| 1880 |
+
-0.06413849201053382,
|
| 1881 |
+
0.15792119931429624,
|
| 1882 |
+
0.03743950969073922,
|
| 1883 |
+
0.039248654276161685,
|
| 1884 |
+
0.025773864006623626,
|
| 1885 |
+
-0.11292729973793031,
|
| 1886 |
+
0.20113790165632964,
|
| 1887 |
+
-0.16639176942408085,
|
| 1888 |
+
-0.08434787057340147,
|
| 1889 |
+
-0.09793199738487603,
|
| 1890 |
+
0.006178376311436293,
|
| 1891 |
+
-0.013375372998416409,
|
| 1892 |
+
0.0542846780270338,
|
| 1893 |
+
0.10225461367517709,
|
| 1894 |
+
0.039542005566181614,
|
| 1895 |
+
0.039125220011919745,
|
| 1896 |
+
-0.026181252760579806,
|
| 1897 |
+
0.033635431178845474,
|
| 1898 |
+
0.0862573640421033,
|
| 1899 |
+
-0.16706872563809155,
|
| 1900 |
+
-0.17828714922070504,
|
| 1901 |
+
-0.12449762681499123,
|
| 1902 |
+
-0.03108778726309538,
|
| 1903 |
+
0.34800285045057533,
|
| 1904 |
+
-0.09101906679570675,
|
| 1905 |
+
0.10009890785440802,
|
| 1906 |
+
-0.09514827439561487,
|
| 1907 |
+
-0.034053249843418586,
|
| 1908 |
+
-0.1105702156201005,
|
| 1909 |
+
0.044860146183054894,
|
| 1910 |
+
0.1358713038265705,
|
| 1911 |
+
0.08085576379671693,
|
| 1912 |
+
-0.08721686480566859,
|
| 1913 |
+
0.0573709562420845,
|
| 1914 |
+
0.11415926301851868,
|
| 1915 |
+
0.245212434977293,
|
| 1916 |
+
0.10061340439133346,
|
| 1917 |
+
-0.14243060679873454,
|
| 1918 |
+
-0.29007883500307796,
|
| 1919 |
+
0.2037310192361474,
|
| 1920 |
+
-0.07627206621691585,
|
| 1921 |
+
0.39687543553300203,
|
| 1922 |
+
-0.05620414759032429,
|
| 1923 |
+
0.09882601262070238,
|
| 1924 |
+
-0.0677183491177857,
|
| 1925 |
+
-0.006265022698789827,
|
| 1926 |
+
0.023330946313217284,
|
| 1927 |
+
0.165302169136703,
|
| 1928 |
+
0.02257582815364003,
|
| 1929 |
+
-0.12311515075853095,
|
| 1930 |
+
-0.1469769559800625,
|
| 1931 |
+
0.012314948812127115,
|
| 1932 |
+
-0.021668313816189756,
|
| 1933 |
+
0.34593041818588977,
|
| 1934 |
+
-0.04288801420480014,
|
| 1935 |
+
-0.16514885276556016,
|
| 1936 |
+
-0.18242249870672822,
|
| 1937 |
+
-0.0026492349803447918,
|
| 1938 |
+
-0.07602755706757307,
|
| 1939 |
+
0.3050278574228287,
|
| 1940 |
+
0.05592154124751687,
|
| 1941 |
+
0.23462600968778133,
|
| 1942 |
+
0.04983584135770798,
|
| 1943 |
+
-0.278392353374511,
|
| 1944 |
+
0.22432250184938313,
|
| 1945 |
+
0.2686607390176505,
|
| 1946 |
+
0.09875037595629692,
|
| 1947 |
+
0.1183511849027127,
|
| 1948 |
+
-0.054236005432903786,
|
| 1949 |
+
0.08722816870140376,
|
| 1950 |
+
0.03687728531658649,
|
| 1951 |
+
0.02554770354181528,
|
| 1952 |
+
0.12954192645847795,
|
| 1953 |
+
-0.17979382164776325,
|
| 1954 |
+
0.3348038989119232,
|
| 1955 |
+
0.4423634188249707,
|
| 1956 |
+
0.4926473870873451,
|
| 1957 |
+
0.20223852992057798,
|
| 1958 |
+
0.025749067217111565,
|
| 1959 |
+
0.17501560486853124,
|
| 1960 |
+
0.38072580406442286,
|
| 1961 |
+
-0.2901147920638323,
|
| 1962 |
+
0.20979762431234122,
|
| 1963 |
+
0.2653069855645299,
|
| 1964 |
+
-0.3772167260758579,
|
| 1965 |
+
-0.09222150184214115,
|
| 1966 |
+
-0.39089010236784816,
|
| 1967 |
+
0.20441576987504956,
|
| 1968 |
+
-0.23905933797359466,
|
| 1969 |
+
-0.10717785591259599,
|
| 1970 |
+
-0.16813391000032427,
|
| 1971 |
+
-0.3918773714452982,
|
| 1972 |
+
0.22002617083489895,
|
| 1973 |
+
-0.07564694900065663,
|
| 1974 |
+
0.07937551865907153,
|
| 1975 |
+
0.08824989823624493,
|
| 1976 |
+
0.29479082534089684,
|
| 1977 |
+
-0.36032405607402324,
|
| 1978 |
+
-0.2603407606482506,
|
| 1979 |
+
-0.6042231546249242,
|
| 1980 |
+
-0.28955514542758465,
|
| 1981 |
+
-0.03436102028936147,
|
| 1982 |
+
-0.04779914440587163,
|
| 1983 |
+
-0.009762127837166193,
|
| 1984 |
+
-0.10187441464513541,
|
| 1985 |
+
-0.7215779416263104,
|
| 1986 |
+
-0.27634545378386977,
|
| 1987 |
+
0.17830019462853672,
|
| 1988 |
+
-0.09875116832554341,
|
| 1989 |
+
0.09090687595307827,
|
| 1990 |
+
0.13431233698502182,
|
| 1991 |
+
-0.2642242418602109,
|
| 1992 |
+
-0.04540154328569772,
|
| 1993 |
+
0.4095670249313116,
|
| 1994 |
+
-0.35262783467769626,
|
| 1995 |
+
0.16893002432771026,
|
| 1996 |
+
0.08783781807869673,
|
| 1997 |
+
0.25395081788301466,
|
| 1998 |
+
-0.28145490009337665,
|
| 1999 |
+
-0.326755971997045,
|
| 2000 |
+
0.15969305289909244,
|
| 2001 |
+
0.028953553736209857,
|
| 2002 |
+
-0.21651662606745958,
|
| 2003 |
+
0.4146030018106103,
|
| 2004 |
+
-0.03423323482275009,
|
| 2005 |
+
-0.16287488527595997,
|
| 2006 |
+
0.39450788777321577,
|
| 2007 |
+
0.12951190834864976,
|
| 2008 |
+
0.1056388876902929,
|
| 2009 |
+
0.08080296535044909,
|
| 2010 |
+
0.3574946537613869,
|
| 2011 |
+
0.019849372282624234,
|
| 2012 |
+
0.040822872455464676,
|
| 2013 |
+
-0.2921319276094437,
|
| 2014 |
+
0.2146362524013966,
|
| 2015 |
+
-0.134716684371233,
|
| 2016 |
+
0.07487714374437929,
|
| 2017 |
+
0.009296230599284167,
|
| 2018 |
+
-0.04380686506628992,
|
| 2019 |
+
-0.19373088590800763,
|
| 2020 |
+
0.2639585494995117,
|
| 2021 |
+
0.18104018196463584,
|
| 2022 |
+
-0.16598513473290952,
|
| 2023 |
+
0.04853666033595801,
|
| 2024 |
+
-0.14947416950017212,
|
| 2025 |
+
-0.21553540676832197,
|
| 2026 |
+
0.08810192588716745,
|
| 2027 |
+
-0.2630701248068362,
|
| 2028 |
+
0.20122109837830066,
|
| 2029 |
+
0.12282457035034895,
|
| 2030 |
+
-0.37653126297518613,
|
| 2031 |
+
0.23556544631719586,
|
| 2032 |
+
0.10754718948155645,
|
| 2033 |
+
-0.19623969851527362,
|
| 2034 |
+
-0.37442944198846817,
|
| 2035 |
+
-0.24549162713810802,
|
| 2036 |
+
-0.12071249298751355,
|
| 2037 |
+
0.07532338486053047,
|
| 2038 |
+
0.4720609566196799,
|
| 2039 |
+
0.33625265657901765,
|
| 2040 |
+
0.09440774954855442,
|
| 2041 |
+
0.08528476338833571,
|
| 2042 |
+
-0.1694023549556732,
|
| 2043 |
+
-0.07463834583759302,
|
| 2044 |
+
0.11786841377615931,
|
| 2045 |
+
-0.09039792915573344,
|
| 2046 |
+
-0.5210130661725998,
|
| 2047 |
+
0.24727064482867717,
|
| 2048 |
+
-0.16189097724854945,
|
| 2049 |
+
0.4837450442370027,
|
| 2050 |
+
-0.1521998167037964,
|
| 2051 |
+
-0.06750598764047028,
|
| 2052 |
+
-0.004553849250078207,
|
| 2053 |
+
-0.22957104928791522,
|
| 2054 |
+
-0.017605035123415283,
|
| 2055 |
+
0.2760094117373228,
|
| 2056 |
+
0.05957211840432136,
|
| 2057 |
+
-0.0009269976260838989,
|
| 2058 |
+
0.1953226298559457,
|
| 2059 |
+
0.223721924982965,
|
| 2060 |
+
0.051529260072857144,
|
| 2061 |
+
0.07620697033125907,
|
| 2062 |
+
0.3487104419618845,
|
| 2063 |
+
-0.29083244649809786,
|
| 2064 |
+
-0.2311014744453132
|
| 2065 |
+
],
|
| 2066 |
+
"Henry_Male_EN_US": [
|
| 2067 |
+
0.03231465221033432,
|
| 2068 |
+
-0.17197506912052632,
|
| 2069 |
+
-0.15499479230493307,
|
| 2070 |
+
-0.1250289712101221,
|
| 2071 |
+
-0.16165112853050234,
|
| 2072 |
+
0.11880796402692793,
|
| 2073 |
+
-0.026341438165400174,
|
| 2074 |
+
0.02843754307832569,
|
| 2075 |
+
0.15634612458525227,
|
| 2076 |
+
0.10595979747595265,
|
| 2077 |
+
0.039114803401753315,
|
| 2078 |
+
0.010465619154274462,
|
| 2079 |
+
0.05449719361495225,
|
| 2080 |
+
0.16031873143510894,
|
| 2081 |
+
-0.1695658477488905,
|
| 2082 |
+
-0.0018680405337363482,
|
| 2083 |
+
-0.08171003330498933,
|
| 2084 |
+
0.023001285642385474,
|
| 2085 |
+
-0.1536627289839089,
|
| 2086 |
+
0.011052230559289444,
|
| 2087 |
+
0.11655736799002625,
|
| 2088 |
+
-0.15112714925780893,
|
| 2089 |
+
-0.010360681824386115,
|
| 2090 |
+
-0.11909673623740674,
|
| 2091 |
+
-0.21134809795767068,
|
| 2092 |
+
0.20729044654872264,
|
| 2093 |
+
0.19189890939742327,
|
| 2094 |
+
0.034412209317088105,
|
| 2095 |
+
0.07652324698865413,
|
| 2096 |
+
-0.09826281983405351,
|
| 2097 |
+
-0.03507392066530883,
|
| 2098 |
+
0.05623610065958929,
|
| 2099 |
+
0.023545358702540417,
|
| 2100 |
+
0.1944381920620799,
|
| 2101 |
+
-0.18579835649579762,
|
| 2102 |
+
0.13530588764697313,
|
| 2103 |
+
0.047002217611589,
|
| 2104 |
+
-0.03857994754798711,
|
| 2105 |
+
0.21279680896550413,
|
| 2106 |
+
-0.0011355822905898053,
|
| 2107 |
+
-0.11157526604365556,
|
| 2108 |
+
-0.2419595753774047,
|
| 2109 |
+
-0.25546876950538716,
|
| 2110 |
+
0.03623581342399121,
|
| 2111 |
+
-0.2026651309803128,
|
| 2112 |
+
-0.5091725187376142,
|
| 2113 |
+
0.11082670092582703,
|
| 2114 |
+
0.1577077390626073,
|
| 2115 |
+
-0.3597980797290802,
|
| 2116 |
+
-0.011146663455292584,
|
| 2117 |
+
0.08107478127349169,
|
| 2118 |
+
0.22176175282802432,
|
| 2119 |
+
-0.1103294763015583,
|
| 2120 |
+
-0.15145504621323197,
|
| 2121 |
+
-0.2445066723972559,
|
| 2122 |
+
-0.1946099933935329,
|
| 2123 |
+
0.256573729775846,
|
| 2124 |
+
0.079415076575242,
|
| 2125 |
+
0.07555773077765479,
|
| 2126 |
+
-0.1760544968303293,
|
| 2127 |
+
0.45968954982236027,
|
| 2128 |
+
-0.2993650084361434,
|
| 2129 |
+
0.23150971811264753,
|
| 2130 |
+
-0.007668233546428378,
|
| 2131 |
+
0.014109187014400976,
|
| 2132 |
+
0.10277328002266586,
|
| 2133 |
+
0.06715730596333742,
|
| 2134 |
+
-0.1751516081392765,
|
| 2135 |
+
0.13003269975306464,
|
| 2136 |
+
-0.01215957077220084,
|
| 2137 |
+
-0.10042227925732733,
|
| 2138 |
+
0.13036054857075213,
|
| 2139 |
+
0.008775722794234747,
|
| 2140 |
+
0.07856735654640942,
|
| 2141 |
+
-0.0694429306051461,
|
| 2142 |
+
-0.04239498968236148,
|
| 2143 |
+
-0.04804698210209607,
|
| 2144 |
+
0.25152273084968324,
|
| 2145 |
+
-0.1492430506274104,
|
| 2146 |
+
0.16119943596422673,
|
| 2147 |
+
0.33940611872822046,
|
| 2148 |
+
0.08957686950452626,
|
| 2149 |
+
-0.0576036872342229,
|
| 2150 |
+
-0.08172749504446983,
|
| 2151 |
+
-0.1345309724099934,
|
| 2152 |
+
0.2364609685027972,
|
| 2153 |
+
0.10072718104347586,
|
| 2154 |
+
0.003340821829624467,
|
| 2155 |
+
-0.04597767407540229,
|
| 2156 |
+
0.018918244726955885,
|
| 2157 |
+
-0.11239160280674693,
|
| 2158 |
+
-0.07376309838145972,
|
| 2159 |
+
0.12267176546156411,
|
| 2160 |
+
-0.07140531631885097,
|
| 2161 |
+
0.06295341402292251,
|
| 2162 |
+
0.14427131954580547,
|
| 2163 |
+
0.06250183843076229,
|
| 2164 |
+
-0.1606520629953593,
|
| 2165 |
+
-0.027804251573979866,
|
| 2166 |
+
-0.14481351664289832,
|
| 2167 |
+
0.11379512277198955,
|
| 2168 |
+
0.4806660775095224,
|
| 2169 |
+
-0.08994001736864446,
|
| 2170 |
+
0.00915752639994026,
|
| 2171 |
+
-0.11584404325112699,
|
| 2172 |
+
0.14220867762342096,
|
| 2173 |
+
0.2804017297923565,
|
| 2174 |
+
0.18867827099747958,
|
| 2175 |
+
-0.3128292956738733,
|
| 2176 |
+
-0.06684039272367953,
|
| 2177 |
+
0.21606469061225653,
|
| 2178 |
+
-0.1878887706901878,
|
| 2179 |
+
0.32509690122678875,
|
| 2180 |
+
0.1665364772081375,
|
| 2181 |
+
0.05110035295365378,
|
| 2182 |
+
-0.24309139875695107,
|
| 2183 |
+
-0.14905344853177668,
|
| 2184 |
+
0.014429311221465464,
|
| 2185 |
+
-0.04873416791670025,
|
| 2186 |
+
0.14548272781539706,
|
| 2187 |
+
-0.08988374508335253,
|
| 2188 |
+
-0.21444802945479752,
|
| 2189 |
+
0.058564639464020726,
|
| 2190 |
+
0.2721280400641262,
|
| 2191 |
+
0.205003977753222,
|
| 2192 |
+
-0.010262779332697397,
|
| 2193 |
+
-0.0029813522472977617,
|
| 2194 |
+
-0.15529807284474373,
|
| 2195 |
+
0.26777649037539963,
|
| 2196 |
+
-0.0713763989508152,
|
| 2197 |
+
0.3913366436958313,
|
| 2198 |
+
0.24202184118330478,
|
| 2199 |
+
0.07944705467671154,
|
| 2200 |
+
0.4742859028279781,
|
| 2201 |
+
-0.024598410213366118,
|
| 2202 |
+
-0.18506417192984376,
|
| 2203 |
+
0.4029238263145089,
|
| 2204 |
+
0.08335387408733368,
|
| 2205 |
+
0.10739199253730473,
|
| 2206 |
+
-0.13465733248740436,
|
| 2207 |
+
-0.01804239540069829,
|
| 2208 |
+
-0.0791158242151141,
|
| 2209 |
+
0.19488584250211716,
|
| 2210 |
+
0.02578564528375863,
|
| 2211 |
+
-0.5237501479685307,
|
| 2212 |
+
-0.07989736758172511,
|
| 2213 |
+
0.5030703557655215,
|
| 2214 |
+
0.10675456821918486,
|
| 2215 |
+
0.2127919055521488,
|
| 2216 |
+
0.09851150363683697,
|
| 2217 |
+
-0.08418610896915199,
|
| 2218 |
+
0.1229889305308461,
|
| 2219 |
+
-0.43523957654833795,
|
| 2220 |
+
0.4120137566700578,
|
| 2221 |
+
0.4287545826286077,
|
| 2222 |
+
0.2022662471514195,
|
| 2223 |
+
-0.20844841264188288,
|
| 2224 |
+
-0.35773375257849693,
|
| 2225 |
+
0.08517274558544158,
|
| 2226 |
+
-0.1674375392496586,
|
| 2227 |
+
-0.014676835667341941,
|
| 2228 |
+
-0.05585243180394173,
|
| 2229 |
+
-0.5275113929063082,
|
| 2230 |
+
0.630928717367351,
|
| 2231 |
+
-0.01564715448766945,
|
| 2232 |
+
-0.23996227737661685,
|
| 2233 |
+
0.45196260644588615,
|
| 2234 |
+
0.5890609898604452,
|
| 2235 |
+
-0.6399751238524913,
|
| 2236 |
+
-0.15936621921136973,
|
| 2237 |
+
-0.7311209061648697,
|
| 2238 |
+
0.2599357020109892,
|
| 2239 |
+
-0.31862640250474217,
|
| 2240 |
+
-0.04317740127444269,
|
| 2241 |
+
-0.11731456399429589,
|
| 2242 |
+
-0.25942440861836075,
|
| 2243 |
+
-0.2941827371716499,
|
| 2244 |
+
0.23730804622173307,
|
| 2245 |
+
0.46029331209138036,
|
| 2246 |
+
0.38680253662168984,
|
| 2247 |
+
-0.047635487094521534,
|
| 2248 |
+
0.09478947315365074,
|
| 2249 |
+
-0.3081191055476665,
|
| 2250 |
+
-0.1648157351184636,
|
| 2251 |
+
0.6156397035345436,
|
| 2252 |
+
-0.13436328768730166,
|
| 2253 |
+
0.2214298250619322,
|
| 2254 |
+
-0.13365367855876686,
|
| 2255 |
+
0.5899101013317705,
|
| 2256 |
+
-0.43101135436445476,
|
| 2257 |
+
0.1790693347575143,
|
| 2258 |
+
-0.07457639621570705,
|
| 2259 |
+
-0.20997890923172235,
|
| 2260 |
+
-0.12710947534069417,
|
| 2261 |
+
0.6243484194390476,
|
| 2262 |
+
-0.7802158012986182,
|
| 2263 |
+
-0.2108477063477039,
|
| 2264 |
+
0.26811757814139126,
|
| 2265 |
+
0.06200872911140322,
|
| 2266 |
+
0.41312811655006954,
|
| 2267 |
+
-0.03243043515831233,
|
| 2268 |
+
0.2404710978269577,
|
| 2269 |
+
-0.2426718469709158,
|
| 2270 |
+
0.18551481867325492,
|
| 2271 |
+
-0.1008815299719572,
|
| 2272 |
+
0.30738673652522264,
|
| 2273 |
+
0.04650051929056642,
|
| 2274 |
+
0.04460244094952941,
|
| 2275 |
+
0.23529892023652793,
|
| 2276 |
+
-0.10654573403298855,
|
| 2277 |
+
-0.24890044219791893,
|
| 2278 |
+
-0.20255712829530237,
|
| 2279 |
+
-0.02652014940977096,
|
| 2280 |
+
-0.09871285315603015,
|
| 2281 |
+
0.2915390910580754,
|
| 2282 |
+
0.27769559375010433,
|
| 2283 |
+
-0.14592748656868934,
|
| 2284 |
+
0.29195716343820094,
|
| 2285 |
+
-0.07187115289270878,
|
| 2286 |
+
0.1771868597716093,
|
| 2287 |
+
0.041152336634695516,
|
| 2288 |
+
-0.1439833148382604,
|
| 2289 |
+
0.30823934525251384,
|
| 2290 |
+
0.3235661891289055,
|
| 2291 |
+
0.1609754763310775,
|
| 2292 |
+
-0.34351673722267145,
|
| 2293 |
+
-0.022873798222281028,
|
| 2294 |
+
0.09521509874612094,
|
| 2295 |
+
0.32318700947798795,
|
| 2296 |
+
0.8087762531824411,
|
| 2297 |
+
0.3908264026977122,
|
| 2298 |
+
0.002011305466294286,
|
| 2299 |
+
0.043111137486994265,
|
| 2300 |
+
0.07222179947420956,
|
| 2301 |
+
-0.16160998903214935,
|
| 2302 |
+
0.9778514429926872,
|
| 2303 |
+
-0.1190133649390191,
|
| 2304 |
+
-0.06515133678913118,
|
| 2305 |
+
0.07287682355381547,
|
| 2306 |
+
-0.5366707997396588,
|
| 2307 |
+
0.3294163831975311,
|
| 2308 |
+
0.4730239138007164,
|
| 2309 |
+
0.14623114340938625,
|
| 2310 |
+
-0.04914769362658263,
|
| 2311 |
+
0.19938274882733825,
|
| 2312 |
+
-0.042190209974069144,
|
| 2313 |
+
0.5218729123473167,
|
| 2314 |
+
-0.09630445644725116,
|
| 2315 |
+
-0.05060101728595327,
|
| 2316 |
+
0.003836261900141802,
|
| 2317 |
+
0.23963055023923516,
|
| 2318 |
+
0.34797419500537213,
|
| 2319 |
+
-0.24325519371777776,
|
| 2320 |
+
0.2133896093349904,
|
| 2321 |
+
-0.5972239149094094,
|
| 2322 |
+
-0.5162009912542999
|
| 2323 |
+
],
|
| 2324 |
+
"Lisa_Female_EN_US": [
|
| 2325 |
+
0.098259643453639,
|
| 2326 |
+
-0.16734164860099554,
|
| 2327 |
+
0.06323453821241856,
|
| 2328 |
+
-0.11800012588500977,
|
| 2329 |
+
-0.11747334823012351,
|
| 2330 |
+
0.1664506748318672,
|
| 2331 |
+
-0.11684786230325699,
|
| 2332 |
+
0.05554657885804772,
|
| 2333 |
+
0.18881248405668885,
|
| 2334 |
+
0.02363725304603577,
|
| 2335 |
+
0.13073167139664293,
|
| 2336 |
+
0.099481688067317,
|
| 2337 |
+
-0.05592308223713189,
|
| 2338 |
+
0.06073833145201206,
|
| 2339 |
+
-0.06404643282294273,
|
| 2340 |
+
0.03512822799384594,
|
| 2341 |
+
0.08353134356439113,
|
| 2342 |
+
-0.041701164841651914,
|
| 2343 |
+
0.027301983349025248,
|
| 2344 |
+
0.20779836773872373,
|
| 2345 |
+
0.18608229857636616,
|
| 2346 |
+
-0.18563928958028555,
|
| 2347 |
+
-0.07058929353952408,
|
| 2348 |
+
-0.0963012244552374,
|
| 2349 |
+
0.07196986377239227,
|
| 2350 |
+
-0.36310549527406694,
|
| 2351 |
+
0.02321777753531933,
|
| 2352 |
+
-0.08520180359482765,
|
| 2353 |
+
0.1750676281750202,
|
| 2354 |
+
-0.1034254938364029,
|
| 2355 |
+
-0.10941653922200203,
|
| 2356 |
+
0.10243654051446356,
|
| 2357 |
+
-0.047365300357341766,
|
| 2358 |
+
-0.13165730237960815,
|
| 2359 |
+
-0.16502732019871474,
|
| 2360 |
+
0.041227119415998464,
|
| 2361 |
+
0.13208873476833105,
|
| 2362 |
+
-0.1005905382335186,
|
| 2363 |
+
-0.134281662479043,
|
| 2364 |
+
-0.03663246519863605,
|
| 2365 |
+
0.019146875315345823,
|
| 2366 |
+
-0.17250166907906533,
|
| 2367 |
+
-0.10810867324471474,
|
| 2368 |
+
-0.1385631315410137,
|
| 2369 |
+
-0.07121777702122926,
|
| 2370 |
+
-0.8006405025720597,
|
| 2371 |
+
-0.1598912551999092,
|
| 2372 |
+
0.1796777807176113,
|
| 2373 |
+
0.1533122271299362,
|
| 2374 |
+
-0.013358959695324302,
|
| 2375 |
+
0.12085846066474915,
|
| 2376 |
+
0.08968418501317502,
|
| 2377 |
+
-0.1647926703095436,
|
| 2378 |
+
-0.03534330911934376,
|
| 2379 |
+
0.018276208639144892,
|
| 2380 |
+
-0.31622386574745176,
|
| 2381 |
+
0.044433788210153584,
|
| 2382 |
+
-0.3835114762187004,
|
| 2383 |
+
0.06946051493287086,
|
| 2384 |
+
-0.14754583239555358,
|
| 2385 |
+
0.7700884103775024,
|
| 2386 |
+
0.05088452622294426,
|
| 2387 |
+
-0.10631981901824475,
|
| 2388 |
+
-0.03452881909906864,
|
| 2389 |
+
-0.18428492173552513,
|
| 2390 |
+
0.01940714865922928,
|
| 2391 |
+
0.15734580717980862,
|
| 2392 |
+
0.24781300947070123,
|
| 2393 |
+
0.11008071005344391,
|
| 2394 |
+
-0.037437029182910926,
|
| 2395 |
+
-0.02237723711878061,
|
| 2396 |
+
-0.05610082112252712,
|
| 2397 |
+
0.17097073495388032,
|
| 2398 |
+
-0.029630468040704724,
|
| 2399 |
+
-0.14090186282992362,
|
| 2400 |
+
0.05233948081731796,
|
| 2401 |
+
-0.11303650513291358,
|
| 2402 |
+
0.09975283332169056,
|
| 2403 |
+
0.07712901234626768,
|
| 2404 |
+
-0.10158926621079445,
|
| 2405 |
+
-0.006173290871083734,
|
| 2406 |
+
-0.05509051866829395,
|
| 2407 |
+
-0.02421657182276249,
|
| 2408 |
+
0.12725706659257413,
|
| 2409 |
+
0.0459196088835597,
|
| 2410 |
+
0.024673170596361163,
|
| 2411 |
+
-0.021687139011919498,
|
| 2412 |
+
-0.0033121073618531255,
|
| 2413 |
+
0.16617082729935645,
|
| 2414 |
+
0.1039574097841978,
|
| 2415 |
+
-0.48374021649360655,
|
| 2416 |
+
-0.27473467141389846,
|
| 2417 |
+
-0.2696342796087265,
|
| 2418 |
+
-0.0147636947222054,
|
| 2419 |
+
0.07800779491662979,
|
| 2420 |
+
-0.17835728526115419,
|
| 2421 |
+
0.07246882431209087,
|
| 2422 |
+
-0.10726579539477825,
|
| 2423 |
+
-0.04813114702701569,
|
| 2424 |
+
-0.05245459228754044,
|
| 2425 |
+
0.021175800473429263,
|
| 2426 |
+
-0.028440106660127633,
|
| 2427 |
+
0.09296442177146673,
|
| 2428 |
+
0.06005613040179014,
|
| 2429 |
+
-0.024471254087984562,
|
| 2430 |
+
0.034369273111224174,
|
| 2431 |
+
0.21559504568576812,
|
| 2432 |
+
-0.06217287853360176,
|
| 2433 |
+
0.020450182259082794,
|
| 2434 |
+
-0.42201632708311076,
|
| 2435 |
+
0.18088365010917187,
|
| 2436 |
+
0.06422147378325462,
|
| 2437 |
+
0.42920178174972534,
|
| 2438 |
+
-0.15756667256355283,
|
| 2439 |
+
0.07944225370883942,
|
| 2440 |
+
0.07854075198993087,
|
| 2441 |
+
-0.08394828196614981,
|
| 2442 |
+
-0.02590339761227369,
|
| 2443 |
+
0.0945357296615839,
|
| 2444 |
+
0.013894812762737276,
|
| 2445 |
+
-0.0668190572410822,
|
| 2446 |
+
0.03327381014823913,
|
| 2447 |
+
0.017544799577444793,
|
| 2448 |
+
0.03966145385056734,
|
| 2449 |
+
0.185294571146369,
|
| 2450 |
+
-0.30561336129903793,
|
| 2451 |
+
0.05225303545594215,
|
| 2452 |
+
-0.20599330589175224,
|
| 2453 |
+
-0.0247444950044155,
|
| 2454 |
+
0.0681127518415451,
|
| 2455 |
+
0.04429299384355545,
|
| 2456 |
+
0.1615323081612587,
|
| 2457 |
+
-0.11333180218935013,
|
| 2458 |
+
0.05444136634469032,
|
| 2459 |
+
-0.32481844425201417,
|
| 2460 |
+
0.18828704990446568,
|
| 2461 |
+
0.2872520424425602,
|
| 2462 |
+
0.13895429372787474,
|
| 2463 |
+
-0.08756729066371917,
|
| 2464 |
+
0.24525217991322276,
|
| 2465 |
+
0.03871614711242728,
|
| 2466 |
+
0.11254438832402229,
|
| 2467 |
+
-0.06629508603364229,
|
| 2468 |
+
-0.10699533671140671,
|
| 2469 |
+
-0.049380650371313096,
|
| 2470 |
+
0.06740754097700119,
|
| 2471 |
+
0.16857104301452636,
|
| 2472 |
+
0.30641851425170896,
|
| 2473 |
+
-0.0305225610733032,
|
| 2474 |
+
-0.4179070383310318,
|
| 2475 |
+
-0.10720842555165291,
|
| 2476 |
+
0.2560294335708022,
|
| 2477 |
+
-0.019710254669189464,
|
| 2478 |
+
-0.17763112932443617,
|
| 2479 |
+
-0.0029114261269569397,
|
| 2480 |
+
-0.31358570866286756,
|
| 2481 |
+
0.041973935812711714,
|
| 2482 |
+
-0.29000549390912056,
|
| 2483 |
+
-0.35404677540063856,
|
| 2484 |
+
-0.007181685417890549,
|
| 2485 |
+
0.05955917574465275,
|
| 2486 |
+
-0.1936878278851509,
|
| 2487 |
+
-0.4633562132716179,
|
| 2488 |
+
0.021091651916503917,
|
| 2489 |
+
-0.19877577703446148,
|
| 2490 |
+
-0.035990026939543895,
|
| 2491 |
+
-0.13621442914009094,
|
| 2492 |
+
0.14864262491464614,
|
| 2493 |
+
-0.32244770638644693,
|
| 2494 |
+
-0.20621291697025299,
|
| 2495 |
+
-0.34765296103432775,
|
| 2496 |
+
-0.24935359358787537,
|
| 2497 |
+
-0.14733021520078182,
|
| 2498 |
+
-0.1826939433813095,
|
| 2499 |
+
-0.12082219868898392,
|
| 2500 |
+
-0.2630250319838524,
|
| 2501 |
+
-0.25408093333244325,
|
| 2502 |
+
-0.23697019964456556,
|
| 2503 |
+
0.3174678087234497,
|
| 2504 |
+
-0.13980808593332766,
|
| 2505 |
+
0.15056745186448098,
|
| 2506 |
+
0.19160462617874144,
|
| 2507 |
+
0.05726437717676161,
|
| 2508 |
+
-0.010723254084587096,
|
| 2509 |
+
0.3363094590604305,
|
| 2510 |
+
-0.5907457679510116,
|
| 2511 |
+
0.2439893047325313,
|
| 2512 |
+
-0.08692961037158967,
|
| 2513 |
+
0.06740072220563889,
|
| 2514 |
+
0.024416530132293696,
|
| 2515 |
+
-0.2389059288892895,
|
| 2516 |
+
0.04350413922220468,
|
| 2517 |
+
0.1647874414920807,
|
| 2518 |
+
-0.22662141621112825,
|
| 2519 |
+
-0.22065756656229496,
|
| 2520 |
+
0.2145439937710762,
|
| 2521 |
+
-0.17922353893518447,
|
| 2522 |
+
0.12061219662427902,
|
| 2523 |
+
0.03737899707630277,
|
| 2524 |
+
-0.021762318909168236,
|
| 2525 |
+
0.05909155458211899,
|
| 2526 |
+
0.11406668499112128,
|
| 2527 |
+
-0.33404846489429474,
|
| 2528 |
+
-0.006388737261295324,
|
| 2529 |
+
-0.30795534551143644,
|
| 2530 |
+
0.12133514666929841,
|
| 2531 |
+
0.004110211133956904,
|
| 2532 |
+
0.13224451523274183,
|
| 2533 |
+
0.3036839559674263,
|
| 2534 |
+
-0.21054075136780737,
|
| 2535 |
+
0.0030692771077156025,
|
| 2536 |
+
0.0035036206245422363,
|
| 2537 |
+
0.011927027255296707,
|
| 2538 |
+
0.08805800816044211,
|
| 2539 |
+
0.0661589827388525,
|
| 2540 |
+
0.17130252979695795,
|
| 2541 |
+
0.09395805150270461,
|
| 2542 |
+
0.26391741409897806,
|
| 2543 |
+
-0.05089263916015625,
|
| 2544 |
+
-0.11061666905879974,
|
| 2545 |
+
0.13363431245088578,
|
| 2546 |
+
-0.30518253389745953,
|
| 2547 |
+
-0.04395102113485336,
|
| 2548 |
+
-0.03574146777391435,
|
| 2549 |
+
-0.23613579357042908,
|
| 2550 |
+
-0.16882284134626388,
|
| 2551 |
+
-0.30275803729891776,
|
| 2552 |
+
-0.04444010443985462,
|
| 2553 |
+
0.2190699848346412,
|
| 2554 |
+
0.27886907644569875,
|
| 2555 |
+
0.20610505752265454,
|
| 2556 |
+
0.03134636655449867,
|
| 2557 |
+
-0.06447610408067703,
|
| 2558 |
+
-0.0005596891045570457,
|
| 2559 |
+
0.26649302095174787,
|
| 2560 |
+
-0.2057398557662964,
|
| 2561 |
+
0.0030920282006263733,
|
| 2562 |
+
-0.4122629433870315,
|
| 2563 |
+
0.3565848290920257,
|
| 2564 |
+
0.20677504390478132,
|
| 2565 |
+
0.3942677197046578,
|
| 2566 |
+
-0.3252736687660217,
|
| 2567 |
+
0.0967718569561839,
|
| 2568 |
+
0.03678370863199233,
|
| 2569 |
+
-0.3206644430756569,
|
| 2570 |
+
-0.10442807674407958,
|
| 2571 |
+
0.09797048419713975,
|
| 2572 |
+
0.5563426822423935,
|
| 2573 |
+
0.04038007035851478,
|
| 2574 |
+
0.41352313160896303,
|
| 2575 |
+
0.3068622753024101,
|
| 2576 |
+
0.11289987117052078,
|
| 2577 |
+
0.19880020171403884,
|
| 2578 |
+
0.0596605807542801,
|
| 2579 |
+
0.11166647523641585,
|
| 2580 |
+
-0.09573411736637354
|
| 2581 |
+
],
|
| 2582 |
+
"Anne_Female_EN_US": [
|
| 2583 |
+
0.17940405994304454,
|
| 2584 |
+
-0.1644238923676312,
|
| 2585 |
+
0.09324024524539709,
|
| 2586 |
+
-0.12510012816637756,
|
| 2587 |
+
-0.06630658619105817,
|
| 2588 |
+
0.11119609288871288,
|
| 2589 |
+
-0.16596424281597139,
|
| 2590 |
+
0.08907460342161358,
|
| 2591 |
+
0.19401996767846869,
|
| 2592 |
+
0.01849436295451596,
|
| 2593 |
+
0.14532765592448413,
|
| 2594 |
+
0.08469446934759615,
|
| 2595 |
+
-0.023078771238215272,
|
| 2596 |
+
0.07181636142777278,
|
| 2597 |
+
-0.15694392705336213,
|
| 2598 |
+
0.026453089481219653,
|
| 2599 |
+
0.14835394602268934,
|
| 2600 |
+
-0.050624337047338486,
|
| 2601 |
+
0.08605103651061653,
|
| 2602 |
+
0.25574559848755596,
|
| 2603 |
+
0.18944694046513177,
|
| 2604 |
+
-0.335114658344537,
|
| 2605 |
+
-0.10531004574149846,
|
| 2606 |
+
-0.13781959619373083,
|
| 2607 |
+
0.06695765908807516,
|
| 2608 |
+
-0.43373020405415447,
|
| 2609 |
+
-0.00021649692207574567,
|
| 2610 |
+
-0.06944741196930408,
|
| 2611 |
+
0.18373148031532766,
|
| 2612 |
+
-0.18261400833725927,
|
| 2613 |
+
-0.07242659293115139,
|
| 2614 |
+
0.07962212040729355,
|
| 2615 |
+
-0.054722306877374643,
|
| 2616 |
+
-0.08814518945291638,
|
| 2617 |
+
-0.18172899140045046,
|
| 2618 |
+
0.07253306582570077,
|
| 2619 |
+
0.12834971025440609,
|
| 2620 |
+
-0.07147813141345978,
|
| 2621 |
+
-0.03303390946239235,
|
| 2622 |
+
-0.020850191079080108,
|
| 2623 |
+
0.03093239173758775,
|
| 2624 |
+
-0.17062115278095008,
|
| 2625 |
+
-0.2042961787432432,
|
| 2626 |
+
0.0001160103827714809,
|
| 2627 |
+
-0.05252801310271025,
|
| 2628 |
+
-0.7858508661389351,
|
| 2629 |
+
-0.2091302715241909,
|
| 2630 |
+
0.215912102162838,
|
| 2631 |
+
0.1682404987514019,
|
| 2632 |
+
-0.004957896983250976,
|
| 2633 |
+
0.08353579475078732,
|
| 2634 |
+
0.07429065436590462,
|
| 2635 |
+
-0.2838975650956854,
|
| 2636 |
+
-0.060729915578849616,
|
| 2637 |
+
0.015331120043992993,
|
| 2638 |
+
-0.3538943402469158,
|
| 2639 |
+
0.06603590287268161,
|
| 2640 |
+
-0.3598479990148917,
|
| 2641 |
+
0.04949475321918727,
|
| 2642 |
+
-0.1802994295954704,
|
| 2643 |
+
0.8948932841420174,
|
| 2644 |
+
0.06269775629043578,
|
| 2645 |
+
0.14551597367972133,
|
| 2646 |
+
-0.024429614841938015,
|
| 2647 |
+
-0.18672503978013993,
|
| 2648 |
+
0.0038162305951118525,
|
| 2649 |
+
0.06440221983939409,
|
| 2650 |
+
0.22779810093343258,
|
| 2651 |
+
0.0648292437195778,
|
| 2652 |
+
-0.06520362980663777,
|
| 2653 |
+
-0.1480596019886434,
|
| 2654 |
+
-0.07716014515608549,
|
| 2655 |
+
0.19149241223931313,
|
| 2656 |
+
-0.00472725033760071,
|
| 2657 |
+
-0.15999614455504343,
|
| 2658 |
+
0.05745576778426767,
|
| 2659 |
+
-0.1102717611938715,
|
| 2660 |
+
0.10388381499797106,
|
| 2661 |
+
0.060168941505253315,
|
| 2662 |
+
-0.059192010387778285,
|
| 2663 |
+
0.16045401743613183,
|
| 2664 |
+
-0.08206549435853958,
|
| 2665 |
+
-0.00931916926056147,
|
| 2666 |
+
0.07603645194321872,
|
| 2667 |
+
-0.015994349215179678,
|
| 2668 |
+
0.06288723759353161,
|
| 2669 |
+
0.035409542825073,
|
| 2670 |
+
-0.02822249522432685,
|
| 2671 |
+
0.1511568885296583,
|
| 2672 |
+
0.025192760489881047,
|
| 2673 |
+
-0.45415958352386954,
|
| 2674 |
+
-0.2641012085601687,
|
| 2675 |
+
-0.09631151705980302,
|
| 2676 |
+
0.05240553788607939,
|
| 2677 |
+
-0.038502784445881844,
|
| 2678 |
+
-0.1828939441591501,
|
| 2679 |
+
0.08149223010987043,
|
| 2680 |
+
-0.16405740920454265,
|
| 2681 |
+
-0.0005170568823814475,
|
| 2682 |
+
-0.02928877165541053,
|
| 2683 |
+
0.04517688824562356,
|
| 2684 |
+
0.006311735883355152,
|
| 2685 |
+
0.07976922886446118,
|
| 2686 |
+
0.10996842151507735,
|
| 2687 |
+
-0.08294843146577477,
|
| 2688 |
+
-0.04048346038907766,
|
| 2689 |
+
0.20001366436481477,
|
| 2690 |
+
-0.17603044249117372,
|
| 2691 |
+
0.030919674783945097,
|
| 2692 |
+
-0.45755103826522825,
|
| 2693 |
+
0.27328743394464255,
|
| 2694 |
+
0.14530749581754207,
|
| 2695 |
+
0.37551659494638445,
|
| 2696 |
+
-0.08780852369964123,
|
| 2697 |
+
0.0881434208364226,
|
| 2698 |
+
0.1102366984821856,
|
| 2699 |
+
-0.10324715869501233,
|
| 2700 |
+
-0.0326073732227087,
|
| 2701 |
+
0.11423155306838453,
|
| 2702 |
+
0.08385749866720289,
|
| 2703 |
+
-0.044914178038015964,
|
| 2704 |
+
0.03559637144207953,
|
| 2705 |
+
0.15771918892860412,
|
| 2706 |
+
0.1590451302938163,
|
| 2707 |
+
0.2501667616888881,
|
| 2708 |
+
-0.4137455578893423,
|
| 2709 |
+
0.0505435885861516,
|
| 2710 |
+
-0.23191697373986245,
|
| 2711 |
+
0.0287872213870287,
|
| 2712 |
+
0.003149333596229556,
|
| 2713 |
+
0.10368789061903953,
|
| 2714 |
+
-0.010588538646697995,
|
| 2715 |
+
-0.0879323348402977,
|
| 2716 |
+
-0.07506629079580307,
|
| 2717 |
+
-0.5269412443041801,
|
| 2718 |
+
0.22431598380208015,
|
| 2719 |
+
0.3359779428690672,
|
| 2720 |
+
0.0032832570374011962,
|
| 2721 |
+
-0.050378158874809745,
|
| 2722 |
+
0.3839163174852729,
|
| 2723 |
+
0.028349736475502138,
|
| 2724 |
+
-0.10097187757492063,
|
| 2725 |
+
-0.11896620839834213,
|
| 2726 |
+
-0.1368182884529233,
|
| 2727 |
+
0.04117071777582168,
|
| 2728 |
+
0.09757037162780761,
|
| 2729 |
+
0.30170601047575474,
|
| 2730 |
+
0.42509459182620046,
|
| 2731 |
+
-0.031749222427606555,
|
| 2732 |
+
-0.450509675219655,
|
| 2733 |
+
-0.10203840397298336,
|
| 2734 |
+
0.11731623336672783,
|
| 2735 |
+
-0.14807355552911758,
|
| 2736 |
+
-0.3516409188508987,
|
| 2737 |
+
-0.014435897022485725,
|
| 2738 |
+
-0.2427325451746583,
|
| 2739 |
+
0.06217130366712809,
|
| 2740 |
+
-0.38942934162914755,
|
| 2741 |
+
-0.23018259108066563,
|
| 2742 |
+
-0.046737963333725915,
|
| 2743 |
+
0.21478279903531072,
|
| 2744 |
+
-0.15159097351133824,
|
| 2745 |
+
-0.6199001990258693,
|
| 2746 |
+
0.11925626099109649,
|
| 2747 |
+
-0.11402976419776678,
|
| 2748 |
+
0.007391047988494388,
|
| 2749 |
+
-0.00794237181544305,
|
| 2750 |
+
0.3376276850700378,
|
| 2751 |
+
-0.469353917054832,
|
| 2752 |
+
-0.39055002434179187,
|
| 2753 |
+
-0.5357521926518529,
|
| 2754 |
+
-0.2898576606065035,
|
| 2755 |
+
-0.07800486553460359,
|
| 2756 |
+
-0.3499526508152485,
|
| 2757 |
+
-0.09789482404012233,
|
| 2758 |
+
-0.29802559399977324,
|
| 2759 |
+
-0.0005799770355224831,
|
| 2760 |
+
-0.16338682733476162,
|
| 2761 |
+
0.3528595224022865,
|
| 2762 |
+
-0.43563686497509474,
|
| 2763 |
+
0.09255755357444287,
|
| 2764 |
+
0.14223229270428417,
|
| 2765 |
+
0.0687978647649288,
|
| 2766 |
+
9.937696158886233e-05,
|
| 2767 |
+
0.370262223854661,
|
| 2768 |
+
-0.6324451595544816,
|
| 2769 |
+
0.2665458579082042,
|
| 2770 |
+
-0.1399991037324071,
|
| 2771 |
+
0.12931404411792755,
|
| 2772 |
+
0.16657713875174524,
|
| 2773 |
+
-0.12588859747629613,
|
| 2774 |
+
0.11505986778065562,
|
| 2775 |
+
0.04677194319665433,
|
| 2776 |
+
-0.3566686304286122,
|
| 2777 |
+
-0.24695453979074955,
|
| 2778 |
+
0.2476239986717701,
|
| 2779 |
+
-0.5334096863865851,
|
| 2780 |
+
-0.07400115504860877,
|
| 2781 |
+
0.12062631538137794,
|
| 2782 |
+
0.04516074173152446,
|
| 2783 |
+
-0.052435807511210436,
|
| 2784 |
+
0.3395687915384769,
|
| 2785 |
+
-0.35318856965750456,
|
| 2786 |
+
0.09023026153445243,
|
| 2787 |
+
-0.33012407943606376,
|
| 2788 |
+
0.1426998670678586,
|
| 2789 |
+
0.16262518018484115,
|
| 2790 |
+
0.1251251042820513,
|
| 2791 |
+
0.46874684616923334,
|
| 2792 |
+
-0.15137760601937772,
|
| 2793 |
+
0.068039158731699,
|
| 2794 |
+
-0.30281599573791024,
|
| 2795 |
+
-0.2254273697733879,
|
| 2796 |
+
0.27405579378828404,
|
| 2797 |
+
0.17136543877422808,
|
| 2798 |
+
0.10630016443319619,
|
| 2799 |
+
0.057858095318079,
|
| 2800 |
+
0.11517375223338605,
|
| 2801 |
+
-0.15762499999254942,
|
| 2802 |
+
-0.29063242860138416,
|
| 2803 |
+
0.20158795565366744,
|
| 2804 |
+
-0.29120013369247316,
|
| 2805 |
+
-0.24734700098633766,
|
| 2806 |
+
-0.11135954931378364,
|
| 2807 |
+
0.0172116317320615,
|
| 2808 |
+
-0.31362133994698527,
|
| 2809 |
+
-0.22704790353309365,
|
| 2810 |
+
0.04125624597072601,
|
| 2811 |
+
0.2366799856070429,
|
| 2812 |
+
0.1992180491797626,
|
| 2813 |
+
0.2684565844014287,
|
| 2814 |
+
0.2055516693741083,
|
| 2815 |
+
-0.33117692880332467,
|
| 2816 |
+
-0.031874293368309735,
|
| 2817 |
+
0.38305166363716125,
|
| 2818 |
+
-0.29617225378751755,
|
| 2819 |
+
-0.04308449327945709,
|
| 2820 |
+
-0.5536482103168965,
|
| 2821 |
+
0.5467873688321561,
|
| 2822 |
+
0.17487224414944647,
|
| 2823 |
+
0.4601214074995369,
|
| 2824 |
+
-0.21070712432265282,
|
| 2825 |
+
0.14032430904917417,
|
| 2826 |
+
0.04221225241199136,
|
| 2827 |
+
-0.1693667344748974,
|
| 2828 |
+
-0.05280606932938099,
|
| 2829 |
+
0.19504989907145498,
|
| 2830 |
+
0.5787762992084027,
|
| 2831 |
+
-0.0508410669863224,
|
| 2832 |
+
0.3892222262918949,
|
| 2833 |
+
0.3818872168660164,
|
| 2834 |
+
0.1461108922958374,
|
| 2835 |
+
0.2555951376445591,
|
| 2836 |
+
-0.23311877846717832,
|
| 2837 |
+
0.03256144672632219,
|
| 2838 |
+
0.08528051348403096
|
| 2839 |
+
]
|
| 2840 |
+
}
|