changed to flan t5 large
Browse files
app.py
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
import sentencepiece
|
2 |
import logging
|
3 |
import torch
|
4 |
from transformers import T5Tokenizer, T5ForConditionalGeneration
|
@@ -7,45 +7,69 @@ from pydantic import BaseModel
|
|
7 |
import gradio as gr
|
8 |
from typing import Optional
|
9 |
|
|
|
|
|
10 |
# Configure logging
|
11 |
logging.basicConfig(level=logging.INFO)
|
12 |
logger = logging.getLogger(__name__)
|
13 |
|
|
|
|
|
14 |
# Load model and tokenizer
|
15 |
-
|
16 |
-
logger.info(f"Loading {model_name}...")
|
17 |
tokenizer = T5Tokenizer.from_pretrained(model_name)
|
18 |
model = T5ForConditionalGeneration.from_pretrained(model_name)
|
19 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
20 |
model.to(device)
|
21 |
-
logger.info(f"Model loaded
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
-
# FastAPI app
|
24 |
-
app = FastAPI()
|
25 |
|
26 |
-
# Pydantic model for request validation
|
27 |
class SummarizationRequest(BaseModel):
|
28 |
text: str
|
29 |
max_length: Optional[int] = 150
|
30 |
min_length: Optional[int] = 30
|
31 |
|
32 |
-
# Summarization function
|
33 |
def summarize_text(text, max_length=150, min_length=30):
|
34 |
logger.info(f"Summarizing text of length {len(text)}")
|
35 |
inputs = tokenizer("summarize: " + text, return_tensors="pt", truncation=True, max_length=512).to(device)
|
|
|
36 |
outputs = model.generate(
|
37 |
inputs.input_ids,
|
38 |
max_length=max_length,
|
39 |
min_length=min_length,
|
40 |
-
|
41 |
-
|
42 |
-
|
|
|
|
|
43 |
)
|
|
|
44 |
summary = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
45 |
logger.info(f"Generated summary of length {len(summary)}")
|
46 |
return summary
|
47 |
|
48 |
-
# REST API endpoint
|
49 |
@app.post("/summarize")
|
50 |
async def summarize(request: SummarizationRequest):
|
51 |
try:
|
@@ -56,10 +80,11 @@ async def summarize(request: SummarizationRequest):
|
|
56 |
)
|
57 |
return {"summary": summary}
|
58 |
except Exception as e:
|
59 |
-
logger.error(f"
|
60 |
raise HTTPException(status_code=500, detail=str(e))
|
61 |
|
62 |
-
# Gradio
|
|
|
63 |
def gradio_summarize(text, max_length=150, min_length=30):
|
64 |
return summarize_text(text, max_length, min_length)
|
65 |
|
@@ -78,8 +103,8 @@ demo = gr.Interface(
|
|
78 |
# Mount the Gradio app at the root path
|
79 |
app = gr.mount_gradio_app(app, demo, path="/")
|
80 |
|
81 |
-
#
|
|
|
82 |
if __name__ == "__main__":
|
83 |
import uvicorn
|
84 |
-
|
85 |
-
uvicorn.run(app, host="0.0.0.0", port=7860)
|
|
|
1 |
+
import sentencepiece
|
2 |
import logging
|
3 |
import torch
|
4 |
from transformers import T5Tokenizer, T5ForConditionalGeneration
|
|
|
7 |
import gradio as gr
|
8 |
from typing import Optional
|
9 |
|
10 |
+
app = FastAPI()
|
11 |
+
|
12 |
# Configure logging
|
13 |
logging.basicConfig(level=logging.INFO)
|
14 |
logger = logging.getLogger(__name__)
|
15 |
|
16 |
+
model_name = "google/flan-t5-large"
|
17 |
+
|
18 |
# Load model and tokenizer
|
19 |
+
logger.info(f"Loading model: {model_name}")
|
|
|
20 |
tokenizer = T5Tokenizer.from_pretrained(model_name)
|
21 |
model = T5ForConditionalGeneration.from_pretrained(model_name)
|
22 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
23 |
model.to(device)
|
24 |
+
logger.info(f"Model loaded on device: {device}")
|
25 |
+
|
26 |
+
|
27 |
+
class QuestionAnswerRequest(BaseModel):
|
28 |
+
question: str
|
29 |
+
context: str
|
30 |
+
|
31 |
+
@app.post("/question-answer")
|
32 |
+
def answer_question(request: QuestionAnswerRequest):
|
33 |
+
try:
|
34 |
+
input_text = f"question: {request.question} context: {request.context}"
|
35 |
+
inputs = tokenizer(input_text, return_tensors="pt", max_length=512, truncation=True).to(device)
|
36 |
+
outputs = model.generate(
|
37 |
+
inputs.input_ids,
|
38 |
+
max_length=64,
|
39 |
+
num_beams=4,
|
40 |
+
early_stopping=True
|
41 |
+
)
|
42 |
+
answer = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
43 |
+
return {"answer": answer}
|
44 |
+
except Exception as e:
|
45 |
+
logger.error(f"QA error: {str(e)}")
|
46 |
+
raise HTTPException(status_code=500, detail=str(e))
|
47 |
|
|
|
|
|
48 |
|
|
|
49 |
class SummarizationRequest(BaseModel):
|
50 |
text: str
|
51 |
max_length: Optional[int] = 150
|
52 |
min_length: Optional[int] = 30
|
53 |
|
|
|
54 |
def summarize_text(text, max_length=150, min_length=30):
|
55 |
logger.info(f"Summarizing text of length {len(text)}")
|
56 |
inputs = tokenizer("summarize: " + text, return_tensors="pt", truncation=True, max_length=512).to(device)
|
57 |
+
|
58 |
outputs = model.generate(
|
59 |
inputs.input_ids,
|
60 |
max_length=max_length,
|
61 |
min_length=min_length,
|
62 |
+
num_beams=6,
|
63 |
+
repetition_penalty=2.0,
|
64 |
+
length_penalty=1.0,
|
65 |
+
early_stopping=True,
|
66 |
+
no_repeat_ngram_size=3
|
67 |
)
|
68 |
+
|
69 |
summary = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
70 |
logger.info(f"Generated summary of length {len(summary)}")
|
71 |
return summary
|
72 |
|
|
|
73 |
@app.post("/summarize")
|
74 |
async def summarize(request: SummarizationRequest):
|
75 |
try:
|
|
|
80 |
)
|
81 |
return {"summary": summary}
|
82 |
except Exception as e:
|
83 |
+
logger.error(f"Summarization error: {str(e)}")
|
84 |
raise HTTPException(status_code=500, detail=str(e))
|
85 |
|
86 |
+
# ---------- Gradio Interface ----------
|
87 |
+
|
88 |
def gradio_summarize(text, max_length=150, min_length=30):
|
89 |
return summarize_text(text, max_length, min_length)
|
90 |
|
|
|
103 |
# Mount the Gradio app at the root path
|
104 |
app = gr.mount_gradio_app(app, demo, path="/")
|
105 |
|
106 |
+
# ---------- Entry Point ----------
|
107 |
+
|
108 |
if __name__ == "__main__":
|
109 |
import uvicorn
|
110 |
+
uvicorn.run(app, host="0.0.0.0", port=7860)
|
|